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Abstract
There has been much interest in studying evolutionary games in structured populations, often modelled as
graphs. However, most analytical results so far have only been obtained for two-player or linear games,
while the study of more complex multiplayer games has been usually tackled by computer simulations. Here
we investigate evolutionary multiplayer games on graphs updated with a Moran death-Birth process. For
cycles, we obtain an exact analytical condition for cooperation to be favored by natural selection, given in
terms of the payoffs of the game and a set of structure coefficients. For regular graphs of degree three and
larger, we estimate this condition using a combination of pair approximation and diffusion approximation.
For a large class of cooperation games, our approximations suggest that graph-structured populations are
stronger promoters of cooperation than populations lacking spatial structure. Computer simulations validate
our analytical approximations for random regular graphs and cycles, but show systematic differences for
graphs with many loops such as lattices. In particular, our simulation results show that these kinds of graphs
can even lead to more stringent conditions for the evolution of cooperation than well-mixed populations.
Overall, we provide evidence suggesting that the complexity arising from many-player interactions and spatial
structure can be captured by pair approximation in the case of random graphs, but that it need to be handled
with care for graphs with high clustering.

Author Summary
Cooperation can be defined as the act of providing fitness benefits to other individuals, often at a personal
cost. When interactions occur mainly with neighbors, assortment of strategies can favor cooperation but local
competition can undermine it. Previous research has shown that a single coefficient can capture this trade-off
when cooperative interactions take place between two players. More complicated, but also more realistic
models of cooperative interactions involving multiple players instead require several such coefficients, making
it difficult to assess the effects of population structure. Here, we obtain analytical approximations for the
coefficients of multiplayer games in graph-structured populations. Computer simulations show that, for
particular instances of multiplayer games, these approximate coefficients predict the condition for cooperation
to be promoted in random graphs well, but fail to do so in graphs with more structure, such as lattices. Our
work extends and generalizes established results on the evolution of cooperation on graphs, but also highlights
the importance of explicitly taking into account higher-order statistical associations in order to assess the
evolutionary dynamics of cooperation in spatially structured populations.
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Introduction
Graphs are a natural starting point to assess the role of population structure in the evolution of cooperation.
Vertices of the graph represent individuals, while links (edges) define interaction and dispersal neighborhoods.
Classical models of population structure, such as island models [1,2] and lattices [3,4], often developed before
the current interest in complex networks [5, 6], can all be understood as particular instances of graphs [7, 8].
More recently, the popularity of network theory has fueled a renewed interest in evolutionary dynamics on
graphs, especially in the context of social behaviors such as cooperation and altruism [7–21].

When selection is weak on two competing strategies, such that fitness differences represent only a small
perturbation of a neutral evolutionary process, a surprisingly simple condition for one strategy to dominate
the other, known as the “sigma rule”, holds for a large variety of graphs and other models of spatially
structured populations [22]. Such a condition depends not only on the payoffs of the game describing the
social interactions, but also on a number of “structure coefficients”. These coefficients are functions of
demographic parameters of the spatial model and of its associated update protocol, but are independent of the
payoffs. In the case of two-player games, the sigma rule depends on a single structure coefficient σ. The
larger this σ, the greater the ability of spatial structure to promote the evolution of cooperation or to choose
efficient equilibria in coordination games [22]. Partly for this reason, the calculation of structure coefficients
for different models of population structure has attracted significant interest during the last years [8, 21–27].

Despite the theoretical and empirical importance of two-player games, many social interactions involve
the collective action of more than two individuals. Examples range from bacteria producing extracellular
compounds [28–31] to human social dilemmas [32–36]. In these situations, the evolution of cooperation is
better modeled as a multiplayer game where individuals obtain their payoffs from interactions with more than
two players [37–43]. An example of such multiplayer games is the volunteer’s dilemma, where individuals in
a group must decide whether to volunteer (at a personal cost) or to ignore, knowing that volunteering from at
least one individual is required for a public good to be provided [44–46]. Importantly, such a multiplayer
interaction cannot be represented as a collection of pairwise games, because changes in payoff are nonlinear
in the number of co-players choosing a particular action.

Multiplayer games such as the volunteer’s dilemma can also be embedded in graphs, assuming, for
instance, that nodes represent both individuals playing games and games played by individuals [47–49]. Most
previous studies on the effects of graph structure on multiplayer game dynamics have relied on computer
simulations [49]. However, similar to the two-player case, some analytical progress can be made if selection
is assumed to be weak. In the multiplayer case, the sigma rule depends no longer on one, but on up to
d− 1 structure coefficients, where d is the number of players [50]. Although exact formulas for structure
coefficients of multiplayer games can be obtained for relatively simple models such as cycles [51], analysis
has proved elusive in more complex population structures, including regular graphs of arbitrary degree.
Indeed, extending analytical results on evolutionary two-player games on graphs to more general multiplayer
games is an open problem in evolutionary graph theory [52].

Here, we contribute to this body of work by deriving approximate analytical expressions for the structure
coefficients of regular graphs updated with a Moran death-Birth model, and hence for the condition of one
strategy to dominate another according to the sigma rule. The expressions we find for the structure coefficients
suggest that regular graphs updated with a Moran death-Birth model lead to less stringent conditions for the
evolution of cooperation than those characteristic of well-mixed populations. Computer simulations suggest
that our approximations are good for random regular graphs, but that they systematically overestimate the
condition for the evolution of cooperation in graphs with more loops and higher clustering such as rings and
lattices. In these cases, cooperation can be no longer promoted, but even be hindered, with respect to the
baseline case of a population lacking spatial structure.
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Table 1. Payoffs to A-players and B-players.
Opposing A-players 0 1 . . . j . . . d− 1
payoff to A a0 a1 . . . aj . . . ad−1

payoff to B b0 b1 . . . bj . . . bd−1

Methods
We consider stochastic evolutionary dynamics on a graph-structured population of size N . Each individual is
located at the vertex of a regular graph of degree k. Individuals obtain a payoff by interacting with their k
neighbors in a single d-person symmetric game (i.e., d = k + 1). If j co-players play A, a focal A-player
obtains aj whereas a focal B-player obtains bj , as indicated in Table 1.

We model the stochastic evolutionary dynamics as a Markov process on a finite space state. More
specifically, we consider a Moran death-Birth process [12, 14, 53] according to which, at each time step: (i)
a random individual is chosen to die, and (ii) its neighbors compete to place a copy of themselves in the
new empty site with probability proportional to 1− w + w × payoff , where the parameter w measures the
intensity of selection. Without mutation, such a Markov process has two absorbing states: one where all
vertices are occupied by A-players and one where all vertices are occupied by B-players. Let us denote by ρA
the fixation probability of a single A-player in a population of B-players, and by ρB the fixation probability
of a single B-player in a population of A-players. We take the comparison of fixation probabilities, i.e.

ρA > ρB , (1)

as a measure of evolutionary success [54] and say that A is favored over B if condition (1) holds.
Under weak selection (i.e., w � 1) the condition for A to be favored over B holds if the sigma rule for

multiplayer games [50] is satisfied, i.e., if

d−1∑
j=0

σjfj > 0, (2)

where σ0, . . . , σd−1 are the d structure coefficients (constants that depend on the population structure and on
the update dynamics), and

fj = aj − bd−1−j , j = 0, 1, . . . , d− 1, (3)

are differences between payoffs, which we will refer to in the following as the “gains from flipping”. The
gains from flipping capture the change in payoff experienced by a focal individual playing B in a group where
j co-players play A when all players simultaneously switch strategies (so that A-players become B-players
and B-players become A-players). It turns out that the payoffs of the game only enter into condition (1) via
the gains from flipping (3), as the structure coefficients are themselves independent of aj and bj .

