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Abstract
The accurate prediction of the impact of an amino acid substitution on the thermal stability of

a protein is a central issue in protein science, and is of key relevance for the rational optimization

of various bioprocesses that use enzymes in unusual conditions. Here we present one of the first

computational tools to predict the change in melting temperature ∆Tm upon point mutations, given

the protein structure and, when available, the melting temperature Tm of the wild-type protein.

The key ingredients of our model structure are standard and temperature-dependent statistical

potentials, which are combined with the help of an artificial neural network. The model structure

was chosen on the basis of a detailed thermodynamic analysis of the system. The parameters of the

model were identified on a set of more than 1,600 mutations with experimentally measured ∆Tm.

The performance of our method was tested using a strict 5-fold cross-validation procedure, and was

found to be significantly superior to that of competing methods. We obtained a root mean square

deviation between predicted and experimental ∆Tm values of 4.2°C that reduces to 2.9°C when ten

percent outliers are removed. A webserver-based tool is freely available for non-commercial use at

soft.dezyme.com.
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Introduction

The possibility of rationally modifying protein sequences to increase their thermal resis-

tance is a main goal in protein engineering. Indeed, the design of new enzymes and other

proteins that remain stable and active at temperatures that differ from their physiological

temperatures would allow the optimization of a wide series of biotechnological processes in

many sectors such as agro-food, biopharmaceuticals and environment.

Unfortunately, it is extremely complicated to predict the effect of mutations on the ther-

mal stability of proteins, defined through the melting temperature Tm, i.e. the temperature

at which the protein undergoes the reversible (un)folding transition. It is even more difficult

than predicting the change in thermodynamic stability defined by the folding free energy

∆G(Tr) at room temperature (Tr), since it requires a precise understanding of the variation

of the free energy ∆G(T ) as a function of the temperature (T ) of the different types of in-

teractions that contribute to protein stability, i.e. between the various chemical groups that

form the solvent and the 20 amino acids. This is a longstanding problem that is currently

far from being solved. The analyses performed in the last thirty years led to the conclusion

that there is no unique and specific factor that ensures an enhancement of the thermal sta-

bility of all proteins, but that there is - though very approximately - such a factor inside

each protein family, as homologous proteins tend to involve the same kinds of stabilizing

interactions (see for example [1–10] and references therein).

A series of experimental approaches have been developed to design new mutants with

higher or lower melting temperature than the wild-type protein. They are mostly based

on directed evolution experiments that mimic natural evolution, sometimes in combination

with computational approaches (see [11, 12] and references therein). Unfortunately, these

methods are only partially successful. Indeed, they are expensive and time-consuming, and

moreover limited by the vastness of sequence space and the low frequency of the thermally

stabilizing mutations.

In silico protein engineering constitutes an alternative for the design of new proteins

with modified stability. Different computational tools based on a variety of approaches and

information including residue conservation, energy estimations as well as structural, sequence

and dynamical features, have been developed to get a prediction of the thermodynamic

stability changes upon point mutations defined through ∆∆G(Tr), the difference of folding
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free energy ∆G between the mutant and wild-type proteins at room temperature. Quite

interestingly, some of these methods can reach a good accuracy at very low computational

cost, with the sole knowledge of the wild-type structure [13–23] (see also [24] for a comparison

of their performances). This makes the fastest among them ideal tools for stability analyses

of the entire structurome. One of the major drawbacks of these methods is that the results

are usually biased towards the training datasets even if strict cross validation is applied,

which makes the estimation of their true performances an almost impossible task [25].

The impact of point mutations on the thermal stability, defined through ∆Tm which

measures how the protein melting temperature changes upon mutations, has been much less

investigated than the thermodynamic stability, as it is more intricate and requires taking

into account that the amino acid interactions are temperature dependent. Therefore, there

are very few in silico tools for predicting ∆Tm [16, 26–28]. The common strategy to study

the enhancement of thermal resistance is to assume the thermodynamics and thermal sta-

bilities to be perfectly correlated (or ∆∆G(Tr) and ∆Tm to be perfectly anticorrelated).

