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Abstract 

The twenty-first century vision for toxicology involves a transition away from high-dose animal 

studies and into in vitro and computational models. This movement requires mapping pathways 

of toxicity through an understanding of how in vitro systems respond to chemical perturbation. 

Uncovering transcription factors responsible for gene expression patterns is essential for defining 

pathways of toxicity, and ultimately, for determining chemical mode of action, through which a 

toxicant acts. Traditionally this is achieved via chromatin immunoprecipitation studies and 

summarized by calculating, which transcription factors are statistically associated with the up- 

and down-regulated genes. These lists are commonly determined via statistical or fold-change 

cutoffs, a procedure that is sensitive to statistical power and may not be relevant to determining 

transcription factor associations. To move away from an arbitrary statistical or fold-change based 

cutoffs, we have developed in the context of the Mapping the Human Toxome project, a novel 

enrichment paradigm called Information Dependent Enrichment Analysis (IDEA) to guide 

identification of the transcription factor network. We used the test case of endocrine disruption 

of MCF-7 cells activated by 17β estradiol (E2). Using this new approach, we were able to 

establish a time course for transcriptional and functional responses to E2. ERα and ERβ are 

associated with short-term transcriptional changes in response to E2. Sustained exposure leads to 

the recruitment of an additional ensemble of transcription factors and alteration of cell-cycle 

machinery. TFAP2C and SOX2 were the transcription factors most highly correlated with dose. 

E2F7, E2F1 and Foxm1, which are involved in cell proliferation, were enriched only at 24h. 

IDEA is, therefore, a novel tool to identify candidate pathways of toxicity, clearly outperforming 

Gene-set Enrichment Analysis but with similar results as Weighted Gene Correlation Network 

Analysis, which helps to identify genes not annotated to pathways. 

Introduction 

Much of what we understand about the effects of toxic compounds on human health comes from 

decades of experiments in animal models. This knowledge currently underwrites many of the 

safety regulations concerning exposures to hazardous compounds in commercial, industrial, and 

environmental applications. The testing strategies for these in-life animal tests are expensive, 

time consuming, and exorbitant in the use of animals (Cooper, Lamb et al. 2006, Hartung and 

Rovida 2009). Differences between human biology and laboratory animals cause difficulties in 

definitively assessing the safety of a compound from animal studies (Hartung 2009)). 

Additionally, extrapolating from high-dose conditions typically required for in vivo animal 

testing to chronic exposures relevant to human safety is problematic because of nonlinear dose-

response relationships at high treatment levels. Together, these facts argue for new approaches 

for toxicity testing based on human biology (NRC 2007, Andersen and Krewski 2009, Andersen 

and Krewski 2010). 

The development of in vitro toxicity assays and computational models can presumably replace 

traditional in-life animal testing. High-throughput in vitro screening batteries designed to assess 

mode-of-action and hazard are currently being used to prioritize compounds for conventional in-

life testing (i.e., the EPA ToxCast and NIEHS Tox21 programs). Integrating prior knowledge 

about biological pathways with data from screening programs yields models that are predictive 

of in vivo testing results (Thomas, Philbert et al. 2013, Rotroff, Martin et al. 2014). However, 

these approaches rely heavily on knowledge of the underlying pathway of toxicity (PoT)—the 

mechanism by which exposure to a toxicant leads to adversity (Hartung and McBride 2010; 
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Kleensang et al. 2014). For many commercially important chemicals their PoT are poorly 

understood. Thus, it would be valuable to develop a system for deriving PoT de novo. With this 

goal, the Human Toxome project (Bouhifd et al. 2015) was started in order to employ -omics 

technologies to start a catalogue of PoT. 

Short-term full genome gene expression experiments have recently been found to be predictive 

of the results of 2-year bioassays (Thomas, Wesselkamper et al. 2013). This observation suggests 

that microarray and other high-throughput experiments could help define PoT without having to 

rely on incomplete and possibly misleading literature (Ioannidis 2005, Hartung 2013). To 

demonstrate the value of this strategy, we use estrogen receptor signaling in the well-studied 

MCF-7 human breast cancer cell line as a model of estrogenic endocrine disruption, which 

underwent International validation
1
. 

Exposure to exogenous estrogens has been linked to reproductive and developmental effects, and 

breast and uterine cancers. Estrogens act by binding to various estrogen receptors, including 

ERβ, GPER, and various ERα isoforms (i.e., ERα36 and ERα46). Working in concert, these 

receptors orchestrate estrogen-dependent processes through regulation of transcriptional 

programs in various tissues. However, comparison between gene expression datasets and high-

throughput chromatin immunoprecipitation (ChIP) has revealed a relatively small overlap, 

suggesting an incomplete picture, in which gene expression is regulated largely by cis-activation 

through ERs. These findings indicate that while a model of activation of gene expression through 

ER binding at promoters may serve as a first-order approximation of PoT—there are additional 

aspects that need to be considered to connect the molecular initiating event (ligand binding to the 

receptors) to the adverse cellular outcome (here as altered proliferation). 

In addition to estrogens acting directly through ERα and ERβ, there is increasing evidence for 

regulatory contributions from additional transcription factors (O'Lone, Frith et al. 2004). ERα 

interacts with a number of transcriptional modulators, including AP-1 (Zhao, Gao et al. 2010), 

Sp1 (Schultz, Petz et al. 2003), SNCG (Jiang, Liu et al. 2003), and Sin3A (Ellison-Zelski, 

Solodin et al. 2009). Non-genomic signaling, originating from estrogens binding to the G-

protein-coupled receptor GPER or from ERα isoforms anchored to the plasma membrane, 

initiates kinase cascades that drive transcription through heretofore-unknown mechanisms. 