Structure coefficients are uniquely determined up to a constant factor. Setting one of these coefficients to
one thus gives a single structure coefficient for d = 2 [22]. For d > 2, and in the usual case where structure
coefficients are nonnegative, we can impose

∑d−1
j=0 σj = 1 without affecting the selection condition (2). For

our purposes, this normalization turns out to be more useful than setting one coefficient to one, as it allows us
to rewrite the sigma rule (2) as

d−1∑
j=0

ςjfj = E [f(J)] > 0, (4)
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where f(j) ≡ fj , and J is the random variable with probability distribution prescribed by the “normalized
structure coefficients” ςj = σj/

∑d−1
i=0 σi. In light of condition (4), the sigma rule can be interpreted as stating

that strategy A is favored over B if the expected gains from flipping are greater than zero when the number of
co-players J is distributed according to the normalized structure coefficients. From this perspective, different
models of population structure lead to different normalized structured coefficients and hence to different
expected gains from flipping, which in turn imply different conditions for strategy A to be favored over B in
a given multiplayer game [51]. For instance, a well-mixed population with random group formation updated
with either a Moran or a Wright-Fisher process leads to normalized structure coefficients given by [39, 40]:

ςWj =

{
N

d(N−1) if 0 ≤ j ≤ d− 2
N−d

d(N−1) if j = d− 1
. (5)

A normalized sigma rule such as the one given by Eq. (4) holds for many spatial models and associated
updating protocols [50, 51]. Here, we focus on the case of regular graphs updated with a Moran death-Birth
process. We provide exact expressions for the case of cycles for which k = 2. For k ≥ 3, we bypass the
difficulties of an exact calculation by using a combination of pair approximation [55, 56] and diffusion
approximation [14]. Our approach implicitly assumes that graphs are equivalent to Bethe lattices (or Cayley
trees) with a very large number of vertices (N � k). In addition, weak selection intensities (wk � 1) are
also required for an implicit argument of separation of timescales to hold. In order to assess the validity of our
analytical approximations, we implemented a computational model of a Moran death-Birth process in three
different types of regular graphs (rings, random graphs, and lattices) with different degrees and estimated
numerically the fixation probabilities ρA and ρB as the proportion of realizations where the mutant succeeded
in invading the wild-type.

Results

Exact structure coefficients and sigma rule for cycles
Going beyond the complete graph representing a well-mixed population, the simplest case of a regular graph
is the cycle, for which k = 2 (and consequently d = 3). In this case, we find the following exact expressions
for the structure coefficients (S1 Text, Section 1):

ςG0 =
1

2(N − 2)
, ςG1 =

1

2
, ςG2 =

N − 3

2(N − 2)
. (6)

For large N , the structure coefficients reduce to ςG0 = 0, ςG1 = ςG2 = 1/2 and the sigma rule (4) simplifies to

a1 + a2 > b1 + b0. (7)

This is also the condition for the boundary between a cluster of A-players and a cluster of B-players to move
in favor of A-players for weak selection [57] (Fig. 1). Condition (7) implies that A can be favored over B
even if A is strictly dominated by B (i.e., aj < bj for all j) as long as the payoff for mutual cooperation a2 is
large enough so that a2 > b0 + (b1 − a1); a necessary condition for this inequality to hold is that A strictly
Pareto dominates B (i.e., a2 > b0). Such a result is impossible in well-mixed populations, where the structure
coefficients (5) prevent strictly dominated strategies from being favored by selection. Condition (7) provides
a simple example of how spatial structure can affect evolutionary game dynamics and ultimately favor the
evolution of cooperation and altruism.
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Figure 1. Payoffs at the boundary of two clusters in the cycle. Under weak selection, the cluster of
A-players expands if the sigma rule a1 + a2 > b1 + b0 holds. As a player is never paired with two players of
the opposite strategy, neither a0 nor b2 enter into this expression. This provides an intuition behind our
analytical results in the simple case when the graph is a cycle.

Approximate structure coefficients and sigma rule for regular graphs of degree k ≥ 3

For regular graphs of degree k ≥ 3, we find that the structure coefficients can be approximated by (S1 Text,
Section 2)

ςGj =
(k − 2)k−1−j

(k + 2)(k + 1)k2

k−1∑
`=0

(k − `)
{[
k2 − (k − 2)`

]
υ`,j,k + [2k + (k − 2)`] τ`,j,k

}
, (8)

where

υ`,j,k =

(
k − 1− `
k − 1− j

)
1

(k − 1)k−1−`
+

(
`

k − j

)
k − 2

(k − 1)`
, (9)

and

τ`,j,k =

(
k − 1− `
k − j

)
k − 2

(k − 1)k−1−`
+

(
`

k − 1− j

)
1

(k − 1)`
. (10)

These expressions are nontrivial functions of the degree of the graph k and thus difficult to interpret. For
instance, for k = 3, we obtain ςG =

(
7

144 ,
31
144 ,

61
144 ,

45
144

)
.

Promotion of multiplayer cooperation
The previous results hold for any symmetric multiplayer game with two strategies. To investigate the evolution
of multiplayer cooperation, let us label strategy A as “cooperate”, strategy B as “defect”, and assume that,
irrespective of the focal player’s strategy, the payoff of a focal player increases with the number of co-players
playing A, i.e.,

aj+1 ≥ aj and bj+1 ≥ bj for all j. (11)

This restriction on the payoffs is characteristic of “cooperation games” [51] in which playing A is beneficial
to the group but might be costly to the individual. Well-known multiplayer games belonging to this large class
of games include different instances of volunteer’s dilemmas [44, 46], snowdrift games [58], stag hunts [59],
and many other instances of public, club, and charity goods games [43].

We are interested in establishing whether graph-structured populations systematically lead to structure
coefficients that make it easier to satisfy the normalized sigma rule (4) than well-mixed populations (the
baseline case scenario of a population with no spatial structure) for any cooperation game satisfying condi-
tion (11). In other words, we ask whether a graph is a stronger promoter of cooperation than a well-mixed
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Figure 2. Structure coefficients and containment order of cooperation. Approximated (normalized)
structure coefficients ςj for large regular graphs of degree k = 5 updated with a Moran death-Birth process
(ςGj ) and large well-mixed populations where groups of d = 6 players are randomly matched to play a game
(ςWj ). Since ςG − ςW has one sign crossing from − to +, the graph is greater in the containment order than
the well-mixed population (denoted by ςG ≥con ςW). Consequently, if the sigma rule holds for a well-mixed
population with coefficients ςW, then it also holds for a graph-structured population with coefficients ςG, for
any cooperation game.

population. Technically, this is equivalent to asking whether the set of games for which cooperation is favored
under a graph contains the set of games for which cooperation is favored under a well-mixed population, i.e.,
whether a graph is greater than a well-mixed population in the “containment order” [51]. A simple sufficient
condition for this is that the difference in normalized structure coefficients, ςG − ςW, has exactly one sign
change from − to + [51]. This can be verified for any N > 3 in the case of cycles (k = 2) by inspection
of equations (5) and (6). For large regular graphs of degree k ≥ 3 and hence multiplayer games with d ≥ 4
players, we checked the condition numerically by comparing equations (5) and (8) for k = 3, . . . , 100. We
find that ςG − ςW always has a single sign change from − to + and hence that, in the limit of validity of
our approximations, regular graphs promote more cooperation than well-mixed populations for all games
fulfilling Eq. (11) (Fig. 2). In the following, we explore in more detail the sigma rule for particular examples
of multiplayer games.
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Examples
Collections of two-player games. As a consistency check, let us consider the case where individuals play
two-player games with their k neighbors and collect the payoffs of the different interactions. The two-player
game is given by the payoff matrix (A B

A α β
B γ δ

)
. (12)

The payoffs for the resulting multiplayer game, which are just the sum of payoffs of the pairwise games, are
then given by aj = jα+ (k − j)β and bj = jγ + (k − j)δ. The sigma rule (4) can hence be written as

k (β − γ) + (α− β + γ − δ)
k∑

j=0

ςGj j > 0. (13)

We can show that (S1 Text, Section 2.9)

k∑
j=0

ςGj j = E[J ] =
k + 1

2
, (14)

so that condition (13) is equivalent to

(k + 1)α+ (k − 1)β − (k − 1) γ − (k + 1) δ > 0, (15)

i.e., the sigma rule previously established for pairwise games in regular graphs [cf. Eq. (24) in the Supple-
mentary Material of Ref. [14]]. For a pairwise donation game (for which α = B − C, β = −C, γ = B, δ = 0,
where B and C are respectively the benefit and cost of donation) this reduces to the well-known B/C > k
rule [7, 14, 16].