Unfortunately, even if this approximation can be used in a first instance, it is not always

reliable [29]. As a consequence, the predictions of ∆Tm are in general less accurate because

the intrinsic errors on the ∆∆G predictions have to be summed with the errors due to

the imperfect correlation of the two stabilities. As an example, the anticorrelation between

∆∆G’s predicted using the thermodynamic stability change predictor PoPMuSiC [22] and

measured ∆Tm’s is not so satisfactory and is equal to 0.51, whereas the correlation between

predicted and experimental ∆∆G’s is 0.63.

For all these reasons, it is necessary to design a specific computational tool for predicting

∆Tm in a fast and more precise way. This is the aim of the present paper, in which we present

a new, knowledge- and thermodynamics-based, method called HoTMuSiC, which is able to

predict this quantity using as sole input data, the three-dimensional (3D) structure of the

wild-type protein and – when available – its melting temperature Tm. A very preliminary

version of this method has been published in [30]. The main reasons of the success of

HoTMuSiC are rooted on the one hand in the thorough physical analysis of the system

which helped correct guessing the form of the model structures, and on the other hand

in the use of temperature-dependent statistical potentials [22, 31–33] that are extracted

from non-redundant datasets of protein X-ray structures of thermostable and mesostable

proteins. We would like to emphasize that these are presently the only potentials that yield

3

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 2, 2016. ; https://doi.org/10.1101/038554doi: bioRxiv preprint 

https://doi.org/10.1101/038554


an estimation of the temperature dependence of the folding free energy contributions of the

different amino acid interactions – albeit in an approximate, effective, manner.

Results

Theoretical analysis

The thermodynamic stability change upon mutation is measured by ∆∆G(Tr), i.e. the

difference between the Gibbs folding free energies of the mutant (∆Gmut) and wild-type

(∆Gwild) proteins at the reference temperature Tr:

∆∆G(Tr) = ∆Gmut(Tr)−∆Gwild(Tr). (1)

Usually Tr is taken as the room temperature: Tr = 298K. ∆∆G’s upon point mutations can

be predicted in silico using a series of tools [13–23], which reach a relatively good accuracy

with a standard deviation between the experimental and predicted ∆∆G’s of 1 to 2 kcal/mol.

Less prediction methods have been developed for the change in thermal stability upon

mutations, measured by ∆Tm, i.e. the difference between the melting temperature of the

mutant (Tmutm ) and wild-type (Twildm ) proteins:

∆Tm = Tmutm − Twildm . (2)

In a first approximation the two protein stabilities can be assumed to be strongly in-

terdependent. Indeed, focusing on two-state folding transitions and assuming: (1) the

mutations to be small perturbations with respect to the wild-type state; (2) the fold-

ing heat capacity ∆CP to be T -independent; (3) its variations upon mutations to vanish

(∆∆CP ≡ ∆Cmut
P − ∆Cwild

P = 0) and (4) similarly for the folding enthalpy (∆∆Hm ≡

∆Hmut(Twildm )−∆Hwild(Twildm ) = 0), one can derive the simple relation:

∆∆G(Tr) '
∆HmTr
(Twildm )2

∆Tm, (3)

with ∆Hm ≡ ∆Hwild(Twildm ) = ∆Hwild(Tr)+∆CP (Twildm −Tr). This equation directly relates

the two stabilities, however with a coefficient that depends on the thermal characteristics

of the wild-type protein through its melting temperature Twildm and its folding free enthalpy
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∆Hm. Note that, since the enthalpy change upon folding is negative, ∆∆G and ∆Tm are

anticorrelated, as expected.

Unfortunately, the situation is in general less simple, especially for highly destabilizing

or highly stabilizing mutations, and we have to take into account that the enthalpy and

heat capacity variations do not vanish, i.e. ∆∆Hm 6= 0 6= ∆∆CP . This is illustrated by

the fact that the correlation coefficient between experimental ∆Tm’s and ∆∆G’s is about

−0.8, which signals an imperfect correlation between these quantities. In this case, and still

assuming ∆CP to be T -independent, Eq. (3) becomes:

∆∆G(Tr) '
∆HmTr
(Twildm )2

∆Tm + ∆∆Hm

[
1− Tr

Twildm

+
Tr

(Twildm )2
∆Tm

]
+

∆∆CP

[
Tr − Twildm − Tr log

Tr
Twildm

]
+O

[(
∆Tm
Twildm

)2
]
. (4)

Thus the simple relation between the two descriptors of protein stability is lost: the pro-

portionality coefficient can be positive or negative, and becomes also mutation-dependent

in addition of being protein-dependent.

