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Abstract
There has been much interest in studying evolutionary games in structured populations, often modelled as
graphs. However, most analytical results so far have only been obtained for two-player or additive games,
while the study of more complex multiplayer games has been usually tackled by computer simulations.
Here we investigate evolutionary multiplayer games in regular graphs updated with a Moran process. Using
a combination of pair approximation and diffusion approximation, we obtain an analytical condition for
cooperation to be favored by natural selection, given in terms of the payoffs of the game and a set of structure
coefficients. We show that, for a large class of cooperative dilemmas, graph-structured populations are
stronger promoters of cooperation than populations lacking spatial structure. Computer simulations validate
our results, showing that the complexity arising from many-person social interactions and spatial structure
can be often captured by analytical methods.

Introduction
Graphs are a natural starting point to assess the role of population structure in the evolution of cooperation.
Vertices of the graph represent individuals, while links (edges) define interaction and dispersal neighborhoods.
Classical models of population structure, such as island models [1,2] and lattices [3,4], often developed before
the current interest in complex networks [5, 6], can all be understood as particular instances of graphs [7, 8].
More recently, the popularity of network theory has fueled a renewed interest in evolutionary dynamics on
graphs, specially in the context of social behaviors such as cooperation and altruism [7–21].

When selection is weak on two competing strategies, such that fitness differences represent only a small
perturbation of a neutral evolutionary process, a surprisingly simple condition for one strategy to dominate
the other, known as the “sigma rule”, holds for a large variety of graphs and other models of spatially
structured populations [22]. Such condition depends not only on the payoffs of the game describing the social
interactions, but also on a number of “structure coefficients”. These coefficients are functions of demographic
parameters of the spatial model and of its associated update protocol, but they are independent of the payoffs.
In the case of two-player games, the sigma rule depends on a single structure coefficient σ. The larger this
σ, the greater the ability of spatial structure to promote the evolution of cooperation or to choose efficient
equilibria in coordination games [22]. Partly for this reason, the calculation of structure coefficients for
different population structures and demographic scenarios has attracted increasing interest during the last
years [8, 21–27].
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Despite the theoretical and empirical importance of two-player games, many social interactions involve
the collective action of more than two individuals. Examples range from bacteria producing extracellular
compounds [28–31] to human social dilemmas [32–36]. In these situations, the evolution of cooperation is
better modeled as a multiplayer game where individuals obtain their payoffs from interactions with more than
two players [37–42]. Multiplayer games can be also embedded in graphs, assuming for example that nodes
represent not only individuals playing games but also games played by individuals [43–45].

Most previous studies on the effects of graph structure on multiplayer game dynamics have relied on
computer simulations [45]. However, similar to the two-player case, some analytical progress can be made
if selection is assumed to be weak. In the multiplayer case, the sigma rule depends no longer on one, but
on up to d − 1 structure coefficients, where d is the number of players [46]. Although exact formulas for
structure coefficients of multiplayer games can be obtained for relatively simple models such as cycles [47],
analysis has proved elusive in more complex population structures, including regular graphs of arbitrary
degree. Indeed, extending analytical results on evolutionary two-player games on graphs to more general
multiplayer games is still considered to be an open problem in evolutionary graph theory [48].

Here, we contribute to this body of work by deriving approximate analytical expressions for the structure
coefficients of regular graphs updated with a Moran death-Birth model, and hence for the condition of one
strategy to dominate another according to the sigma rule. We show that regular graphs updated with a death-
Birth Moran process always promote cooperation with respect to the baseline case of a well-mixed population,
and that this is so for a large class of games modeling cooperative dilemmas. Computer simulations confirm
our analytical predictions, showing that our results remain valid with parameter values going beyond the
assumptions of our approximations.

Methods
We consider stochastic evolutionary dynamics on a graph-structured population of size N . Each individual is
located in the vertex of a regular graph of degree k. Individuals obtain a payoff by interacting with their k
neighbors in a d-person symmetric game (i.e., d = k+ 1). If j co-players play A, a focal A-player obtains aj
whereas a focal B-player obtains bj , as indicated in the following payoff table:

Opposing A-players 0 1 . . . j . . . d− 1
payoff to A a0 a1 . . . aj . . . ad−1
payoff to B b0 b1 . . . bj . . . bd−1

.