Linear games. Suppose now that aj and bj are both linear functions of j. We can thus write aj =
−C + (B + D)j/k, bj = Bj/k for some parameters B, C, and D. When B > C ≥ 0, such a game can be
interpreted in terms of a social dilemma as follows. Cooperators each pay a cost C in order to provide a
benefit B/k to each of their co-players; defectors receive the benefits but pay no cost. In addition to the
benefit B/k, cooperators also get an additional bonus D/k per other cooperator in the group. This bonus can
be positive or negative.

For such linear games, and by making use of Eq. (14), the sigma condition simplifies to 2B+D(k+ 1) >
2Ck. When there is no bonus (D = 0) the game is an additive prisoner’s dilemma [60] and we recover the
condition B/C > k. In the limit of large k, the sigma condition becomes D > 2C.

Volunteer’s dilemma. As an example of a nonlinear multiplayer game satisfying condition (11), consider
the volunteer’s dilemma [44, 45]. In such a game, one cooperator can produce a public good of value B at a
personal cost C; defectors pay no cost and provide no benefit. Payoffs are then given by aj = B − C for all j,
b0 = 0, and bj = B for j > 0. The sigma rule, Eq. (4), for the volunteer’s dilemma hence reduces to

B/C > 1/ςd−1. (16)

For the cycle, we thus find

B/C > 2(N − 2)

N − 3
, (17)

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 21, 2016. ; https://doi.org/10.1101/038505doi: bioRxiv preprint 

https://doi.org/10.1101/038505
http://creativecommons.org/licenses/by-nc-nd/4.0/


which in the limit of large N reduces to B/C > 2. For large regular graphs of degree k ≥ 3, our approxima-
tions lead to

B/C > k(k + 1)(k − 2)

(k − 1)2 − (k − 1)1−k
. (18)

These conditions contrast with that for a large well mixed population, which is given by B/C > k + 1.
Suppose now that the cost of producing the public good is shared among cooperators [46]. Payoffs are

then given by aj = B − C/(j + 1), b0 = 0 and bj = B for j > 0. In this case the sigma rule simplifies to

B/C > 1

ςd−1

d−1∑
j=0

ςj
j + 1

. (19)

This leads to
B/C > 5N − 6

6(N − 3)
(20)

in the case of a finite cycle of size N and B/C > 5/6 for a large cycle. Contrastingly, in a well-mixed
population,

B/C >
d−1∑
j=0

1

j + 1
. (21)

Computer simulations
To assess the validity of our approximations, we compare our analytical results with explicit simulations of
evolutionary dynamics on graphs (Fig. 3, N = 100; S1 Fig, N = 500). We implemented three different kinds
of regular graphs: (i) random regular graphs, (ii) rings (generalized cycles in which each node is connected
to k/2 nodes to the left and k/2 nodes to the right), and (iii) lattices (a square lattice with von Neumann
neighborhood with k = 4, a hexagonal lattice with k = 6, and a square lattice with Moore neighborhood
and k = 8). Analytical predictions are in good agreement with simulation results in the case of cycles
(i.e., rings with k = 2, for which our expressions are exact) and for all random regular graphs that we
explored. Contrastingly, for rings with k ≥ 4 and lattices, our approximations tend to underestimate the
critical benefit-to-cost ratio beyond which the fixation probability of cooperators is greater than that of
defectors. In other words, our analytical results seem to provide necessary but not sufficient conditions for
cooperation to be favored. Such discrepancies stem from the fact that our analysis assumes graphs with
no loops such as Cayley trees; the error induced by our approximations is more evident when looking at
the actual fixation probabilities (S2 Fig, N = 100, S3 Fig, N = 500) and not just at their difference. As
all graphs with k > 2 we considered do contain loops, such mismatch is expected—in particular for rings
and lattices, which are characterized by high clustering. Perhaps more importantly, our simulations suggest
that the critical benefit-to-cost ratio for the volunteer’s dilemma without cost sharing in rings and lattices
with k ≥ 6 is greater than the corresponding values for random graphs and well-mixed populations. This
illustrates a case in which a graph-structured population updated with a death-Birth process leads to less
favorable conditions for the evolution of cooperation than a well-mixed population.

Discussion
We studied evolutionary multiplayer game dynamics on graphs, focusing on the case of a Moran death-Birth
process on regular structures. First, we used a combination of pair approximation and diffusion approximation
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Figure 3. Simulations of evolutionary game dynamics on graphs (difference in fixation probabilities,
N = 100). The first row shows the type of (regular) graph for the particular case of k = 4, i.e., each node
has exactly four neighbors. The second and third rows show simulation results for the volunteer’s dilemma
without cost-sharing and with cost-sharing, respectively. Simulation data in the first column correspond to
random regular graphs, in the second column to rings, and in the third column to lattices. The fixation
probability of cooperators, ρA (defectors, ρB) was calculated as the fraction of runs where a single cooperator
(defector) reached fixation out of 107 runs. Symbols show the difference between such fixation probabilities,
as a function of the benefit-to-cost ratio B/C, for different types and degrees of the graph. Lines indicate
analytical predictions for the difference in fixation probabilities (left hand side of Eq. (4) with normalized
sigmas given by Eq. (6) or Eq. (8)). Dashed vertical lines the critical benefit-to-cost ratios B/C above which
we have ρA > ρB for well-mixed populations (right hand side of Eq. (16) or Eq. (19) with normalized sigmas
given by Eq. (5)). Parameters: population size N = 100, intensity of selection w = 0.01, payoff cost C = 1.
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to provide analytical formulas for the structure coefficients of a regular graph, which together with the payoffs
from the game determine when a strategy is more abundant than another in the limits of weak selection and
weak mutation. Such a condition is valid for any symmetric multiplayer game, including the volunteer’s
dilemma [44–46] and other multiplayer social dilemmas discussed in the recent literature [38, 41, 58, 59, 61].
The condition can be used to determine the specific conditions (in terms of the degree of the graph and
the parameters of the game, such as payoff costs and benefits) under which cooperation will thrive. The
structure coefficients also provide a way of comparing the graph with other population structures, such as the
well-mixed population. In particular, and to the extent that our approximations are valid, graphs updated with
a death-Birth process are more conducive to the evolution of cooperation than well-mixed populations for a
large class of games (see condition (11)).

Second, we used numerical simulations to estimate the fixation probabilities and the difference in fixation
probabilities of different strategies for particular examples of games (volunteer’s dilemma with and without
cost sharing) and graphs (random regular graphs, rings, and lattices). Although simulations agree very well
with the analytical approximations in the case of random regular graphs, discrepancies are evident in the
case of rings and lattices, which are characterized by higher clustering and for which pair approximation
is not sufficiently accurate. In these cases, the analytical approximations systematically overestimate the
ability of a graph to promote the evolution of cooperation. Importantly, in the case of the volunteer’s dilemma
without cost sharing and for rings or lattices of relatively large degree, the critical benefit-to-cost ratio above
which cooperation is favored is greater, not smaller, than the corresponding value for a well-mixed population.
Even though detrimental effects of spatial structure on cooperation have been previously noted in similar
studies [62], our results are counterintuitive given the updating protocol and the intensity of selection we
explored. Indeed, a death-Birth Moran process under weak selection would always favor cooperation (with
respect to a well-mixed population of the same size) for any linear cooperation game, including any collection
of two-player cooperation games. Our simulations show that this might not be the case when social dilemmas
are instead modelled as nonlinear games such as the volunteer’s dilemma.