It is easier to understand the meaning of the possible types of correlations between the

two stabilities with a graphical representation. If the assumption of small perturbation and

as a consequence Eq. (3) holds, the full protein stability curve changes upon mutation

like in Fig. 1.a. Typically, in this case, the wild-type has one interaction more than the

mutant (or conversely). Otherwise the scenario is more similar to Fig. 1.b, where one

cannot say a priori which type of connection there is between ∆∆G(Tr) and ∆Tm without

the knowledge of additional information. It can for example occur when an interaction that

is more stabilizing at room temperature is replaced by another that is more T -resistant

thereby modifying the ∆Hm, or when a change in the 3D structure occurs which modifies

the protein’s solvent accessible surface area and thus the ∆CP .

In a first approach to the prediction of ∆Tm upon mutations, we consider the small per-

turbation approximation and thus Eq. (3) as valid and compute ∆Tm as the sum of usual,

temperature-independent, statistical potential contributions. In a second approach, which is

expected to be more accurate for highly destabilizing or stabilizing mutations, we use ∆∆G-

values calculated at different temperatures. Note however that structural modifications are

more likely to occur in such case, and thus that the accuracy of the energy evaluations on
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FIG. 1: Effect of mutations on the full stability curve of an hypothetical protein. (a) For a small

perturbation of the wild-type state, we observe a negative proportionality between ∆Tm and ∆∆G;

(b) Such simple relation is lost for highly destabilizing or stabilizing mutations.

the basis of the wild-type structure alone is questionable. For the purpose of estimating

∆∆G(T ), we use the formalism of the temperature-dependent statistical potentials intro-

duced in [31–33] .

Construction of the model

Standard and temperature-dependent statistical potentials

The standard formalism of statistical potentials [34–36] has been fruitfully applied to a

variety of analyses that range from the prediction of protein structure, stability, and protein-

protein and protein-ligand binding affinities. It basically consists in deriving a potential of

mean force (PMF) from frequencies of associations of structure and sequence elements in a

dataset of protein X-ray structures. Under some approximations whose validity has been

discussed [36–40] and making use of the Boltzmann law, the simplest PMF can be written

as:

∆W (s, c) ∼= −kT ln
F (s, c)

F (s)F (c)
= −kT ln

n(c, s)n

n(c)n(s)
, (5)

where c and s are structure and sequence elements respectively, F represent the relative

frequencies of c and/or s which are expressed as a function of the number of occurrences n,

k is the Boltzmann constant and T the absolute temperature. Following [41], higher order
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Type Standard potentials T -dependent potentials

Distance ∆W[sd] ; ∆W[sds] ∆W
M/T
[sd] ; ∆W

M/T
[sds]

Distance/Accessibility ∆W[sad] ∆W
M/T
[sad]

Distance/Torsion ∆W[std] -

Accessibility ∆W[sa] ; ∆W[saa] ∆W
M/T
[sa] + 1

2(∆W
M/T
[saa] + ∆W

M/T
[ssa] )

Torsion ∆W[st] ; ∆W[stt] ; ∆W[sst] ∆W
M/T
[st] + 1

2(∆W
M/T
[stt] + ∆W

M/T
[sst] )

TABLE I: List of 9 T -independent and 5 T -dependent statistical potentials used in the ∆Tm-

prediction methods. The subscripts M/T indicate that the potentials are extracted from either the

mesostable (M) or thermostable (T ) protein subset.

potentials can be constructed by considering more than two structure elements and/or se-

quence elements. Considering for example two sequence elements s and s′ and one structure

element c, the above expression of PMF gets modified as:

∆W (s, s′, c) ∼= −kT ln
F (s, s′, c)

F (s, s′)F (s′, c)F (s, c)
= −kT ln

n(s, s′, c)n2

n(s, s′)n(s, c)n(s′, c)
. (6)

Using Eqs (5-6) and their generalizations defined in [41], we derived 9 different statistical

potentials from a dataset of about 4,100 proteins with well-resolved 3D structure and low

sequence similarity; they are listed in Table I. They differ by the number of sequence and/or

structure elements involved and by their type. Each sequence element s is an amino acid

type at a given position and each structure element c is either the spatial distance d between

two residues, the backbone torsion angle domain t or the solvent accessibility a of a residue.