The effective payoff affecting the stochastic evolutionary dynamics is given by 1 + w × payoff , where the
parameter w measures the intensity of selection.

We model the stochastic evolutionary dynamics as a Markov process on a finite space state where a state
S corresponds to a given composition of the population, i.e., which vertices are A and which are B. More
specifically, we consider a Moran death-Birth process [12, 14, 49] according to which, each time step: (i) a
random individual is chosen to die, and (ii) its neighbors compete to place a copy of themselves in the new
empty site with probability proportional to their effective payoff. Without mutation, such Markov process
has two absorbing states: that where all vertices are occupied by A-players and that where all vertices are
occupied by B-players. Let us denote by ρA the fixation probability of a single A-player in a population of
B-players, and by ρB the fixation probability of a single B-player in a population of A-players. We take the
comparison of fixation probabilities, i.e.

ρA > ρB , (1)
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as a measure of evolutionary success [50] and say that A is favored over B if condition (1) holds.
Under weak selection, i.e., w → 0, the condition for A to be favored over B holds if the sigma rule for

multiplayer games [46] is satisfied, i.e., if

d−1∑
j=0

σjfj > 0. (2)

Here, σ0, . . . , σd−1 are the d structure coefficients (constants that depend on the population structure and on
the update dynamics), and the quantities f0, . . . , fd−1, given by

fj = aj − bd−1−j , j = 0, 1, . . . , d− 1, (3)

are differences between payoffs, which we will refer to in the following as the “gains from flipping”. The
gains from flipping capture the change in payoff experienced by a focal individual playing B in a group where
j co-players play A when all players simultaneously switch strategies (so that A-players become B-players
and B-players become A-players). It turns out that the payoffs of the game only enter into condition (1) via
the gains from flipping (3), as the structure coefficients are themselves independent of aj and bj .

Structure coefficients are uniquely determined up to a constant factor. Setting one of these coefficients to
one thus gives a single structure coefficient for d = 2 [22]. For d > 2, and in the usual case where structure
coefficients are nonnegative, we can impose

∑d−1
j=0 σj = 1 without affecting the selection condition (2). For

our purposes, this normalization turns out to be more useful than setting one coefficient to one, as it allows us
to rewrite the sigma rule (2) as

d−1∑
j=0

ςjfj = E [f(J)] > 0, (4)

where f(j) ≡ fj , and J is the random variable with probability distribution prescribed by the “normalized
structure coefficients” ςj = σj/

∑d−1
i=0 σi. In light of condition (4), the sigma rule can be interpreted as stating

that strategy A is favored over B if the expected gains from flipping are greater than zero when the number of
co-players J is distributed according to the normalized structure coefficients. From this perspective, different
models of population structure lead to different normalized structured coefficients and hence to different
expected gains from flipping, which in turn imply different conditions for strategy A to be favored over B
in a given multiplayer game [47]. For instance, the baseline case scenario of a large well-mixed population
updated with either a Moran or a Wright-Fisher process leads to normalized structure coefficients given
by [39, 40]:

ςWj =

{
N

d(N−1) if 0 ≤ j ≤ d− 2
N−d

d(N−1) if j = d− 1
. (5)

A normalized sigma rule such as the one given by Eq. (4) holds for many spatial models and associated
updating protocols [46, 47]. Here, we focus on the case of regular graphs updated with a Moran death-Birth
process. We provide exact expressions for the case of cycles for which k = 2. For k ≥ 3 the structure
coefficients are difficult to calculate exactly. We bypass these difficulties by using a combination of pair
approximation and diffusion approximation [14] together with mathematical identities involving polynomials
in Bernstein form [41, 51]. Our approach implicitly assumes that graphs are equivalent to Bethe lattices
(or Cayley trees) with a very large number of vertices (N � k). In addition, weak selection intensities
(w � 1) are also required for an implicit argument of separation of timescales to hold. In order to validate
our approximations, we implemented a computational model that simulates a Moran death-Birth process in
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three different regular graphs (the cycle, the random regular graph, and the lattice) with different degrees. We
run two sets of 107 realizations for each of the three types of graphs selected, each with different degrees,
k ∈ {2, 3, 4, 6, 8, 10}. In the first set, cooperation is the mutant strategy and in the second one defection is
the mutant. A single realization of the simulation starts with the mutant placed in a randomly selected vertex.
The graph is then updated until the mutant has reached fixation or extinction. The fixation probability is then
estimated as the average of all the realizations where the mutant succeeded in invading the wild-type.