We used pair approximation and diffusion approximation to find approximate values for the structure
coefficients, but other approaches can be used to obtain better estimates of them. In particular, coalescent
theory [63] allows us to write the sigma rule in terms of selection coefficients (dependent on the payoffs of the
game and the demographic parameters of the model) and expected coalescence times under neutrality [64,65];
however, such expected coalescence times can be difficult to obtain exactly. Alternatively, for small graphs,
the sigma rule and hence the structure coefficients can be explicitly calculated from the transition matrix of
the evolutionary process (cf. Appendix C of Ref. [26]). Finally, we note that even in cases for which the
structure coefficients are difficult to obtain by purely analytical means, they can be estimated numerically,
either indirectly (by estimating the expected times to coalescence) or directly (by computing and comparing
fixation probabilities).

For simplicity, we assumed that a focal player obtains its payoff from a single multiplayer game with
its k immediate neighbors. Such assumption allowed us to consider multiplayer interactions on graphs in a
straightforward way. However, this is in contrast with a common assumption of many studies of multiplayer
spatial and network games in which a focal player’s total payoff is the sum of payoffs obtained in k + 1
different games, one “centered” on the focal player itself and the other k centered on its neighbors [47–49].
As a result, focal players interact not only with first-order but also with second-order neighbors, which would
lead to more intricate structure coefficients. For example, in this case the structure coefficients of a cycle are
given by [51, 66]

ςG
∗

0 =
N + 1

3(2N − 3)
, ςG

∗

1 =
2N − 1

3(2N − 3)
, ςG

∗

2 =
N − 3

2N − 3
. (22)

These values are different from those we calculated under the assumption that individuals play a single game
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with first-order neighbors, given by Eq. (6). For N > 4, the structure coefficients fulfill ςG ≥con ςG
∗
,

meaning that our assumption of payoffs from a single game leads to less restrictive conditions for cooperation
to be favored by selection. This observation is in line with previous results for pairwise games on graphs
suggesting that the condition for the evolution of cooperation is optimized when interaction and replacement
neighborhoods coincide [67], which corresponds to our assumption of individuals playing a single game.
Future work should consider the calculation of structure coefficients for the cases where the payoff to a player
also depends on games centered on neighbors and how the condition for the promotion of cooperation differs
from the one resulting from our simplifying assumption.

We modelled social interactions as multiplayer matrix games with two discrete strategies (A and B) and
obtained our results by assuming that selection is weak (w is small). Alternatively, one could model the same
multiplayer game but assume instead that players can choose between two similar mixed strategies z and
z + δ, where z and z + δ refer to the probability of playing A for each strategy, and δ is small [43, 68, 69].
In such a “δ-weak selection” scenario, and for any number of players, only a single structure coefficient is
needed to identify conditions under which a higher probability of playing A is favored by natural selection.
For transitive graphs of size N and degree k, this structure coefficient is given by [7, 25]

σ =
(k + 1)N − 4k

(k − 1)N
. (23)

Exchanging the structure coefficient σ for the “scaled relatedness coefficient” κ of inclusive fitness theory
via the identity κ = (σ − 1)/(σ + 1) [65], we obtain [16]

κ =
N − 2k

k(N − 2)
. (24)

With such a value, recent results on multiplayer discrete games in structured populations under δ-weak
selection [43] can be readily applied to show that, for all cooperation games as we defined them and for a
death-Birth protocol, A is favored over B more easily for a graph-structured population than for a well-mixed
population, as long as N > k + 1. Such prediction qualitatively coincides with the one obtained from our
analytical approximations, but does not capture our numerical results for the volunteer’s dilemma in rings and
lattices.

To sum up, we have shown that even for multiplayer games on graphs, which are routinely analyzed by
simulation only, some analytical insight can be generated. However, fully accounting for the complexity of
evolutionary multiplayer games in graphs with high clustering remains a challenging open problem.

Supporting Information

S1 Text
Supplementary Methods. Calculations for the exact structure coefficients of cycles, the approximate
structure coefficients of graphs of degree k ≥ 3, and a short description of the computational model used for
our simulations.

S1 Fig
Simulations of evolutionary game dynamics on graphs (difference in fixation probabilities, N = 500).
Same as in Fig. 3, but for a population size N = 500.
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S2 Fig
Simulations of evolutionary game dynamics on graphs (fixation probabilities,N = 100). Open symbols
show the fixation probability of cooperators (ρA) and filled symbols the fixation probability of defectors (ρB)
as a function of the benefit-to-cost ratio B/C, for different types and degrees of the graph. Lines indicate
analytical predictions for the fixation probabilities. Parameters: population size N = 100, intensity of
selection w = 0.01, payoff cost C = 1.

S3 Fig
Simulations of evolutionary game dynamics on graphs (fixation probabilities, N = 500). Same as in S2
Fig, but for a population size N = 500.
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6. Boccaletti S, Latora V, Moreno Y, Chávez M, Hwang DU. Complex Networks: Structure and Dynamics.
Physics Reports. 2006;424:175–308.

7. Taylor PD, Day T, Wild G. Evolution of cooperation in a finite homogeneous graph. Nature.
2007;447(7143):469–472.
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1 The cycle
We start by considering the cycle, for which k = 2, and where a single mutant always leads to a connected
cluster of mutants. In this case, analytical expressions for the fixation probabilities of the two types and
for the structure coefficients can be obtained exactly by adapting previous results on two-player games on
cycles [1]. The state space of the stochastic process is i = 0, . . . , N , where i is the number of A-players and
N is the population size. At each time step, the number of i players either increases by one (with probability
T+
i ), decreases by one (with probability T−i ), or remains the same (with probability 1 − T+

i − T
−
i ). The

fixation probability of a single mutant A is given by [2, 3]

ρA =
1

1 +
∑N−1
j=1

∏j
i=1

T−
i

T+
i

, (1)

and the ratio of the fixation probabilities is given by [2, 3]

ρA
ρB

=
N−1∏
i=1

T+
i

T−i
. (2)

In order to compute these quantities, we need to find expressions for the ratio of the transition probabilities,
T+
i /T

−
i , for each i = 1, . . . , N −1. For convenience, let us define αj = 1−w+waj and βj = 1−w+wbj

for j = 0, 1, 2, where w is the intensity of selection and aj (bj) is the payoff of an A-player (B-player) when
playing against two other players, j ∈ {0, 1, 2} of which are A-players. For a death-Birth protocol, we find

T+
i =



2
N

α0

α0+β0
if i = 1

2
N

α1

α1+β0
if i = 2

2
N

α1

α1+β0
if 3 ≤ i ≤ N − 3

2
N

α1

α1+β1
if i = N − 2

1
N if i = N − 1

and

T−i =



1
N if i = 1
2
N

β1

α1+β1
if i = 2

2
N

β1

α2+β1
if 3 ≤ i ≤ N − 3

2
N

β1

α2+β1
if i = N − 2

2
N

β2

α2+β2
if i = N − 1

,

so that the ratio of transition probabilities is given by

T+
i

T−i
=



2α0

α0+β0
if i = 1

α1(α1+β1)
β1(α1+β0)

if i = 2
α1(α2+β1)
β1(α1+β0)

if 3 ≤ i ≤ N − 3
α1(α2+β1)
β1(α1+β1)

if i = N − 2
α2+β2

2β2
if i = N − 1

. (3)

With the previous expression, and for weak selection (w � 1) we obtain

ρA ≈
1

N
+

w

4N2

{
2(N − 1)a0 + (N2 −N − 4)a1 + (N2 − 5N + 6)a2

−(N2 −N − 6)b0 − (N2 − 3N + 4)b1 − 2b2
}
. (4)

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 21, 2016. ; https://doi.org/10.1101/038505doi: bioRxiv preprint 

https://doi.org/10.1101/038505
http://creativecommons.org/licenses/by-nc-nd/4.0/


By symmetry, the expression for ρB can be obtained from the expression for ρA after replacing aj by bk−j
and bj by ak−j , i.e.,

ρB ≈
1

N
+

w

4N2

{
2(N − 1)b2 + (N2 −N − 4)b1 + (N2 − 5N + 6)b0

−(N2 −N − 6)a2 − (N2 − 3N + 4)a1 − 2a0
}
. (5)

In a similar manner, for weak selection the ratio of fixation probabilities can be approximated by

ρA
ρB
≈ 1 +

w

2
{a0 + (N − 2)a1 + (N − 3)a2 − (N − 3)b0 − (N − 2)b1 − b2} . (6)

Thus, the condition ρA > ρB becomes

1︸︷︷︸
σ0

(a0 − b2) + (N − 2)︸ ︷︷ ︸
σ1

(a1 − b1) + (N − 3)︸ ︷︷ ︸
σ2

(a2 − b0) > 0,

from which we identify the structure coefficients:

σ0 = 1, σ1 = N − 2, σ3 = N − 3.