Predicting the transcription factors responsible for a cellular response would significantly 

contribute to PoT identification (Essaghir, Toffalini et al. 2010, Maertens, Luechtefeld et al. 

2015). However, traditional approaches for identifying transcription factors from gene 

expression patterns use data from a small subset of the genome. Here, we investigate the 

transcription factor network responsible for estrogen-mediated transcriptional changes using a 

novel approach that makes use of a higher proportion of the biological information than 

conventional methods. We have performed gene expression microarray experiments exposing 

the MCF7 breast carcinoma cell line to the canonical estrogen, 17β-estradiol (E2). By combining 

the observed gene expression changes with publically available ChIP data, we generated a 

putative gene-regulatory network.   

                                                   
1
 http://ntp.niehs.nih.gov/pubhealth/evalatm/test-method-evaluations/endocrine-disruptors/ 
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Methods 

Cell culture 

MCF-7 cells were seeded at a density of 300,000 cells/well in 6-well plates and allowed to grow 

for 72 hours in complete growth media composed of DMEM/F12 media supplemented with 10% 

fetal bovine serum (FBS, Atlanta Biologicals, Flowery Branch, GA), non-essential amino acids, 

10µg/mL bovine insulin and gentamicin. After 72 hours, cells were rinsed with PBS and placed 

in treatment media composed of DMEM/F12 supplemented with 5% dextran charcoal-stripped 

fetal bovine serum (DCC, Gemini Bio-products, Sacramento, CA, US, no. 100-119), 

nonessential amino acids, 6ng/mL bovine insulin and gentamicin for 48 hours. Cells were then 

exposed to 17β estradiol (E2, SigmaAldrich, St. Louis, MO, USA, no. E8875) or vehicle control 

dimethylsulfoxide (DMSO, Sigma Aldrich, no. D8418) in fresh treatment media for 2, 4, 8, and 

24 hours. Samples were scraped into TRI Reagent (Sigma Aldrich, no. T9424) and stored at -

80°C until RNA isolation and q-PCR analysis.  

Gene expression microarray experiments 

Total RNA from MCF-7 cells was extracted using TRizol Reagent according to manufacturer’s 

instruction, and purified using RNeasy Mini Kit (Qiagen). Purified RNA was quantified by using 

NanoDrop ND-1000 spectrophotometer and the quality of RNA was analyzed by using Agilent 

Bioanalyzer (Agilent). 100 ng of total RNA from treated and control cells were converted into 

cDNA and then into labeled cRNA using Agilent LowInput QuickAmp Labeling Kit (Agilent). 

The resulting cRNA was labeled with Cy3. Labeled cRNAs were then purified, and RNA 

concentration and dye incorporation were measured using NanoDrop ND-1000 

spectrophotometer. Hybridization to Agilent SurePrint G3 human whole genome 8x60K 

microarray (Agilent) was conducted following manufacturer’s protocol. Microarrays were 

scanned with an Agilent DNA microarray scanner. Feature Extraction (11.5.1.1 version, Agilent) 

was used to filter, normalize, and calculate the signal intensity and ratios. Processed data were 

subjected to GeneSpring (Agilent) analysis. 

Gene expression analysis 

Data from microarray experiments was analyzed using GeneSpring (Agilent) software. Raw data 

were imported and quantile-normalized. Fold-change expressions for the probes were calculated 

by calculating the ratio of change from probes in time-matched controls. Significance for the 

change was computed using a t-test and corrected for multiple tests using FDR correction. Genes 

were then assigned to their respective probes using the annotation files created by Agilent for the 

microarray plates used. 

Transcription factor database curation 

Several compendia exist of transcription factor–target interaction that we can use to uncover a 

regulatory network, through which estrogen acts. For this study, we used Chip-X Enrichment 

Analysis (ChEA) database (Kou, Chen et al. 2013) and the Encode database (Bernstein, Birney 

et al. 2012). The databases were combined to increase coverage of the databases. This combined 

database was used to calculate enrichment using IDEA and Gene-Set Enrichment Analysis 

(GSEA). 

Information Dependent Enrichment Analysis 

The workflow for calculating enrichment using IDEA is represented in Figure 1Error! 

Reference source not found.. Consider the set of N genes identified as upregulated. Let δi 
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describe the relationship between a transcription factor and gene i, where 0≤i≤N and δi = 1 if the 

transcription factor regulates gene i. From this group, a set {En} of the n most highly up-

regulated genes can be defined. This sample of n genes contains ∑ 𝛿𝑖{𝑖<𝑛}  genes regulated by the 

transcription factor. Fisher’s exact test provides the probability fn that a gene selected from {En} 

and a gene selected from the genome at large have equivalent likelihood of being regulated by 

the transcription factor. fn can be calculated for all values of n and test statistic t defined as the 

minn fn.  

To determine whether the transcription factor is associated with up-regulated genes, we used 

Monte Carlo hypothesis testing. A distribution {t
0
} of null-model test statistics was established 

by permuting the N upregulated genes and calculating fn
0
 for each permutation (Supplemental 

Figure S1). The best estimate of the probability e that t is consistent with the null model is 

determined by quantile function of {t
0
} (Supplemental Figure S2). 