Results

Structure coefficients for regular graphs
The simplest case of a regular graph is the cycle, for which k = 2. In this case, we find the following exact
expressions for the structure coefficients (S1 Text, Section 1):

ςG0 =
1

2(N − 2)
, ςG1 =

1

2
, ςG2 =

N − 3

2(N − 2)
. (6)

For k ≥ 3, we make use of pair approximation and diffusion approximation, and find that the structure
coefficients for regular graphs of degree k ≥ 3 can be written as (S1 Text, Section 2)

ςGj =
(k − 2)k−1−j

k2(k + 1)(k + 2)

k−1∑
`=0

(k − `)
{[
k2 − `(k − 2)

]
υ`,j,k + [2k + `(k − 2)] τ`,j,k

}
, (7)

where

τ`,j,k =

(
k − 1− `
k − j

)
k − 2

(k − 1)k−1−`
+

(
`

k − 1− j

)
1

(k − 1)`
,

and

υ`,j,k =

(
k − 1− `
k − 1− j

)
1

(k − 1)k−1−`
+

(
`

k − j

)
k − 2

(k − 1)`
.

These expressions are nontrivial functions of the degree of the graph k and thus difficult to interpret. For
instance, for k = 3, we obtain ςG =

(
7

144 ,
31
144 ,

61
144 ,

45
144

)
.

Containment order and promotion of cooperation in multiplayer social dilemmas
The previous results hold for any symmetric multiplayer game with two strategies. To investigate the evolution
of multiplayer cooperation, we label strategy A as “cooperate”, strategy B as “defect”, and assume that,
irrespective of the focal player’s strategy, the payoff of a focal player increases with the number of co-players
that choose to cooperate, i.e.,

aj+1 ≥ aj and bj+1 ≥ bj for all j. (8)

This restriction on the payoffs is characteristic of “cooperation games” in which playing A is beneficial to the
group but might be costly to the individual [47]. Well-known multiplayer games belonging to this large class
of games include different instances of volunteer’s dilemmas [52, 53], snowdrift games [54], stag hunts [55],
and many other instances of public, club, and charity goods games [56].

We are interested in establishing whether graph-structured populations lead to structure coefficients that
make it easier to satisfy the normalized sigma rule (4) than well-mixed populations (the baseline case scenario
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Figure 1. Structure coefficients and containment ordering. Normalized structure coefficients ςj for large
(N →∞) regular graphs of degree k = 5 updated with a Moran death-Birth process (ςG; red squares) and
well-mixed populations with d = 6 (ςW; blue circles). Since ςG − ςW has one sign crossing from − to +,
the graph is greater in the containment order than the well-mixed population (denoted by ςG ≥con ςW).
Consequently, if the sigma rule holds for a well-mixed population, then it also holds for a graph-structured
population for any cooperation game fulfilling condition (8).

of a population with no spatial structure) for any cooperation game satisfying condition (8). In other words,
we ask whether a graph is a stronger promoter of cooperation than a well-mixed population; technically,
this is equivalent to ask whether a graph is greater or smaller than a well-mixed population in the so-called
“containment order” [47]. A simple sufficient condition for this is that the difference in normalized structure
coefficients, ςG − ςW has exactly one sign change from − to + [47]. This can be verified for any N > 3
in the case of cycles (k = 2) by inspection of equations (5) and (6). For large regular graphs of degree
k > 2 and hence multiplayer games with d > 3 players, we checked the condition numerically by comparing
equations (5) and (7) for k = 3, . . . , 100. We find that ςG − ςW always has a sign change from − to + and
hence that regular graphs promote more cooperation than well-mixed populations (Fig. 1).