As we assume N ≥ 3, the structure coefficients are nonnegative. Normalizing the structure coefficients we
obtain

ς0 =
1

2(N − 2)
, ς1 =

1

2
, ς3 =

N − 3

2(N − 2)
,

which are the values given by Eq. (6) in the main text.

2 Regular graphs with k ≥ 3

For regular graphs with degree k ≥ 3, we obtain the structure coefficients by finding an approximate
expression for the comparison of fixation probabilities, ρA > ρB . To estimate these fixation probabilities, we
follow closely the procedure used by Ohtsuki et al. [4], based on a combination of pair approximation and
diffusion approximation.

2.1 Pair approximation
Let us denote by pA and pB the global frequencies of types A and B, by pAA, pAB , pBA and pBB the
frequencies of AA, AB, BA, and BB pairs, and by qX|Y the conditional probability of finding an X-player
given that the adjacent node is occupied by a Y -player, where X and Y stand for A or B. Such probabilities
satisfy

pA + pB = 1, (7a)
pAB = pBA, (7b)

qA|X + qB|X = 1, (7c)

qX|Y =
pXY
pY

, (7d)

implying that the system can be described by only two variables: pA and pAA.
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In probabilistic cellular automata such as the one analyzed here, the dynamics of frequencies of types
(pA, pB) and pairs of types (pAA, pAB , pBA and pBB) will depend on triplets and higher-order spatial
configurations [5]. Pair approximation allows us to obtain a closed system by approximating third- and
higher-order spatial moments by heuristic expressions involving second- and first-order moments only [5, 6].
In particular, for each site X , we assume that the probability of finding j A-players among its k neighbors
follows the binomial distribution (

k

j

)
qjA|X(1− qB|X)k−j . (8)

Likewise, for each pair XY , we assume that the probability of finding j A-players among the k−1 neighbors
of X not including Y follows the binomial distribution(

k − 1

j

)
qjA|X(1− qA|X)k−1−j . (9)

Here, we implicitly assume that members of a pair are unlikely to have common neighbors, as it is ap-
proximately the case for random graphs. In this case, Eq. (8) and Eq. (9) are standard (and parsimonious)
assumptions (cf. Ref. [5], Eq. 19.27). For other graphs (such as lattices) the overlap among the neighbors of a
pair introduce correlations not taken into account by our simplification.

In the following, we write down the change of pA and pAA under the assumptions of pair approximation.
Then, we assume that selection is weak and that a separation of timescales holds in order to reduce the
dimension of the system of equations. Finally, we employ a diffusion approximation to get the equation that
governs the fixation probabilities. From the expressions of the fixation probabilities, the structure coefficients
can be obtained after some cumbersome algebra.

2.2 Updating a B-player
A B-player is chosen to die with probability pB ; its k neighbors compete for the vacant vertex proportionally
to their effective payoffs. Denoting by kA and kB the number of A and B players among these k neighbors,
and by virtue of Eq. (8), the frequency of such configuration is given by(

k

kA

)
qA|B

kA
(
1− qA|B

)k−kA
.

The effective payoff of each A-player connected by an edge to the dead B-player is given by

fBA = 1− w + wπBA ,

where

πBA =
k−1∑
j=0

(
k − 1

j

)
qA|A

j
(
1− qA|A

)k−1−j
aj

is, by virtue of Eq. (9), the expected payoff to an A-player with one B co-player and k − 1 other players.
Likewise, the effective payoff of each B-player connected by an edge to the dead B-player is given by

fBB = 1− w + wπBB ,

where

πBB =
k−1∑
j=0

(
k − 1

j

)
qA|B

j
(
1− qA|B

)k−1−j
bj
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is the expected payoff to a B-player with one B co-player and k − 1 other players.
Under weak selection, the probability that a neighbor playing A replaces the vacant spot left by the dead

B-player is given by
kAf

B
A

kAfBA + kBfBB
≈ kA

k
+ w

kA(k − kA)

k2
SB ,

where

SB = πBA − πBB

=
k−1∑
j=0

(
k − 1

j

)
qA|A

j
(
1− qA|A

)k−1−j
aj −

k−1∑
j=0

(
k − 1

j

)
qA|B

j
(
1− qA|B

)k−1−j
bj . (10)

Hence, the frequency pA of A-players in the population increases by 1/N with probability

Pr

(
∆pA =

1

N

)
= pB

k∑
kA=0

(
k

kA

)
qA|B

kA
(
1− qA|B

)k−kA kAf
B
A

kAfBA + kBfBB

≈ pB
{
qA|B + w

k − 1

k
qA|B

(
1− qA|B

)
SB
}

= pAB

{
1 + w

k − 1

k
qB|BSB

}
, (11)

where we used the formulas for the first two moments of a binomial distribution and the identities pBqA|B =
pAB and 1− qA|B = qB|B implied by Eq. (7).

Regarding pairs, if the B-player chosen to die is replaced by an A-player then the number of AA pairs
increases by kA. Since the total number of pairs in the population is equal to kN/2, the proportion pAA of
AA pairs increases by 2kA/(kN) with probability

Pr

(
∆pAA =

2kA
kN

)
= pB

(
k

kA

)
qA|B

kA
(
1− qA|B

)k−kA kAf
B
A

kAfBA + kBfBB
.

2.3 Updating an A-player
An A-player is chosen to die with probability pA. There are kA A-players and kB B-players in the neighbor-
hood of the vacant node. The frequency of this configuration is (cf. Eq. (8))(

k

kA

)
qA|A

kA
(
1− qA|A

)k−kA
.

The effective payoff of each neighboring A-player is

fAA = 1− w + wπAA ,

where

πAA =
k−1∑
j=0

(
k − 1

j

)
qA|A

j
(
1− qA|A

)k−1−j
aj+1

is, by virtue of Eq. (9), the expected payoff to an A-player with one A co-player and k − 1 other players.
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Likewise, the effective payoff to each neighboring B-player is given by

fAB = 1− w + wπAB ,

where

πAB =
k−1∑
j=0

(
k − 1

j

)
qA|B

j
(
1− qA|B

)k−1−j
bj+1

is the expected payoff to a B-player with one A co-player and k − 1 other players.
The probability that one of the neighbors playing B replaces the vacancy is given by

kBf
A
B

kAfAA + kBfAB
≈ kB

k
+ w

kB(k − kB)

k2
SA,

where

SA = πAB − πAA

=
k−1∑
j=0

(
k − 1

j

)
qA|B

j
(
1− qA|B

)k−1−j
bj+1 −

k−1∑
j=0

(
k − 1

j

)
qA|A

j
(
1− qA|A

)k−1−j
aj+1. (12)

The vacancy is replaced by a B-player and therefore pA decreases by 1/N with probability

Pr

(
∆pA = − 1

N

)
= pA

k∑
kB=0

(
k

kB

)
qA|A

k−kA
(
1− qA|A

)kB kBf
A
B

kAfAA + kBfAB

≈ pA
{
qB|A + w

k − 1

k
qA|A

(
1− qA|A

)
SA
}

= pBA

{
1 + w

k − 1

k
qA|ASA

}
. (13)

Regarding pairs, the proportion pAA of AA pairs decreases by 2kA/(kN) with probability

Pr

(
∆pAA = −2kA

kN

)
= pA

(
k

kA

)
qA|B

kA
(
1− qB|A

)k−kA kBf
A
B

kAfAA + kBfAB
.