This procedure was repeated for all transcription factors in the database and for both up- and 

down-regulated gene sets. The Benjamini-Hochberg multiple test correction was applied to the e-

values. The same procedure was repeated with KEGG and Reactome ontologies establish effects 

of estrogen exposure on biological processes.  

Weighted Gene Correlation Network Analysis (WGCNA) 

A signed weighted gene correlation network analysis (WGCNA) network (Langfelder and 

Horvath 2008) was generated on the 7000 most highly expressed genes at 8h as determined by 

rank means expression. The network was derived based on a signed Spearman correlation using 

a β of 8, and clustered into modules using dynamic tree cut with a height of 0.25 and a deep split 

level of 3, and a reassign threshold of 2. The eigenmodules - essentially the first principal 

component of the modules - were then correlated with dose. Each module that had a statistically 

significant correlation with dose was analyzed for transcription factors using the ChEA 2015 

dataset accessed via EnrichR (Chen Y, et al 2013) restricted to MCF-7 cells.  

Results and Discussion  

Response of MCF-7 cells to estrogen 

The gene expression response of the MCF-7 breast carcinoma cell line to 17β-estradiol (E2) has 

been extensively documented (O'Lone, Frith et al. 2004). However, the bevy of gene expression 

studies in the MCF-7 experimental system (Rae, Johnson et al. 2005, Carroll, Meyer et al. 2006, 

Chang, Frasor et al. 2006, Creighton, Cordero et al. 2006, Fan, Yan et al. 2006, Frasor, Chang et 

al. 2006, Gaube, Wolfl et al. 2007, Kininis, Chen et al. 2007, Lin, Vega et al. 2007, Lin, 

Reierstad et al. 2007, Bourdeau, Deschenes et al. 2008, Chang, Charn et al. 2008) display a large 

degree of inconsistency, when analyzed at the gene level (Ochsner, Steffen et al. 2009, 

Jagannathan and Robinson-Rechavi 2011). Here, we build on this literature by performing gene 

expression microarray analysis on MCF-7 cells with 0.01, 0.1, and 1nM E2 for 2, 4, 8, and 24h.  

The number of genes identified as differentially expressed (FDR-corrected p-values less than 

0.05) in cells treated with 1nM E2 varied substantially with time and concentration—from zero 

genes after 2h exposure to 4113 genes after 24h (Error! Reference source not found.,Table 1). 

Interestingly, this increase in number of differentially expressed genes is not monotonic, with 

547 genes identified at 4h and only 4 genes identified at 8h post treatment. Because the 

identification of differentially expressed genes depends on experimental factors that drive 
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statistical power, it is unclear whether this decrease in differentially expressed genes with time is 

biologically meaningful. This observation—possibly an artifact—is common to functional 

genomics experiments that test thousands of hypotheses in parallel and here it poses a challenge 

for correctly interpreting data. 

Because the lists of differentially expressed genes derived from microarray experiments are 

determined by statistical power (e.g., number of replicates, RNA isolation protocol, microarray 

platform, etc.) as well by biology, using standard over-representation analysis in this case would 

likely be unsound. Classical overrepresentation analysis—commonly used to assign functional 

ontology descriptions to sets of genes—suffers from a number of shortcomings. Gene expression 

changes are aggregated into lists of up- and downregulated genes based on significance criteria, 

magnitude of change, or some combination of these and other factors. These choices result in a 

list of the most extremely responding genes. Rarely do genes encode a protein that is solely 

responsible for the cellular response to stimuli. As such almost always multiple genes are 

transcribed to varying degrees to bring about a response and using some arbitrary cut-off does 

not take into account this nature of gene transcription. More critically for toxicology, this 

methodology would likely miss subtle effects at low doses or early time-points, when very few 

genes are identified as differentially expressed. This approach often results in no enrichment 

observed at low exposures and trivial categories enriched at high exposures. The number of 

genes used for calculating enrichment is dependent completely on how many are identified as 

significant. This makes it impossible to compare relative enrichments between categories as 

inherently different lists were used to perform the computation.  

To address this problem, we developed a novel approach for assessing enrichment from high-

throughput data, which has the advantage of being relatively insensitive to variability in 

statistical power in assignment of differential expression and makes use of a larger complement 

of the gene expression data to determine enrichment for transcription factor binding or functional 

ontology. 

The IDEA algorithm for enrichment analysis 

Our novel approach bypasses the pitfalls of existing methods by avoiding differentially 

expressed gene lists and instead using the entire set of microarray data to create a gene list 

ordered by expression values. This avoids attempts to balance the sensitivity and specificity with 

statistical cut-offs and concerns about bias in the background. 

Slicing gene lists of different length allows us to look at how the strength of enrichment for each 

category changes with increasing number of genes. If a transcriptional network is active, then 

even at low exposures multiple genes belonging to that network will be expressed, albeit not 

strongly. Furthermore, those genes will follow a pattern of expression that will be captured by 

their ordering (Figure 3Error! Reference source not found.). This will give the statistical tests 

used enough power to test for enrichment when a large gene list is selected. Each enrichment for 

category is computed over the same background and using the same number of genes. This 

approach allows us to easily compare the relative contribution of categories to overall signal by 

looking at number of genes required to achieve peak enrichment. With this information, and how 

the relative ordering of genes required changes across experimental conditions, we can predict 

how the cell responds to stimuli in a time and dose dependent manner. That allows us to discern 

the signaling cascade of transcription factors and its evolution over increasing exposure. In order 
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to better understand the changes in transcription factor enrichment, we also created a 

visualization tool to interact with the IDEA results( Link  to visualization on the web).  