The statistical potential formalism has recently been extended to include more properly

the thermal characteristics of proteins and in particular the fact that amino acid interac-

tions are temperature-dependent [9, 31–33]. Following this approach, a dataset of about

170 proteins with known melting temperature and 3D structure was used and divided into

two subsets, one with only mesostable proteins (with Tm less than about 65°C), and the

other with thermostable proteins (with Tm higher than about 65°C). A series of 9 different

potentials were extracted from each subset, which are listed in Table I. To limit the number

of parameters to be optimized (see next section) and thus to avoid overfitting as much as

possible, these twelve potentials were combined into five potentials (Table I).
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As expected, these T -dependent potentials reflect the thermal characteristics – mesostable

or thermostable – of the subset from which they are derived: the former set better describes

the interactions in the low temperature region while the second set better reflects the thermal

properties at high temperatures. This approach has shown good performances in the pre-

diction of the thermal resistance and of the stability curve as a function of the temperature

of proteins that belong to the same homologous family [32, 33].

The structure elements defining these potentials are the same as for the temperature-

independent potentials. In contrast, the size of the mesostable and thermostable protein

datasets is much smaller than the dataset used for the standard statistical potentials, as

it requires the knowledge of the melting temperature. To deal with the smallness of the

datasets, we used several tricks that consists of corrections for sparse data and the smoothing

of the potentials, following [9, 31–33] .

In addition to the standard and T -dependent potentials ∆W , we also considered volume

terms in the folding free energy estimation, which are defined as the volume difference ∆V

between the mutant and wild-type amino acids [22, 23]. In order to take into account that

the creation of a cavity in the protein interior (∆V < 0) can have a different impact on the

stability compared to the addition of stress (∆V > 0), we introduced two separate terms

(∆V−) and (∆V+) defined as ∆V± = θ(±∆V )‖∆V ‖ where θ is the Heaviside function.

Artificial neural networks and parameter identification

The above-defined potential terms were combined to predict how the melting temperature

changes upon mutations, using two different model structures. The second model (called

Tm-HoTMuSiC) uses the Tm of the wild-type, while the first (HoTMuSiC) does not. To

identify the parameters involved in these combinations, we used an artificial neural network

(ANN) with peculiar activation functions.

In the first approach (HoTMuSiC), we assumed that ∆Tm can be written as the sum

of twelve contributions, the nine energy terms ∆∆Wν = ∆Wwild
ν − ∆Wmut

ν (ν = 1, . . . 9)

computed from the standard, T -independent, statistical potentials listed in Table 1, the two

volume terms and an "independent" term that only depends on the solvent accessibility.

The functional form reads as:
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∆THoT
m =

1

aNr + c

(
9∑

ν=1

αν(A)∆∆Wν + α+(A)∆V+ + α−(A)∆V− + αI(A)

)
, (7)

where Nr is the number of residues in the protein, and the coefficients αν(A) were chosen

to be sigmoid functions of the solvent accessibility A of the mutated residues:

αν(A) =
ων

1 + exp−rν(A−bν)
+ φν , (8)

with a, c, ων , rν , bν , φν ∈ R. We have chosen the activation functions to be sigmoidal since

they model a smooth transition from the protein core to the surface, and since the weight

of the different energy contributions have been shown to differ in these two regions [22][47].

To identify the fifty parameters introduced in Eq. (7), we have chosen a standard feed-

forward ANN with one input and one output layer (schematically depicted in Fig. 2a). The

cost function to be minimized is the mean square deviation between the experimental and

predicted values of ∆Tm for the dataset Smut that contains Nmut=1,626 mutations for which

an experimental ∆Tm-value is available (see Methods section):

σ2 =
1

N

N∑
`=1

(∆T exp
m` −∆T pred

m` )2. (9)

The initial values of the weights were chosen randomly. To take into account that the ANN

training algorithm can get stuck in local minima, the initialization and training processes

were repeated about thirty times and the solution reaching the lowest σ-value was chosen

[43, 44].