2.4 Separation of time scales
Supposing that one replacement event takes place in one unit of time, the time derivative of pA is given by

ṗA =
1

N
Pr

(
∆pA =

1

N

)
− 1

N
Pr

(
∆pA = − 1

N

)
. (14)

Using Eq. (11) and (13) we obtain, to first order in w:

ṗA = w
k − 1

kN
pABS

where
S = qB|BSB − qA|ASA.
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Similarly to Eq. (14), the time derivative of pAA is given by

ṗAA =
k∑

kA=0

(
2kA
kN

)
Pr

(
∆pAA =

2kA
kN

)
+

k∑
kA=0

(
−2kA
kN

)
Pr

(
∆pAA = −2kA

kN

)
≈ 2

kN
pAB

[
1 + (k − 1)

(
qA|B − qA|A

)]
.

For weak selection (wk � 1) the local density pAA equilibrates much more quickly than the global
density pA. Therefore, the dynamical system rapidly converges onto the slow manifold where ṗAA = 0 and
hence

1 + (k − 1)
(
qA|B − qA|A

)
= 0.

From this expression and Eq. (7) we obtain

qA|A − qA|B = qB|B − qB|A = r, (15)

where we define
r =

1

k − 1
. (16)

As pointed out by Ohtsuki et al. [4], Eq. (15) measures the amount of positive correlation or effective
assortment between adjacent players generated by the population structure. Moreover, expression (15)
together with Eq. (7) leads to

qA|A = pA + r(1− pA) = r + (1− r)pA, (17a)
qA|B = (1− r)pA, (17b)
qB|A = (1− r)(1− pA), (17c)
qB|B = rpA + (1− pA) = r + (1− r)(1− pA). (17d)

2.5 Algebraic manipulations
It follows from the previous approximations that ṗA is proportional to

S = qB|BSB − qA|ASA
= [rpA + (1− pA)]SB − [pA + r(1− pA)]SA, (18)
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which is a polynomial of degree k in pA. Let us write such polynomial in a more compact form. To do so, we
make use of the following identities:

n∑
j=0

(
n

j

)
[x+ r(1− x)]

j
[(1− r)(1− x)]

n−j
aj =

n∑
j=0

(
n

j

)
xj(1− x)n−j

n−j∑
`=0

(
n− j
`

)
r`(1− r)n−j−`aj+`

(19)
n∑
j=0

(
n

j

)
[(1− r)x]

j
[1− (1− r)x]

n−j
aj =

n∑
j=0

(
n

j

)
xj(1− x)n−j

j∑
`=0

(
j

`

)
r`(1− r)j−`aj−`

(20)

x
n−1∑
j=0

(
n− 1

j

)
xj(1− x)n−1−jaj =

n∑
j=0

(
n

j

)
xj(1− x)n−j

jaj−1
n

, (21)

(1− x)
n−1∑
j=0

(
n− 1

j

)
xj(1− x)n−1−jaj =

n∑
k=0

(
n

j

)
xj(1− x)n−j

(n− j)aj
n

. (22)

Proofs of identities (21) and (22) are provided in Appendix B of Ref. [7]. In the following, we prove (19)
[(20) is proven in a similar way]. Starting from the left side of (19) we expand the term [x+ r(1− x)]

j (by
applying the binomial theorem) and rearrange to obtain:

n∑
j=0

(
n

j

)
[x+ r(1− x)]

j
[(1− r)(1− x)]

n−j
aj =

∑
j≥0

(
n

j

)
[(1− r)(1− x)]

n−j
aj
∑
`≥0

(
j

`

)
[r(1− x)]

`
xj−`

=
∑
j≥0

∑
`≥0

(
n

j

)(
j

`

)
xj−`(1− x)n−(j−`)r`(1− r)n−jaj .

Now, since (
n

j

)(
j

`

)
=

(
n

j

)(
j

j − `

)
=

(
n

j − `

)(
n− (j − `)

`

)
and introducing m = j − `, we can write∑
j≥0

∑
`≥0

(
n

j

)(
j

`

)
xj−`(1− x)n−(j−`)r`(1− r)n−jaj =

∑
j≥0

∑
m≥0

(
n

m

)(
n−m
j − n

)
xm(1− x)n−mrj−m(1− r)n−jaj

=
∑
m≥0

(
n

m

)
xm(1− x)n−m

∑
j≥0

(
n−m
j −m

)
rj−m(1− r)n−jaj .

Replacing ` = j −m in the last sum,∑
m≥0

(
n

m

)
xm(1− x)n−m

∑
j≥0

(
n−m
j −m

)
rj−m(1− r)n−jaj

=
∑
m≥0

(
n

m

)
xm(1− x)n−m

∑
`≥0

(
n−m
`

)
r`(1− r)n−m−`am+`.
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Finally, changing the dummy variable m by j in the last expression and making explicit the upper limits of
the sums, we obtain the right side of (19).

Replacing Eq. (17a) and (17b) into Eq. (10), and applying identities (19) and (20), we can write

SB(pA) =
k−1∑
j=0

(
k − 1

j

)
qA|A

j
(
1− qA|A

)k−1−j
aj −

k−1∑
j=0

(
k − 1

j

)
qA|B

j
(
1− qA|B

)k−1−j
bj

=
k−1∑
j=0

(
k − 1

j

)
[pA + r(1− pA)]

j
[(1− r)(1− pA)]

k−1−j
aj

−
k−1∑
j=0

(
k − 1

j

)
[(1− r)pA]

j
[1− (1− r)pA]

k−1−j
bj

=
k−1∑
j=0

(
k − 1

j

)
pjA(1− pA)k−1−j

k−1−j∑
`=0

(
k − 1− j

`

)
r`(1− r)k−1−j−`aj+`

−
k−1∑
j=0

(
k − 1

j

)
pjA(1− pA)k−1−j

j∑
`=0

(
j

`

)
r`(1− r)j−`bj−`,

so that we obtain

SB(pA) =
k−1∑
j=0

(
k − 1

j

)
pjA(1− pA)k−1−jcj , (23)

where

cj =

k−1−j∑
`=0

(
k − 1− j

`

)
r`(1− r)k−1−j−`aj+` −

j∑
`=0

(
j

`

)
r`(1− r)j−`bj−`. (24)

Likewise, replacing Eq. (17) into Eq. (12), and applying identities (19) and (20) we obtain

SA(pA) =
k−1∑
j=0

(
k − 1

j

)
qA|B

j
(
1− qA|B

)k−1−j
bj+1 −

k−1∑
j=0

(
k − 1

j

)
qjA|A

(
1− qA|A

)k−1−j
aj+1

=

k−1∑
j=0

(
k − 1

j

)
[(1− r)pA]

j
[1− (1− r)pA]

k−1−j
bj+1

−
k−1∑
j=0

(
k − 1

j

)
[pA + r(1− pA)]

j
[(1− r)(1− pA)]

k−1−j
aj+1

=
k−1∑
j=0

(
k − 1

j

)
pjA(1− pA)k−1−j

j∑
`=0

(
j

`

)
r`(1− r)j−`bj+1−`

−
k−1∑
j=0

(
k − 1

j

)
pjA(1− pA)k−1−j

k−1−j∑
`=0

(
k − 1− j

`

)
r`(1− r)k−1−j−`aj+1+`,
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and hence

SA(pA) = −
k−1∑
j=0

(
k − 1

j

)
pjA(1− pA)k−1−jdj , (25)

where

dj =

k−1−j∑
`=0

(
k − 1− j

`

)
r`(1− r)k−1−j−`aj+1+` −

j∑
`=0

(
j

`

)
r`(1− r)j−`bj+1−`. (26)