Estrogen receptors drive the short-term transcriptional response to E2 

We surveyed existing ChIP datasets to better understand the factors driving estrogen-mediated 

transcriptional changes. Interestingly, ERα and ERβ—two primary estrogen transcription 

factors—have only been shown to bind a small fraction of differentially expressed genes (Error! 

Reference source not found.). This low degree of overlap between receptor binding and gene 

expression regulation is in sharp contrast to other nuclear receptors that have been shown to 

account for approximately half of the affected genes’ expression (van der Meer, Degenhardt et 

al. 2010, McMullen, Bhattacharya et al. 2014). 

At 2h, of all the up-regulated genes, 28% are needed for peak ERα and ERβ enrichment. At 24h 

this ratio shifts to only 1.7 % for ERα and 7.8% for ERβ. In other words, as would be expected, 

the ERα and ERβ signal strengthens over time – at 2 hours it is barely over background level 

while at 24 hours the signal is much more distinct. Most importantly, from the point of view of 

the bioinformatician looking to discern a signature of toxicity, this approach allows quantifying 

the strength of the signal at any given time point.  

We investigated the large variation in number of genes needed for peak enrichment to determine 

whether this factor contained information about the biology of the system. Similar sets of ERα 

and ERβ genes are up-regulated at 2h and 24h (Figure 4).  Also the highest responding genes at 

24h are also up-regulated at 2h. Hence the difference in enrichment comes from change in 

expression patterns of similar genes at 2h and 24h. 

Plotting the distribution of expression for all ERα and ERβ regulated genes (Figure 5) reveals that 

at 24h, there is a larger set of highly up-regulated genes (greater than 4-fold change) than in 

background. Alternatively at 2h, all the ERα and ERβ regulated genes follow background pattern 

of gene expression more closely. This result indicates that at ERα and ERβ are strong drivers of 

the underlying expression pattern at 24h but their signal is mediated only by a limited subset of 

the full group of differentially expressed genes. 

A very different pattern of enrichment in observed in the case of down-regulated genes. Looking 

at gene expression at 2h, we see no enrichment in ERα and ERβ profiles. We observed 

enrichment for a few other transcription factors, like ZNF217, indicating that the absence of 

enrichment is due to lack of ER signaling in these genes rather than a lack of gene expression. At 

later times, estrogen receptors are highly enriched by down-regulated genes. However, their peak 

enrichment never requires less than 37% of all down-regulated genes.  

Cell cycle alterations at 24h 

Persistent exposure of MCF7 cells to E2 induces cell proliferation. Time course of estrogen 

receptor enrichment shows a shift from a large suite of ER genes expressed at low level to a 

small set of highly expressed ER genes. We believe this to be a result of a shift from estrogen-

specific signaling to generic cell cycle signaling driven by ER genes. Additional evidence for 

this process is provided by the enrichment of E2F7, E2F1 and Foxm1 only at 24h. Both Foxm1 

and E2F1 are transcriptional activators involved in cell proliferation (Stender, Frasor et al. 2007, 

Real, Meo-Evoli et al. 2011). E2F7 on the other hand represses the activity of E2F1 by binding 
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to E2F1-responsive genes (De Bruin, Maiti et al. 2003, Liu, Shats et al. 2013). However at 24h, 

E2F7 is only enriched in the set of up-regulated genes providing further evidence to the generic 

cell cycle signature at later times.  

In contrast, ZNF217, a transcription factor that has been implicated in cell division and 

differentiation in many cancers (Zhu, Zhu et al. 2005, Littlepage, Adler et al. 2012, Rahman, 

Nakayama et al. 2012), is enriched at all time-points among down-regulated genes. High levels 

of ZNF217 mRNA is a marker of poor prognosis in breast cancer (Littlepage, Adler et al. 2012). 

ZNF217 primarily acts by repressing genes that halt cell cycle, thereby promoting cell growth 

and differentiation (Thollet, Vendrell et al. 2010). This loss of gene expression is consistent with 

the role of ZNF217 as a repressor that is essential to proliferation in breast cancer cells (Thollet, 

Vendrell et al. 2010). 

Relationship to Gene Set Enrichment Analysis 

Gene-set Enrichment Analysis (Subramanian, Subramanian et al. 2005) is a well-known 

algorithm that attempts to use a priori gene set information to calculate enrichment of gene lists. 

We applied the widely-used GSEA algorithm to our combined transcription factor database to 

better understand the relationship between IDEA and existing methods (Subramanian, 

Subramanian et al. 2005). The results agree closely with those obtained by us (supplementary 

table). At 2h, only 3 transcription factors are enriched in cells treated with 1nM E2 using 

recommended parameters at a FDR of less than 25%, the value used by the creators of GSEA as 

a valid cut-off for establishing enrichment (Subramanian, Subramanian et al. 2005). At 24h, 69 

transcription factors are identified as enriched in treated cells. Additionally at 2h, ERα and ERβ 

are highly enriched for treated cells, whereas at 24h the E2F family of proteins is highly enriched 

for the treated cells. This is in line with our hypothesis that there exists a proximate ER network 

that then feeds into the generic cell cycle processes to effect proliferation and other phenotypic 

alterations associated with E2 treatment. 