We used a strict five-fold cross validation procedure with an early stopping procedure for

evaluating the method’s performance. More precisely, the entire set of mutations was split

randomly into a training set (containing 90% of the mutations) and a test set (with the

remaining10%). The training set was then further randomly split into a smaller set (with

80% of the mutations) on which the parameters were identified, and a validation set (with

10% mutations) on which the early stop threshold was determined, namely the maximum

number of iterations in the gradient descent procedure before its convergence [45, 46]. This

early stop is necessary to avoid overfitting, as in general the network starts to learn too

much from the training dataset after a certain number of iterations, with the consequence
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that the error in cross validation starts to raise. As a final step in the computation, the

prediction error σ is independently calculated on the test set.

FIG. 2: Schematic representation of the ANN’s used for the parameter identifications. (a) HoT-

MuSiC method: 2-layer ANN, corresponding to a perceptron with sigmoid activation functions and

12 input neurons encoding the 9 T -independent potentials specified in Table I, two volume terms

and an independent term; (b) Tm-HoTMuSiC method: 3-layer ANN, consisting of 3 perceptrons

with sigmoid weights; the first perceptron has 5 input neurons encoding the 5 mesostable potentials

listed in Table I, the second has 5 input neurons corresponding to the 5 thermostable potentials,

and the last perceptron has 3 neurons for the volume and independent terms. The outputs of these

three perceptrons (Meso, Thermo, and Vol+I) are the inputs of another perceptron with polynomial

weight functions.

In the second method for predicting ∆Tm, called Tm-HoTMuSiC, we used quite a different

approach, with as building blocks the T -dependent statistical potentials listed in Table I and

the Twildm of the wild-type protein. More precisely, Eq. (7) describing the ∆Tm functional

was modified into:

∆T pred
m = βT (Twildm )

5∑
ν=1

αν(A)∆∆W T
ν + βM(Twildm )

5∑
ν=1

αν(A)∆∆WM
ν +

βV (Twildm ) [α+(A)∆V+ + α−(A)∆V− + αI(A)] (10)

where the αν(A) parameters are sigmoid functions of the solvent accessibility A (Eq. (8))

and the three functions βT (Twildm ), βM(Twildm ) and βV (Twildm ) are polynomial functions of the
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melting temperature of the wild-type protein and its number of residues Nr. Their functional

form is guessed from Eq. (3) and approximated as:

βI(Twildm ) =
γI(Twildm )2 + δITwildm + ξI

aINr + cI
, (11)

with I=T (thermostable), M (mesostable) or V (volume). The dependence on the number

of residues Nr comes from the enthalpy factor ∆Hm in Eq. (3), as these two quantities show

a good correlation in a first approximation [48].

To identify the 67 parameters of this second method, an ANN with an input layer, a

hidden layer and an output layer is used, as shown schematically in Fig. 2b. The input

layer consists of three sets of neurons, one set encoding the mesostable potentials, a second

one the thermostable potentials, and a third one the volume and independent terms. Three

perceptrons use these three sets of input neurons and generate the three output signals of

the hidden layer. These are the input of yet another perceptron, which yields the ∆Tm-

prediction as output. The initialization and identification procedures of all the weights and

the cross validation procedure are the same as for the first method.

The final ∆Tm predictions of the Tm-HoTMuSiC method are defined as the mean of the

two predictions given by Eqs (10) and (7):

∆T TmHoTm =
1

2

(
∆THoTm + ∆T predm

)
. (12)

Performance of HoTMuSiC and Tm-HoTMuSiC

The values of the root mean square deviation σ between measured and predicted ∆Tm

values (Eq. 9), computed in strict cross validation, are shown in Table II. For HoTMuSiC,

we obtained σ = 4.3°C ; the Pearson correlation coefficient r between experimental and

predicted ∆Tm’s is 0.59. The performance of the Tm-HoTMuSiC version is slightly better

with σ=4.2°C and r = 0.61. When ten percent outliers are excluded, σ decreases to 2.9°C

and r rises to 0.75. The results are plotted in Fig. 3.

The Tm-HoTMuSiC version that encodes information about the melting temperature of

the wild-type protein and uses T -dependent potentials thus performs slightly better than the

T -independent version, but not as much as could be expected on the basis of earlier analyses

[32][33]. Indeed, in principle, the mesostable potentials should describe the mutations in
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FIG. 3: Experimental ∆Tm values versus predicted ∆THoTm (left, r=0.59 ) and ∆T TmHoTm

(right,r=0.61 ) values. The straight lines are the bisectors of the first and third quadrants. The

temperatures are in Celsius degrees (°C).

the mesostable proteins much better than the thermostable potentials and vice-versa. The

reasons for this mitigated result could be due to the lower accuracy of the T -dependent

potentials compared to the standard ones since they are extracted from smaller protein

sets. Or they could be rooted in the information loss upon the reduction of the number of

potentials (see Eq. (7) versus Eq. (10)), which is done to avoid overfitting issues.