Examples
Collections of two-player games. As a consistency check, let us consider the case where individuals play
two-player games with their k neighbors and collect the payoffs of the different interactions. The two-player
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game is given by the payoff matrix (A B

A α β
B γ δ

)
. (9)

The payoffs for the resulting multiplayer game, which are just the sum of payoffs of the pairwise games, are
then given by aj = jα+ (k − j)β and bj = jγ + (k − j)δ. The sigma rule (4) can hence be written as

k (β − γ) (α− β + γ − δ)
k∑

j=0

ςGj j > 0. (10)

We can show that (S1 Text, Section 4)

k∑
j=0

ςGj j = E[J ] =
k + 1

2
, (11)

so that condition (10) is equivalent to

(k + 1)α+ (k − 1)β − (k − 1) γ − (k + 1) δ > 0,

i.e., the sigma rule previously established for pairwise games in regular graphs [cf. Eq. (24) in the Supple-
mentary Material of Ref. [14]]. For a pairwise donation game (for which α = B − C, β = −C, γ = B,
δ = 0, where B and C are respectively the benefit and cost of donation) this reduces to the famous B/C > k
rule [7, 14, 16].

Linear games and additive prisoner’s dilemma. Suppose now that aj and bj are both linear functions of
j. We can thus write

aj = −C + B+D
k j,

bj = B
k j,

(12)

for some parameters B, C, and D. When B > C ≥ 0, Eq. (12) can be interpreted in terms of a social dilemma
where strategies A and B correspond to “cooperate” and “defect”, as follows. Cooperators pay each a cost C
in order to provide a benefit B/k to each of their co-players; defectors receive the benefits but pay no cost. In
addition to the benefit B/k, cooperators also get an additional bonus D/k per other cooperator in the group.
This bonus can be positive or negative.

For such linear games, and by making use of Eq. (11), the sigma condition simplifies to

2B +D
B + C >

2k

k + 1
. (13)

When there is no bonus (D = 0) the game is an additive prisoner’s dilemma [57] and we recover the condition

B/C > k. (14)

In the limit of large k, the sigma condition becomes D > 2C.
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Volunteer’s dilemma. As an example of a nonlinear cooperation game, consider the volunteer’s dilemma [52,
58]. In such a game, one volunteer can produce a public good of value B at a personal cost C. Payoffs are
then given by aj = B − C for all j, b0 = 0, and bj = B for j > 0. The sigma condition, Eq. (4), for the
volunteer’s dilemma on a graph reduces to

B/C > 1/ςGk .

For the cycle, we thus find

B/C > 2(N − 2)

N − 3
,

which in the limit of large N reduces to B/C > 2. For large regular graphs of degree k ≥ 3, our approxima-
tions lead to

B/C > (k − 1)2 − (k − 1)1−k

k(k + 1)(k − 2)
.

These conditions contrast with that for a large well mixed population, which is given by B/C > k+ 1 (Fig. 2)
and with that of an additive prisoner’s dilemma on a graph, given by (14).

Suppose now that the cost of producing the public good is shared among volunteers [53]. Payoffs are then
given by aj = B − C/(j + 1), b0 = 0 and bj = B for j > 0. In this case the sigma rule simplifies to

B/C > 1

ςG,k
k

k∑
j=0

ςGj
j + 1

.

This leads to
B/C > 5N − 6

2(N − 2)

in the case of a finite cycle of size N and B/C > 5/2 for a large cycle. Contrastingly, in a well-mixed
population,

B/C >
k∑

j=0

1

j + 1
.

Fig. 2 shows these different critical benefit-to-cost ratios for different values of the degree of the graph k.

Computer simulations
Simulation results are in good agreement with analytical predictions (Fig. 3). Some discrepancies between
the numerical results and the analytical predictions stem from the fact that pair approximation is formulated
for graphs containing no loops such as Cayley trees. As all graphs explored in the simulations but the cycles
(k = 2) do contain loops, such discrepancies are expected. On the other hand, our analytical predictions
appear to be a lower bound as they systematically underestimate the results of the simulations.