GSEA is geared towards discerning differences in enrichment between two experimental 

conditions (in toxicology studies, often a treatment and a control) by attributing enrichment of 

each gene set to one of the two conditions. When using GSEA to compare enrichment between 

Estrogen-treated and untreated cells, transcription factors associated with down-regulated genes 

and those that have no effect are both identified as enriched in untreated cells. As shown above, 

ERα and ERβ are associated with large sets of both upregulated and downregulated genes. The 

similarities and differences in the composition of these gene sets and their expression patterns are 

essential in uncovering the underlying transcription factor network. At longer exposures, GSEA 

identifies enrichment in ERα and ERβ in untreated cells but ignores the small set of highly 

upregulated genes driven by these transcription factors. This rigidity inherent to the GSEA 

method hinders its utility in interpreting results whereas the same transcription factors may be 

responsible for both activation and repression of genes through different pathways. Finally, the 

results of GSEA are dependent on the choice of weight function for calculating the enrichment 

statistic, whereas IDEA relies on the statistics of the hypergeometric distribution to calculate 

enrichment. 

Evidence for cell cycle signaling from functional ontologies 
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Cell cycle is controlled by a large number of transcription factors. Hence it was necessary to 

ensure that enrichment in E2F family of proteins is indicative of global cell cycle signaling in the 

cell. Functional ontologies like Kyoto Encyclopedia of Genes and Genomes (KEGG) and 

Reactome attempt to assign genes to functional categories based on information curated from 

experimental results. These databases are better at identifying processes (i.e., cell cycle, 

metabolism, etc.) that depend on a relatively large section of the genome to be expressed. As 

such they are an ideal complement to transcription factor databases that capture processes 

regulated by a small subset of genes in the genome.  

To investigate the hypothesis of altered cell cycle signal appearing only after longer exposures, 

we calculated the enrichment of functional categories in both Reactome and KEGG using the 

IDEA algorithm. We observed a very clear temporal pattern of enrichment of cell cycle-related 

categories. At 2h and 4h, none of the cell cycle-related categories were enriched. However at 8h, 

we observed enrichment of some cell cycle-related categories like DNA replication. Finally at 

24h post treatment, all mitotic cell cycle-related categories in both Reactome and KEGG were 

significantly enriched (link to visualization). Furthermore, the numbers of genes needed for peak 

enrichment at 24h were less than those needed at 8h, indicating stronger information content in 

the enrichment signal at 24h. We also clustered the enrichment profiles obtained from KEGG 

ontology using hierarchical clustering algorithm with Euclidian distance metric between decimal 

logarithms of t-values (Figure 6). The clustering showed a similar response with signaling 

pathways being activated as early as 2h and 4h. Cell Cycle and DNA replication were only 

enriched at 8h and 24h. Figure 7 illustrates the time-dependence of key transitions in 

transcription factor and functional ontology enrichment patterns. 

Gene expression changes are aggregated into lists of up- and down-regulated genes based on 

significance criteria, magnitude of change, or some combination of these and other factors. These 

choices result in a list of the most extremely responding genes, dependent completely on how 

many are identified as significant.  

De novo network analysis of estrogen perturbation 

To investigate the data from a methodology that is blind to a priori knowledge of transcription 

factor binding sites and is relatively insensitive to concerns about technical bias, we used 

weighted gene correlation network analysis (WGCNA) to build a de novo network from the data 

using the dose response curve at eight hours – notably a time point where only four genes were 

significantly expressed in response to E2. Correlation methods offer an additional alternative to 

using differentially expressed genes for downstream analysis, as they take advantage of a larger 

portion of the data and allow for the investigation of links between genes.(Maertens et al 2015). 

Moreover, WGCNA assigns genes to modules based on a graph theoretical algorithm and tests 

for significance between the modules and experimental factors (here, the dose-response curve). 

The added value for identifying PoT has been recognized earlier (Andersen et al. 2015, 

Rahnenführer and Leist 2015). 

Despite a relatively weak signal in terms of differentially expressed genes at that the 8-hour 

time-point, the network derived from the data contained 5 modules that were significantly 

correlated with E2 concentration. To understand the relationship between the transcriptional 

factors co-ordinating the gene expression and the modules, each module was analyzed for 

transcription factors using the ChEA dataset but restricted to MCF7 cells. In addition to ESR1 
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and ESR2, there were also well-known estrogen response pathway transcription factors such as 

GATA3 and cancer-related transcription factor HIF1. Moreover, both ZNF217 and TFAP2C 

were identified as a significant transcription factor in each module correlated with dose and as 

expected several transcriptional modules coincident with the enriched transcription factors for 

upregulated genes identified with IDEA (Supplementary Table 4).  

While TFAP2C is not annotated to estrogen-responsive pathways in either the KEGG estrogen 

signaling pathway (Kanehisa and Goto 2000) nor does it have any GO Annotations relating to 

estrogen, it is a key regulator of hormone responsiveness at multiple levels. It acts both directly 

by regulating ERα transcription and indirectly by recruiting key estrogen pioneer transcription 

factors GATA3 and FOXA1, and additionally by modulating several downstream signaling 

pathways (Cyr, Kulak et al. 2015). In vitro, TFAP2C attenuation leads to a lack of mitogenic 

response to estrogen and in vivo decreased hormone-responsive tumor growth of breast cancer 

xenografts (Woodfield, Horan et al. 2007). Clinically, higher TFAP2C scores correlates with 

poorer survival for breast cancer patients (Perkins, Bales et al. 2015). Moreover, both TFAP2C 

and ZNF217 gene expression levels were correlated with estrogen receptor status in breast 

cancer dataset from TCGA, indicating that the significance of these genes for in vivo biology.  