Moreover, we can see from Table III and Fig. 4 that the σ-value for amino acid substitu-

tions in the core (A<15%) and partially buried positions (15%<A<50%) is on the average

larger than that of surface mutations (A>50%). In contrast, the correlation coefficient r

is higher in the core and in the partially buried region and smaller at the surface. This

apparent discrepancy is in fact due to the higher variance of ∆Tm in the core, which drives

the correlation and increases the value of r. In the surface region, the predictions are more

accurate (lower σ) but the ∆Tm variance and the correlation coefficient are lower. When

normalizing σ by the standard deviation of ∆Tm, we obtain values that increase from the

core to the surface (see Table III).

Comparison with other ∆Tm predictors

As far as we known, only two other ∆Tm predictors are described in the literature, which

are strongly different from ours. The strategy of Saraboji et al. [28] consists in predicting

for a mutation from wild-type residue W to mutant M the mean value of the ∆Tm’s of all
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FIG. 4: Experimental ∆Tm’s versus predicted ∆T TmHoTm values for mutations in different protein

regions : core (A <15%), partially buried (15%<A<50%), and surface (A >50%). The straight

lines are the bisectors of the first and third quadrants. The temperatures are in °C.

Prediction Tool σ (°C ) r σ? (°C ) r? Nmut

HoTMuSiC 4.3 0.59 2.9 0.75 1626

Tm-HoTMuSiC 4.2 0.61 2.9 0.75 1626

TABLE II: Scores of HoTMuSiC and Tm-HoTMuSiC; σ? and r? correspond to σ and r with 10%

outliers removed.

the analogous mutations W→M in the training dataset. A similar strategy proposed in the

same work is based on the classification of the mutations in terms of the secondary structure

and solvent accessibility of the wild-type residues and predicts as ∆Tm the mean of the

experimental ∆Tm’s occurring in the suitable class in the learning set. A limitation of this

approach is that not all wild-type to mutant mutations are present in the learning set due

to the lack of experimental data. The second method is called AutoMute [16, 26, 27] and

is based on residue environment scores. It proceeds by reducing protein 3D structures to

ensembles of Cα atoms, and applying Delaunay tessellation to identify quadruplets of nearest

neighbor residues. A log-likelihood potential is constructed from the number of occurrences

of the quadruplets in a dataset of 3D structures and then used as the key ingredient in the

computation of ∆Tm.
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Solvent accessibility σ (°C) r σ√
〈(∆Tm)2〉

Nmut

A<15% 4.9 0.70 0.66 734

15%<A<50% 4.2 0.57 0.81 513

A>50% 2.8 0.54 0.83 379

TABLE III: Scores of Tm-HoTMuSiC as a function of the solvent accessibility A of the mutated

residues.

Prediction Tool σ (°C) r Nmut

Tm-HoTMuSiC 3.7 0.65 630

AutoMute v2.0 [16] 4.7 0.42 607

Saraboji [28] 5.4 0.25 580

TABLE IV: Comparison between the performances of HotMuSiC and those of the two other methods

evaluated in cross-validation on the dataset Ssub.

To make a cross-validated comparison between our results and those of these two methods,

we have chosen a subset Ssub of our dataset Smut consisting of the mutations that are

not present in the AutoMute learning set (see [60] for a list), and trained versions of Tm-

HoTMuSiC and the Saraboji method on the set Smut \ Ssub. The performances of the three

methods are reported in Table IV. Tm-HoTMuSiC shows the best performance, with an

improvement of about 20% and 30% with respect to AutoMute [16] and the Saraboji method

[28], respectively. The σ-values computed on the Ssub set are equal to 3.7, 4.7 and 5.4 °C for

Tm-HoTMuSiC, AutoMute and Saraboji method, respectively. Note that the performance

of the latter two methods has been evaluated on a slightly reduced dataset, since the ∆Tm

values could not be computed for some of the mutations.