Replacing Eq. (23) and Eq. (25) into Eq. (18), and applying identities (21) and (22), we finally obtain

S(pA) = [rpA + (1− pA)]SB − [pA + r(1− pA)]SA

= rpA

k−1∑
j=0

(
k − 1

j

)
pjA(1− pA)k−1−jcj + (1− pA)

k−1∑
j=0

(
k − 1

j

)
pjA(1− pA)k−1−jcj

+ pA

k−1∑
j=0

(
k − 1

j

)
pjA(1− pA)k−1−jdj + r(1− pA)

k−1∑
j=0

(
k − 1

j

)
pjA(1− pA)k−1−jdj

= r
k∑
j=0

(
k

j

)
pjA(1− pA)k−j

jcj−1
k

+
k∑
j=0

(
k

j

)
pjA(1− pA)k−j

(k − j)cj
k

+
k∑
j=0

(
k

j

)
pjA(1− pA)k−j

jdj−1
k

+ r
k∑
j=0

(
k

j

)
pjA(1− pA)k−j

(k − j)dj
k

,

and hence

S(pA) =
k∑
j=0

(
k

j

)
pjA(1− pA)k−jej , (27)

where

ej =
rjcj−1 + (k − j)cj + jdj−1 + r(k − j)dj

k
. (28)

2.6 Diffusion approximation
Assuming that Eq. (17) holds, we study a one dimensional diffusion process on the variable pA. Therefore,
within a short interval, ∆t, we have

E[∆pA] ≈ wk − 2

kN
pA(1− pA)S(pA)∆t (≡ m(pA)∆t) ,

Var[∆pA] ≈ 2

N2

k − 2

k − 1
pA(1− pA)∆t (≡ v(pA)∆t) .

The fixation probability, φA(y) of strategy A with initial frequency pA(t = 0) = y, is then governed by the
differential equation (cf. Eq. 4.13 in Ref. [8])

m(y)
dφA(y)

dy
+
v(y)

2

d2φA(y)

dy2
= 0

with boundary conditions φA(0) = 0 and φA(1) = 1.
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The probability that absorption eventually occurs at pA = 1 is then (cf. Eq. 4.17 in Ref. [8])

φA(y) =

∫ y
0
ψ(x)dx∫ 1

0
ψ(x)dx

,

where (cf. Eq. 4.16 in Ref. [8])

ψ(x) = exp

(
−
∫ x

2
m(z)

v(z)
dz

)
= exp

(
−wN(k − 1)

k

∫ x

S(z)dz

)
.

Since we assume that w is very small,

φA(y) ≈ y +
wN(k − 1)

k

(
y

∫ 1

0

∫ x

0

S(z)dzdx−
∫ y

0

∫ x

0

S(z)dzdx

)
.

This expression involves integrals of S(z). Using the formula for the integral of a polynomial in Bernstein
form (cf. p. 391 of Ref. [9]), i.e.,∫ x

0

n∑
j=0

(
n

j

)
zj(1− z)n−jajdz =

1

n+ 1

n+1∑
j=0

(
n+ 1

j

)
xj(1− x)n+1−j

j−1∑
`=0

a`,

we obtain ∫ y

0

∫ x

0

S(z)dzdx =

∫ y

0

∫ x

0

k∑
j=0

(
k

j

)
zj(1− z)k−jejdzdx

=

∫ y

0

1

k + 1

k+1∑
j=0

(
k + 1

j

)
xj(1− x)k+1−j

j−1∑
`=0

e`dx

=
1

k + 1

1

k + 2

k+2∑
j=0

(
k + 2

j

)
yj(1− y)k+2−j

j−1∑
m=0

m−1∑
`=0

e` (29)

and hence ∫ 1

0

∫ x

0

S(z)dzdx =
1

(k + 2)(k + 1)

k+1∑
m=0

m−1∑
`=0

e`

=
1

(k + 2)(k + 1)

k∑
m=0

m∑
`=0

e`

=
1

(k + 2)(k + 1)

k∑
j=0

(k + 1− j)ej .

Writing out Eq. (29) as

1

(k + 2)(k + 1)

[
0 + 0 +

(
k + 2

2

)
y2(1− y)k

(
1∑

m=0

m−1∑
`=0

e`

)
+ . . .

]

=
1

(k + 2)(k + 1)

(k + 2)!

k!2!
y2(1− y)ke0 + . . .

=
1

2
y2(1− y)ke0 + . . .
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it is clear that, for y = 1/N and N large,
∫ y
0

∫ x
0
S(z)dzdx can be approximated by

e0
2N2

.

The fixation probability, ρA = φA(1/N), can then be written as

ρA ≈
1

N
+
wN(k − 1)

k

 1

N

1

(k + 2)(k + 1)

k∑
j=0

(k + 1− j)ej −
e0

2N2


=

1

N
+

w(k − 1)

(k + 2)(k + 1)k

 k∑
j=0

(k + 1− j)ej − (k + 2)(k + 1)
e0
2N


=

1

N
+

w(k − 1)

(k + 2)(k + 1)k

 k∑
j=1

(k + 1− j)ej + (k + 1)e0

(
1− k + 2

2N

)

If k � N , then (k + 2)/(2N)� 1, and we finally obtain

ρA ≈
1

N
+ w

k − 1

(k + 2)(k + 1)k

k∑
j=0

(k + 1− j)ej . (30)

2.7 Fixation probabilities, sigma rule and structure coefficients

From Eq. (30), the fixation probability of a mutant A is greater than neutral if
∑k
j=0(k + 1− j)ej > 0. By

Eq. (28), the coefficients ej are linear in cj and dj , which are linear in the payoff entries aj and bj (cf. Eq.
(24) and (26)). Thus,

∑k
j=0(k + 1− j)ej is linear in the payoff entries, meaning that there exist αj and βj

such that

k∑
j=0

(k + 1− j)ej =
k∑
j=0

(αjaj + βjbj),

and so

ρA ≈
1

N
+ w

k − 1

(k + 2)(k + 1)k

k∑
j=0

(αjaj + βjbj). (31)

By symmetry, the fixation probability of a single B mutant is given by

ρB ≈
1

N
+ w

k − 1

(k + 2)(k + 1)k

k∑
j=0

(αjbk−j + βjak−j) . (32)

Therefore, under weak selection

ρA > ρB ⇔
k∑
j=0

(αjaj + βjbj) >
k∑
j=0

(αjbk−j + βjak−j)⇔
k∑
j=0

σj (aj − bk−j) > 0, (33)
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where
σj = αj − βk−j . (34)

The rightmost expression in Eq. (33) has been termed the “sigma rule” and the coefficients σj are the structure
coefficients [10–12].

To obtain expressions for the fixation probabilities and the structure coefficients, we need to calculate αj
and βj . For a multiplayer game with aj = δi,j (i.e., aj = 1 for some j = i and aj = 0 otherwise), we have

αi =
k∑
j=0

(k + 1− j)eij , (35)

where eij denotes the coefficient ej with aj = δi,j and bj = 0 for all j. Replacing the formula for ej (28) into
Eq. (35), expressing r in terms of k (Eq. (16)), and simplifying we get

αi =
r

k

k∑
j=0

(k + 1− j)jcij−1 +
1

k

k∑
j=0

(k + 1− j)(k − j)cij +
1

k

k∑
j=0

(k + 1− j)jdij−1 +
r

k

k∑
j=0

(k + 1− j)(k − j)dij

=
r

k

k∑
j=0

(k − j)(j + 1)cij +
1

k

k∑
j=0

(k + 1− j)(k − j)cij +
1

k

k∑
j=0

(k − j)(j + 1)dij +
r

k

k∑
j=0

(k + 1− j)(k − j)dij

=
1

k

k−1∑
j=0

(k − j) [r(j + 1) + (k + 1− j)] cij +
1

k

k−1∑
j=0

(k − j) [(j + 1) + r(k + 1− j)] dij

=
1

k(k − 1)

k−1∑
j=0

(k − j)
{[
k2 − (k − 2)j

]
cij + [2k + (k − 2)j] dij

}
.