SOX2 was also identified in several of the modules. One key step in the regulation of breast 

tumor-initiating cells takes place when ERα down-regulates miR-140 (Zhang, Eades et al. 2012), 

which in turn increases levels of SOX2. SOX2 is considered a key regulator of stem-cell self-

renewal and specifically in breast cancer tissue is thought to promote non-genomic estrogen 

signaling while simultaneously acting to amplify estrogen’s signal by increasing the nuclear 

levels of phospho-Ser118-ERα (Vazquez-Martin, Cufi et al. 2013). Expression of SOX2 is 

increased in early stage breast tumors, and over-expression of SOX2 increased mammosphere 

formation, while SOX2 knockdown prevented mammosphere formation and delayed tumor 

formation in a xenograft tumor initiation model (Leis, Eguiara et al. 2012). Both TFAP2C and 

SOX2 were also enriched using the IDEA algorithm. 

The concordance between the IDEA algorithm (which also identified TFAP2C, ZNF217, and 

SOX2) and the transcription factors identified by WGCNA shows that both the methods 

complement each other and further investigation of expression analysis using WGCNA would 

help identify estrogen-responsive genes not annotated to ER pathways.  

Conclusions 

The technologies driving modern biology produce a surfeit of data, often spanning the breadth of 

the genome. However, methods for extracting biological insight from the results of these 

experiments have lagged behind. New computational tools and visualization strategies are 

required to fully realize the potential of systems biology for revolutionizing toxicity testing and 

mapping toxicity pathways. High-throughput tools often implicate large lists of genes for 

particular phenotypic responses. However, translating this information into biological knowledge 

remains a fundamental challenge. There also exists a persistent perception in modern biological 

research that more information automatically leads to more knowledge. However, the quantity 

and complexity of high-throughput data is typically not directly translatable into advances in 

understanding. 
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Summarizing changes to transcriptional programs by associating them with existing literature 

and curated databases is a key modality for summarizing and understanding the results of high-

throughput experiments. Here, we treated MCF7 cells with E2 and calculated transcription 

factors over-represented by expressed genes. We also inferred the functional implications of 

those gene expression changes. Because existing enrichment approaches were insufficient for 

interpreting these changes, we derived a novel technique that makes more complete use of the 

biological data.  

Our tool, IDEA, provides a framework for observing patterns with gene expression studies. 

Toxicants with similar modes of action are expected to induce similar patterns of transcriptional 

change. However, changes in individual genes are typically not as robust as changes at the 

pathway level. Because it summarizes gene expression changes into a small subset of 

transcription factors or ontology categories associated with the up- and/or downregulated genes, 

this is a promising tool for identifying mode of action. 

By considering the time-course of genes regulated by various transcription factors, we 

hypothesize that response to estrogen involves two distinct steps (Figure 8). During the first stage, 

at 2h to 4h post-treatment, signaling is dominated by cis-regulation of ERα and ERβ. This primes 

the cells for growth. At longer exposures, only a subset of ERα- and ERβ-controlled genes is 

highly up-regulated. Simultaneously, a large set of genes regulated by cell signaling transcription 

factors, including E2F1, E2F4, and Foxm1 are upregulated. At longer exposures, cell cycle-

related categories in KEGG (Kanehisa and Goto 2000) and Reactome (Fabregat, Sidiropoulos et 

al. 2015) are enriched in up-regulated genes, while apoptotic and anti-proliferative categories are 

enriched in down-regulated genes.  

We were able to observe the evolution of enrichment over increasing exposures by moving away 

from using traditional p-value and fold-change cutoffs to define lists to be used for calculating 

enrichment. These cutoffs do not account for low-level, diffuse patterns of gene expression that 

can characterize early time-points or low dose responses to exposure. Using the entire dataset 

instead of a limited set of highly expressed genes allowed us to investigate the cellular response 

at 2, 4 and 8 hours post-treatment, where the number of differentially expressed genes did not 

yield any enrichment information regarding either transcription factor binding or cellular 

processes. Additionally, IDEA allowed us to obtain results at conditions where array 

normalization and experimental noise would have severely decreased the utility of traditional 

enrichment methods. Because we are capturing information contained in relative expression of 

genes with respect to each other as opposed to some external cutoff, we will be better able to 

compare enrichment results across multiple experiments, which mitigate concerns about 

comparing functional enrichment results across multiple estrogen receptor studies in the NCBI 

Gene Expression Omnibus. Along with significantly enriched pathways and transcription factors, 

IDEA also provided us with the number of genes needed to achieve that enrichment 

(Supplementary Figure).This gives some insight into the strength of the signal in the data as it 

unfolds over time and dose, which can be useful for both experimental design and other 

bioinformatics approaches, which require dimensionality reduction. 

In conclusion, IDEA provides us with a framework for observing patterns with gene expression 

studies and can provide a viable tool to investigate mode of action for multiple chemicals of the 

same class. The similarity of results with WGCNA is reassuring and these methods complement 
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each other in the effort to provide a more nuanced characterization of estrogen’s PoT. The new 

approach lends itself for the initial identification of candidate PoT, which could then be followed 

by more targeted experiments on the path to a Human Toxome (Bouhifd et al., 2015) and a 

systems toxicology approach (Hartung et al., 2012). 
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Tables 
Table 1. Number of genes differentially expressed following E2 treatment in MCF7 cells. 