Discussion

We developed a thermodynamics-based and knowledge-driven ∆Tm prediction method

that does not exploit the common assumption of a perfect correlation between thermal

and thermodynamics stabilities. The basic ingredients of our approach include standard
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and T -dependent statistical potentials that are combined through the use of ANN’s. The

performance in cross validation of the two versions of our method, HoTMuSiC and Tm-

HotMuSiC (which requires the Tm of the wild type), are quite good with a σ-value of 4.3

and 4.2 °C, respectively, which goes down to 2.9 °C upon removal of 10% outliers. They

perform significantly better, by 20 to 30%, than the two other ∆Tm prediction methods

described in the literature.

HoTMuSiC and Tm-HotMuSiC are accessible via the webserver soft.dezyme.com and are

free for non-commercial use. They are extremely fast and allow the ∆Tm predictions for all

possible single-site mutations in a protein in a few minutes. This webserver is presented in

an application note [49].

Our software thus yields quite accurate results, and allows rapid screening of all possi-

ble point mutations in a protein structure and identifying a subset that is likely to yield

the required thermal resistance. This subset must then be analyzed further, either by us-

ing more detailed computational techniques, or by experimental means. HoTMuSiC and

Tm-HotMuSiC are very useful and user-friendly tools for every researcher who wishes to

rationally design modified proteins with controlled characteristics.

Notwithstanding the large applicability and good accuracy of HoTMuSiC and Tm-

HotMuSiC, it is worth discussing their limitations and the sources of errors that affect

the predictions. These are:

• The wild-type and mutant structures are supposed to be identical (up to the substi-

tuted side chain) and the possible structural modifications are only encoded in the

volume terms ∆V±; local structure rearrangements upon residue substitutions, for ex-

ample in the hydrophobic core, yet depend on many more parameters such as the

residue depth and the backbone flexibility [50–54].

• The mutation dataset is strongly unbalanced towards destabilizing mutations, which

is likely to add unwanted hidden biases even if a strict cross validation procedure is ap-

plied [25]. Only when more stabilizing mutations will be experimentally characterized

will we be able to completely exclude the biasing impact of this stabilizing-destabilizing

asymmetry.

• The experimental conditions at which the Tm measurements are performed usually

differ in terms of pH, ion concentration or buffer composition, which induces noise
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in the learning set and errors in the predictions. To limit this problem, we chose

the entries derived from experiments performed at pH as close as possible to seven,

and made a weighted average of the experimental ∆Tm’s of a same mutation, when

available.

• The T -dependent potentials suffer from the smallness of the dataset of protein struc-

tures with known Tm. Different tricks have been used to limit this issue.

• The possible parameter overfitting is like always an important concern, especially for

the Tm-HoTMuSiC version, in which the number of potentials is three times larger than

for HoTMuSiC. To avoid overfitting, we decided to decrease the number of parameters

in Tm-HoTMuSiC by fixing some coefficients of the linear combination of potentials

(see Table I).

Different ways will be explored in an attempt to further improve the prediction perfor-

mances of HoTMuSiC. They obviously include the enlargement of the datasets of proteins

of known structure and Tm, and of the mutations of known ∆Tm. We will also investigate

different ANN architectures, the addition of hidden layers, and the inclusion of other fea-

tures such as the change in conformational flexibility upon mutation, which seems related to

the thermal stability even if a quantitative connection between the two quantities on a large

scale is still missing [55–58]. Finally, it could be worth analyzing the wrong predictions in

view of identifying the factors that should be taken into account to make HoTMuSiC even

more performing.

Methods

Set of experimentally characterized mutations

We started collecting the mutations with experimentally measured ∆Tm value from the

ProTherm database [59] and the literature. Each entry was then manually checked from

the original literature to remove errors and select those that satisfy the following criteria:

were only considered (1) mutations in monomeric proteins of known X-ray structure with

resolution below 2.5 Å, (2) mutations whose experimental ∆Tm was measured in absence

of chemical denaturants, (3) simple two-state (un)folding transitions, and (4) single point
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mutations. Destabilizing or stabilizing mutations by more than 20 °C were overlooked,

as they probably induce important structural modifications that our method is unable to

model. Using this procedure, we obtained a set Smut of 1,626 mutations that belong to 90

proteins and have an experimental ∆Tm. More information and their list can be found in

[60].
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