Now, since for αi we have that aj = δi,j and bj = 0 for all j, and from Eq. (24), (26), and Eq. (16), we have

cij =

(
k − 1− j
i− j

)(
1

k − 1

)i−j (
k − 2

k − 1

)k−1−i
=

(
k − 1− j
i− j

)
(k − 2)k−1−i

(k − 1)k−1−j

dij =

(
k − 1− j
i− j − 1

)(
1

k − 1

)i−j−1(
k − 2

k − 1

)k−i
=

(
k − 1− j
i− j − 1

)
(k − 2)k−i

(k − 1)k−1−j
,

and d0j = 0 for all 0 ≤ j ≤ k − 1. Hence

αi =
1

k(k − 1)

k−1∑
j=0

(k − j)
{[
k2 − (k − 2)j

](k − 1− j
i− j

)
(k − 2)k−1−i

(k − 1)k−1−j

+ [2k + (k − 2)j]

(
k − 1− j
i− j − 1

)
(k − 2)k−i

(k − 1)k−1−j

}
. (36)
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Similarly (now letting the payoff entries be bj = δj,i and aj = 0) we obtain

βi =
1

k(k − 1)

k−1∑
j=0

(k − j)
{[
k2 − (k − 2)j

]
(−1)

(
j

j − i

)
rj−i(1− r)i

+ [2k + (k − 2)j] (−1)

(
j

j − i+ 1

)
rj−i+1(1− r)i−1

}
= − 1

k(k − 1)

k−1∑
j=0

(k − j)
{[
k2 − (k − 2)j

]( j

j − i

)
(k − 2)i

(k − 1)j

+ [2k + (k − 2)j]

(
j

j − i+ 1

)
(k − 2)i−1

(k − 1)j

}
. (37)

Replacing expressions (36) and (37) into Eq. (34) and simplifying, we finally obtain the following
expressions for the structure coefficients

σj =
(k − 2)k−1−j

k(k − 1)

k−1∑
`=0

(k − `)
{[
k2 − (k − 2)`

]
υ`,j,k + [2k + (k − 2)`] τ`,j,k

}
, (38)

where

υ`,j,k =

(
k − 1− `
k − 1− j

)
1

(k − 1)k−1−`
+

(
`

k − j

)
k − 2

(k − 1)`
, (39)

τ`,j,k =

(
k − 1− `
k − j

)
k − 2

(k − 1)k−1−`
+

(
`

k − 1− j

)
1

(k − 1)`
. (40)

2.8 Normalized structure coefficients
The structure coefficients given by Eq. (38) are nonnegative. Once we have an expression for their sum, we
can normalize the structure coefficients so that they describe a probability distribution. In the following we
work out such an expression.

We start by noting that, subtracting Eq. (32) from Eq. (31), the difference of the fixation probabilities
under our approximations can be written as

ρA − ρB ≈ w
k − 1

(k + 2)(k + 1)k

k∑
j=0

σj(aj − bk−j). (41)

In particular, this expression holds for a multiplayer game with payoffs given by aj = 1 and bj = 0 for all j,
for which Eq. (41) reduces to

ρA − ρB ≈ w
k − 1

(k + 2)(k + 1)k

k∑
j=0

σj . (42)

The multiplayer game with payoffs aj = 1 and bj = 0 for all j is mathematically equivalent to a collection
of pairwise games played with neighbors with a payoff matrix

(A B

A a b

B c d

)
,

14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 21, 2016. ; https://doi.org/10.1101/038505doi: bioRxiv preprint 

https://doi.org/10.1101/038505
http://creativecommons.org/licenses/by-nc-nd/4.0/


where a = b = 1/k and c = d = 0. Indeed, for such payoff values the accumulated payoff to an A-player is
always 1 and that of a B-player is always 0. For a general pairwise game, we have that (cf. Eqs. (19) and (21)
in the Supplementary Material of Ref. [4])

ρA ≈
1

N
+
w

6k

[
(k2 + 2k + 1)a+ (2k2 − 2k − 1)b− (k2 − k + 1)c− (2k2 + k − 1)d

]
. (43)

By symmetry:

ρB ≈
1

N
+
w

6k

[
(k2 + 2k + 1)d+ (2k2 − 2k − 1)c− (k2 − k + 1)b− (2k2 + k − 1)a

]
. (44)

Therefore, for a = b = 1/k and c = d = 0, we have that

ρA − ρB ≈ w. (45)

Since the right hand side of Eq. (42) should be equal to the right hand side of Eq. (45), we conclude that

k∑
j=0

σj =
(k + 2)(k + 1)k

k − 1
.

Defining

ςi =
σi∑k
j=0 σj

=
k − 1

(k + 2)(k + 1)k
σi, (46)

we finally obtain

ςj =
(k − 2)k−1−j

(k + 2)(k + 1)k2

k−1∑
`=0

(k − `)
{[
k2 − (k − 2)`

]
υ`,j,k + [2k + (k − 2)`] τ`,j,k

}
,

which is the expression for the normalized structure coefficients as given in Eq. (8) of the main text.

2.9 A useful identity
If individuals play the pairwise game (A B

A 1 0
B 0 0

)
with each neighbor, then by Eqs. (43) and (44) we have

ρA − ρB ≈ w
k + 1

2
. (47)

Now consider the difference in fixation probabilities arising from the equivalent multiplayer version, for
which aj = j and bj = 0 for all j. Replacing aj = j and bj = 0 into Eq. (41) leads to

ρA − ρB ≈ w
k − 1

(k + 2)(k + 1)k

k∑
i=0

σjj,
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which by Eq. (46) can be written as

ρA − ρB ≈ w
k∑
j=0

ςjj. (48)

in terms of the normalized structure coefficients. Comparing Eq. (47) and (48), we finally obtain

k∑
j=0

ςjj =
k + 1

2
,

which is the expression in Eq. (14) in the main text. Note that this expression is valid only in the limit of
large N .

3 Computional model
We implemented numerical simulations of a Moran process with death-Birth (dB) updates for different kinds
of graphs. The simulations rely on three different types of graphs: random regular, ring and lattice. We employ
the C version of the igraph library1 to generate all random regular graphs —igraph k regular game()—, the
ring of degree k = 2 —igraph ring()— and the lattice of degree k = 4 —igraph lattice(). Given that igraph
does not provide generators for lattices of k > 4, we implemented an algortihm that extends a lattice of degree
k = 4 (von Neumann neighborhood) to degrees k = 6 (hexagonal lattice) and k = 8 (Moore neighborhood).
Similarly, we extend the ring of degree k = 2 by increasing its connectivity accordingly to generate cycles of
degrees k = 4, 6, 8, 10.

At each realization of the simulation we start with a monomorphic population playing one of the two
strategies and add a single mutant of the opposite strategy in a randomly chosen vertex. We allow the
simulation to run until it reaches an absorbing state (i.e., when either of the two strategies reaches fixation).
At each simulation step a vertex (a) is randomly selected from the whole population (i.e., death step) and
a second vertex (b) is selected from the neighborhood of a with a probability proportional to its fitness.
During this step we use the stochastic acceptance algorithm [13] to select an individual with a probability
proportional to its fitness. Hereafter, the strategy of vertex b is copied to a (i.e., death step). The payoffs of
the nodes —which depend on the game in place, their own strategies, and the strategies of their neighbours—
are calculated as discussed in the main text. For optimization purposes, in the first step of each realisation we
compute the payoffs of the whole network. Thenceforth we only re-compute the payoff of a vertex and its
neighbors whenever a vertex switches its strategy.

We repeat this process for 107 different realizations and keep track of the number of times the mutant
strategy has reached fixation. At the final step we compute the fixation probability of the mutant strategy as
the ratio between the number of hits —i.e., number of times the mutant invaded the resident strategy— and
the total number of realizations. We run separate simulation batches for both strategies, in a way that both
strategies play as the mutant and resident.
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