  
2h 4h 8h 24h 

  Up Down Up Down Up Down Up Down 

0.01 nM 3 9 48 39 14 14 0 0 

0.1 nM 205 120 670 312 229 180 1350 954 

1.0 nM 0 0 375 172 3 1 2101 2012 

 

Table 1: The number of genes differentially expressed was not a linear function of either time or dose.  
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Figure 1. Flowchart for computing enrichment using the IDEA Algorithm 
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Figure 2. Genomic Response of E2-treated MCF7 cells. (A) Matrix of expression changes for all differentially 

expressed genes. Each row indicates a gene, each column indicates a treatment condition increasing in dose from 

left to right. A small fraction of the differentially expressed genes have been shown to bind either ERα or ERβ in 

previous studies. (B) Transcription Factor Regulation Matrix. Each row is a gene and each column is a 

transcription factor. Black dots indicate that gene is shown to have the corresponding transcription factor binding. 
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Figure 3. Plot of p-values determined by Fisher Exact test for genes regulated by ERα in MCF7 cells. A) Genes up-regulated 24h post-

treatment, (B) downregulated 24h post-treatment, (C) up-regulated 2h post-treatment and (D) down-regulated 2h post-treatment 
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Figure 4. Overlap between genes enriched and bound by    

ERα and ERβ at 2h and 24h. Almost all genes contributing to 

enrichment at 24h were also expressed at 2h. 
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Figure 5: Cumulative distribution of expression changes in upregulated genes that are 

regulated by (A) ERα and (B) ERβ at 2h (red) and 24 h (blue). Background distributions 

(dashed) reflect all upregulated genes at the given condition. More ERα and ERβ bound genes  

have greater than 2 log2 fold change (solid blue line) at 24h than any other genes at any other 

condition 
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Figure 6: Clustering t-values for KEGG pathways. Cell cycle-related pathways cluster independent of all other pathways (shown in a 

green box). Cell cycle is strongly enriched only at 24h post treatment, while  DNA replication is enriched at both 8h and 24h post 

treatment. 
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 Figure 7 Key events in estrogen signaling. Genes up-regulated by ERα and ERβ already show a strong expression pattern at 2h post-

treatment. This pattern continues to get stronger with time. Generic proliferative transcription factors like E2F1 and E2F4 are enriched 

for the first time only at 8h post exposure. At the same time, genes involved in cell cycle and proliferation also show a strong expression 

pattern. Some ERα and ERβ genes are down-regulated in response to E2 treatment, but their expression patterns do not evolve over time.  
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Figure 8. Putative transcription factor network for Estrogen signaling. ERα and ERβ bind directly to DNA via Estrogen Responsive 

Elements (ERE). This initiates transcription of a set of estrogen responsive genes. At longer exposures, these estrogen responsive genes 

initiate the transcription of a larger set of secondary transcription factors. These transcription factors then promote proli feration and 

suppress apoptotic genes.  
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Supplemental Figures 

 

Supplementary Figure A. Characterization of the IDEA null model. (A) Four representative 

simulations of fn
0
 for the association of up-regulated genes with ERα. Circles denote t

0 
for each 

simulation. (B) Null model test statistics must be uniformly distributed in a valid Monte Carlo 

hypothesis test. Ensembles of fn
0 

for n=100 (red), n=1000 (blue), and n=10,000 (green) are uniformly 

distributed (black dashed line) between 0 and 1. 
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Supplementary Figure B. Successive simulations of fn
0
 give rise to an ensemble of null model test 

statistics, {t
0
}. (A) Significance of enrichment, e, is based on the relationship between the observed 

test statistic t and {t
0
}. The probability of observing a test statistic more extreme than t is the 

cumulative density of {t
0
} evaluated at t. 
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Supplemental Figure S3. Expression for genes regulated by key transcription factors.  
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A) Mean expression across all genes A) down-regulated and B) up-regulated by a given transcription 

factor and contributing to peak enrichment using IDEA. 

 

Supplementary Figure S3: Reactome Enrichment using IDEA. Significant enrichment of cell cycle related categories is 

observed only at 8 and 24h post exposure. 
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 p-value z-score Combined 