Discussion
We provided an analytical approximation for the structure coefficients of a regular graph, which together with
the payoffs from the game determine when a strategy is more abundant than another in the limits of weak
selection and weak mutation. Such condition is valid for any symmetric multiplayer game, including the
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which cooperation is not promoted for the volunteer’s dilemma (VD) without cost sharing (left panel) and
with cost sharing (right panel) on large graphs (red squares) and well-mixed populations (blue circles).
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underestimate the numerical results for larger degree k. The figure also shows that the intersection of the two
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(Population size N = 100, intensity of selection w = 0.01, payoff cost C = 1.0).
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volunteer’s dilemma [52, 53, 58] and other multiplayer social dilemmas discussed in the recent literature [38,
41, 54, 55, 59]. The condition can be used to determine the specific conditions (in terms of the degree of the
graph and the parameters of the game, such as payoff costs and benefits) under which cooperation will thrive.
The structure coefficients also provide a way of comparing the graph with other population structures, such
as the well-mixed population. In particular, we established that a graph updated with a death-Birth process
always promotes cooperation with respect to the baseline scenario of a well-mixed population for a large
class of cooperation games, hence extending previous results on two-player games [7, 14, 16] to the more
general case of multiplayer games.

We assumed that a focal player obtains its payoff from a single multiplayer game with its k immediate
neighbors. This is in contrast with a common assumption of many studies of multiplayer spatial and network
games in which a focal player’s total payoff is the sum of payoffs obtained in k + 1 different games, one
“centered” in the focal player itself and the other k centered in its neighbors [43–45]. As a result, focal players
interact not only with first-order but also with second-order neighbors, which leads to more intricate structure
coefficients. For example, in this case the structure coefficients of a cycle are given by [47, 60]

ςG
∗

0 =
N + 1

3(2N − 3)
, ςG

∗

1 =
2N − 1

3(2N − 3)
, ςG

∗

2 =
N − 3

2N − 3
. (15)

These values are different from those we calculated under the assumption that individuals play a single game
with first-order neighbors, given by Eq. (6). For N > 4, the structure coefficients fulfill ςG ≥con ςG

∗
,

meaning that our assumption of payoffs from a single game leads to more promotion of cooperation. This
observation is in line with previous results for pairwise games on graphs suggesting that the condition for the
evolution of cooperation is optimized when interaction and replacement neighborhoods coincide [61], which
corresponds to our assumption of individuals playing a single game.

We used pair approximation and diffusion approximation to find approximate values for the structure
coefficients, but other approaches can be used to estimate them. In particular, the sigma rule can be written in
terms of selection coefficients (dependent on the payoffs of the game and the demographic parameters of
the model) and expected coalescence times under neutrality [cf. Eq. (24) in Ref. [62]], which would allow
to make use of coalescent theory [63] to obtain exact analytical expressions for the structure coefficients.
However, such expected coalescence times can be difficult to obtain exactly [62, 64]. Alternatively, for small
graphs, the sigma rule and hence the structure coefficients can be explicitly calculated from the transition
matrix of the evolutionary process [cf. Appendix C of Ref. [26]]. Finally, we note that even in cases for which
the structure coefficients are difficult to obtain by purely analytical means, they can be estimated numerically,
either indirectly (by estimating the expected times to coalescence) or directly (by computing and comparing
fixation probabilities).

We modelled social interactions as multiplayer matrix games with two discrete strategies (A and B) and
obtained our results by assuming that selection is weak (w is small). Alternatively, one could model the same
multiplayer game but assume instead that players play two similar mixed strategies z and z + δ, where z
and z + δ refer to the probability of playing A for each strategy, and δ is small [56, 65]. In such “δ-weak
selection” scenario [65,66], and for any number of players, only one structure coefficient is needed to identify
conditions under which a higher probability of playing A is favored by natural selection. For transitive graphs
of size N and degree k, such structure coefficient is given by [7, 25]

σ =
(k + 1)N − 4k

(k − 1)N
.

Exchanging the structure coefficient σ by the “scaled relatedness coefficient” κ of inclusive fitness theory via
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the identity κ = (σ − 1)/(σ + 1) [62], we obtain [16]

κ =
N − 2k

k(N − 2)
.

With such value, recent results on multiplayer discrete games in structured populations under δ-weak
selection [56] can be readily applied to show that, for all cooperation games as we defined them and for a
death-Birth protocol, A is favored over B more easily for a graph-structured population than for a well-mixed
population, as long as N > k + 1. This illustrates a case where predictions using different methodologies
and sets of approximations qualitatively coincide.

To sum up, we have shown that even for multiplayer games on non-trivial graphs, which are routinely
analyzed by simulation only, some analytical insight can be generated. One important message is that the
evolutionary dynamics and the underlying structure cannot be fully disentangled, as both affect the structure
coefficients.