Module 1    

TFAP2C_20629094_ChIP-Seq_MCF7_Human 0.000001421 -1.36 15.14 

E2F1_21310950_ChIP-Seq_MCF7_Human 0.00002338 -1.55 13.62 

GATA3_24758297_ChIP-Seq_MCF7_Human 0.000001568 -1.06 11.81 

FOXM1_26456572_ChIP-Seq_MCF7_Human 0.00002657 -0.89 7.75 

HIF1A_21447827_ChIP-Seq_MCF7_Human* 0.007963 -1.02 4.07 

TFAP2A_17053090_ChIP-ChIP_MCF7_Human 0.00223 -0.3 1.51 

ZNF217_24962896_ChIP-Seq_MCF7_Human 0.003892 -0.21 0.98 

E2F1_17053090_ChIP-ChIP_MCF7_Human 0.009095 -0.06 0.24 

Module 2    

ESR2_21235772_ChIP-Seq_MCF-7_Human 7.83E-35 -2.48 182.43 

ESR1_21235772_ChIP-Seq_MCF-7_Human 5.47E-19 -2.58 101.34 

ZNF217_24962896_ChIP-Seq_MCF7_Human 1.94E-26 -1.64 91.14 

ARNT_22903824_ChIP-Seq_MCF7_Human 2.77E-22 -1.87 86.42 

AHR_22903824_ChIP-Seq_MCF7_Human 3.02E-19 -2.05 81.45 

FOXM1_26456572_ChIP-Seq_MCF7_Human 3.58E-23 -1.41 67.79 

TFAP2C_20629094_ChIP-Seq_MCF7_Human 1.30E-19 -1.54 62.24 

GATA3_24758297_ChIP-Seq_MCF7_Human 1.53E-18 -1.2 45.9 

E2F1_21310950_ChIP-Seq_MCF7_Human 6.58E-08 -0.9 13.74 

ELK1_22589737_ChIP-Seq_MCF10A_Human 1.80E-07 -0.76 11.01 

TFAP2A_17053090_ChIP-ChIP_MCF7_Human 1.04E-08 -0.53 9.13 

HIF1A_21447827_ChIP-Seq_MCF7_Human 0.00006937 -0.38 3.43 

PADI4_21655091_ChIP-ChIP_MCF7_Human 0.000004136 -0.19 2.17 

E2F1_17053090_ChIP-ChIP_MCF7_Human 0.000001442 -0.16 2.06 

NR3C1_21868756_ChIP-Seq_MCF10A_Human 0.0008343 0.68 -4.56 

ESR1_15608294_ChIP-ChIP_MCF7_Human* 0.008491 1.07 -4.81 
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TOP2B_26459242_ChIP-Seq_MCF7_Human 0.0001527 0.97 -8.01 

Module 3    

TFAP2C_20629094_ChIP-Seq_MCF7_Human 0.000001421 -1.36 15.14 

E2F1_21310950_ChIP-Seq_MCF7_Human 0.00002338 -1.55 13.62 

GATA3_24758297_ChIP-Seq_MCF7_Human 0.000001568 -1.06 11.81 

ELK1_22589737_ChIP-Seq_MCF10A_Human 0.00009227 -1.38 10.54 

ESR2_21235772_ChIP-Seq_MCF-7_Human 0.0006228 -1.43 8.71 

FOXM1_26456572_ChIP-Seq_MCF7_Human 0.00002657 -0.88 7.66 

HIF1A_21447827_ChIP-Seq_MCF7_Human* 0.007963 -1.02 4.07 

TFAP2A_17053090_ChIP-ChIP_MCF7_Human 0.00223 -0.3 1.51 

ZNF217_24962896_ChIP-Seq_MCF7_Human 0.003892 -0.21 0.98 

E2F1_17053090_ChIP-ChIP_MCF7_Human 0.009095 -0.06 0.24 

Module 4    

FOXM1_26456572_ChIP-Seq_MCF7_Human 1.03E-11 -1.32 29.43 

ZNF217_24962896_ChIP-Seq_MCF7_Human 2.86E-10 -1.45 28.14 

ELK1_22589737_ChIP-Seq_MCF10A_Human 0.00000399 -1.22 13.35 

PADI4_21655091_ChIP-ChIP_MCF7_Human 0.000003368 -1.12 12.41 

GATA3_24758297_ChIP-Seq_MCF7_Human 9.50E-07 -0.73 8.94 

TFAP2C_20629094_ChIP-Seq_MCF7_Human 0.00002054 -0.68 6.4 

TFAP2A_17053090_ChIP-ChIP_MCF7_Human 0.00005266 -0.46 3.97 

TFAP2C_20629094_ChIP-Seq_MCF7_Human 0.00002054 -0.68 6.4 

TFAP2A_17053090_ChIP-ChIP_MCF7_Human 0.00005266 -0.46 3.97 

Module 5    

ESR2_21235772_ChIP-Seq_MCF-7_Human 1.30E-47 -1.99 210.47 

E2F1_21310950_ChIP-Seq_MCF7_Human 5.51E-51 -1.69 191.87 
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GATA3_24758297_ChIP-Seq_MCF7_Human 2.24E-59 -1.13 149.69 

ESR1_21235772_ChIP-Seq_MCF-7_Human 2.41E-32 -1.95 138.66 

PADI4_21655091_ChIP-ChIP_MCF7_Human 1.97E-38 -1.3 110.2 

TFAP2C_20629094_ChIP-Seq_MCF7_Human 1.78E-36 -1.05 84.38 

ZNF217_24962896_ChIP-Seq_MCF7_Human 1.60E-33 -0.94 69.56 

FOXM1_26456572_ChIP-Seq_MCF7_Human 1.15E-28 -0.48 29.94 

ELK1_22589737_ChIP-Seq_MCF10A_Human 2.49E-18 -0.51 20.08 

E2F1_17053090_ChIP-ChIP_MCF7_Human 1.77E-19 -0.3 12.61 

HIF1A_21447827_ChIP-Seq_MCF7_Human 3.44E-12 -0.49 12.54 

AHR_22903824_ChIP-Seq_MCF7_Human 5.53E-14 -0.35 10.36 

TFAP2A_17053090_ChIP-ChIP_MCF7_Human 2.57E-19 -0.14 5.84 

ARNT_22903824_ChIP-Seq_MCF7_Human 1.04E-11 0.17 -4.13 

ESR1_15608294_ChIP-ChIP_MCF7_Human 0.00132 1.63 -10.55 

NR3C1_21868756_ChIP-Seq_MCF10A_Human 0.00000104 1.01 -13.6 

TOP2B_26459242_ChIP-Seq_MCF7_Human 2.88E-09 1.14 -21.77 

Supplementary Table T1: Transcription Factors Identified from Modules Derived from WGCNA of 8 

hour dose-response curve 
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