Supporting Information

S1 Text
Supplementary Methods.
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1 Structure coefficients for the cycle (k = 2)
We start by considering the case k = 2, i.e., the cycle. Here the state space of the Markov process is captured
by the number of the mutants. The Moran process on the cycle is a birth-death process, with a tridiagonal
transition matrix as the Moran process in a well-mixed population [1]. Analytical expressions for the fixation
probabilities and hence for the structure coefficients can then be obtained exactly.

In the limit of weak selection and for a death-Birth update rule, we obtain the following expression:

ρA
ρB
≈ 1 +

w

2
{a0 + (N − 2)a1 + (N − 3)a2 − (N − 3)b0 − (N − 2)b1 − b2} .

The condition ρA > ρB is hence given by

(a0 − b2) + (N − 2)(a1 − b1) + (N − 3)(a2 − b0) > 0,

from which we identify the structure coefficients:

σ0 = 1, σ1 = N − 2, σ3 = N − 3.

As we assume N > 3, the structure coefficients are nonnegative. Normalizing the structure coefficients we
obtain the values given by Eq. (6) in the main text.

2 Structure coefficients for regular graphs with k ≥ 3

We obtain the structure coefficients by finding an approximate expression for the comparison of fixation
probabilities, ρA > ρB . To estimate these fixation probabilities, we follow closely the procedure used in
Ref. [2], based on a combination of pair approximation and diffusion approximation.

2.1 Pair approximation
Let us denote by pA and pB the global frequencies of types A and B; by pAA, pAB , pBA and pBB the
frequencies of AA, AB, BA, and BB pairs; and by qX|Y the conditional probability of finding an X-player
given that the adjacent node is occupied by a Y -player, where X and Y stand for A or B. The crucial
assumption of pair approximation is that higher-order of moments can be simply approximated by moments
of pairs. In particular, we assume that the following set of equations:

pA + pB = 1,

qA|X + qB|X = 1,

pXY = qX|Y pY ,

pAB = pBA,

hold, implying that the system can be described by only two variables: pA and pAA. In the following, we
write down the changing rate of pA and pAA under the assumptions of pair approximation. Then, we assume
that selection is weak and that a separation of timescales hold in order to reduce the dimension of the system
of equations. Finally, we employ a diffusion approximation to get the equation that governs the fixation
probabilities.
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2.2 Updating a B-player
A B-player is chosen to die with probability pB ; its k neighbors compete for the vacant vertex proportionally
to their effective payoffs. Denoting by kA and kB the number of A and B players among these k neighbors,
the frequency of such configuration is given by(

k

kA

)
qA|B

kA
(
1− qA|B

)k−kA
.

The effective payoff of each A-player connected by an edge to the dead B-player is given by

fA = 1 + wπB
A ,

where

πB
A =

k−1∑
j=0

(
k − 1

j

)
qA|A

j
(
1− qA|A

)k−1−j
aj

is the average payoff to an A-player with one B co-player and k − 1 other players, each of which has an
independent probability qA|A of playing A.

Likewise, the effective payoff of each B-player connected by an edge to the dead B-player is given by

fB = 1 + wπB
B ,

where

πB
B =

k−1∑
j=0

(
k − 1

j

)
qA|B

j
(
1− qA|B

)k−1−j
bj

is the average payoff to a B-player with one B co-player and k − 1 other players, each of which has an
independent probability qA|B of playing A.

The probability that one of the A-players replaces the vacant spot left by the dead B-player is given by

kAfA
kAfA + kBfB

=
kA
k

+ w
kA(k − kA)

k2
SB +O(w2),

where
SB = πB

A − πB
B .

Hence, the frequency pA of A-players in the population increases by 1/N with probability

Pr

(
∆pA =

1

N

)
= pB

k∑
kA=0

(
k

kA

)
qA|B

kA
(
1− qA|B

)k−kA kAfA
kAfA + kBfB

= pB

{
qA|B + w

k − 1

k
qA|B

(
1− qA|B

)
SB +O(w2)

}
= pAB

{
1 + w

k − 1

k
qB|BSB +O(w2)

}
. (1)
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2.3 Updating an A-player
An A-player is chosen to die with probability pA. There are kA A-players and kB B-players in the neighbor-
hood of the vacant node. The frequency of this configuration is(

k

kA

)
qA|A

kA
(
1− qA|A

)k−kA
.

The effective payoff of each neighboring A-player is

gA = 1 + wπA
A ,

where

πA
A =

k−1∑
j=0

(
k − 1

j

)
qA|A

j
(
1− qA|A

)k−1−j
aj+1

is the average payoff to an A-player with one A co-player and k − 1 other players, each of which has an
independent probability qA|A of playing A.

Likewise, the effective payoff to each neighboring B-player is given by

gB = 1 + wπA
B ,

where

πA
B =

k−1∑
j=0

(
k − 1

j

)
qA|B

j
(
1− qA|B

)k−1−j
bj+1

is the average payoff to a B-player with one A co-player and k − 1 other players, each of which has an
independent probability qA|B of playing A.

The probability that one of the B-players replaces the vacancy is given by

kBgB
kAgA + kBgB

=
kB
k

+ w
kB(k − kB)

k2
SA +O(w2),

where
SA = πA

B − πA
A .

The vacancy is replaced by a B-player and therefore pA decreases by 1/N with probability

Pr

(
∆pA = − 1

N

)
= pA

k∑
kB=0

(
k

kB

)
qA|A

k−kA
(
1− qA|A

)kB kBgB
kAgA + kBgB

= pA

{
qB|A + w

k − 1

k
qA|A

(
1− qA|A

)
SA +O(w2)

}
= pBA

{
1 + w

k − 1

k
qA|ASA +O(w2)

}
. (2)
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2.4 Separation of time-scales
Let us now suppose that one replacement event takes place in one unit of time, so that the time derivative of
pA is given by

ṗA =
1

N
Pr

(
∆pA =

1

N

)
− 1

N
Pr

(
∆pA = − 1

N

)
.

Using Eq. (1) and (2) we obtain, to first order in w:

ṗA =
1

N
pAB

{
1 + w

k − 1

k
qB|BSB

}
− 1

N
pBA

{
1 + w

k − 1

k
qA|ASA

}
=
wpAB

N

k − 1

k
S(pA) (3)

where
S(pA) = qB|BSB + qA|ASA.

The time derivative of pAA is given by (cf. Eq. (12) of the Supplementary Material of Ref. [2])

ṗAA =
2

kN
pAB

[
1 + (k − 1)

(
qA|B − qA|A

)]
+O(w).

For weak selection (w � 1) the local density of players, pAA, equilibrates much more quickly than
the global density, pA. Therefore, the dynamical system rapidly converges onto the slow manifold. Setting
ṗAA = 0 and defining

r =
1

k − 1
,

we obtain

qA|A − qA|B = r,

qB|B − qB|A = r,

and hence

qA|A = pA + r(1− pA) = r + (1− r)pA,
qA|B = (1− r)pA,
qB|A = (1− r)(1− pA),

qB|B = rpA + (1− pA) = r + (1− r)(1− pA).

2.5 Polynomials in Bernstein form
From Eq. (3), ṗA is proportional to

S(pA) = qB|BSB(pA) + qA|ASA(pA)

= [rpA + (1− pA)]SB(pA) + [pA + r(1− pA)]SA(pA), (4)

which is a polynomial of degree k in pA. We find it convenient to write such polynomial in Bernstein form [3].
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To do so, we make use of the following identities:

m∑
j=0

(
m

j

)
[r + (1− r)x]

j
[(1− r)(1− x)]

m−j
cj =

m∑
j=0

(
m

j

)
xj(1− x)m−j

m−j∑
`=0

(
m− j
`

)
r`(1− r)m−j−`cj+`

m∑
j=0

(
m

j

)
[(1− r)x]

j
[1− (1− r)x]

m−j
cj =

m∑
j=0

(
m

j

)
xj(1− x)m−j

j∑
`=0

(
j

`

)
r`(1− r)j−`cj−`

x
m−1∑
j=0

(
m− 1

j

)
xj(1− x)m−1−jcj =

m∑
j=0

(
m

j

)
xj(1− x)m−j

jcj−1
m

,

(1− x)
m−1∑
j=0

(
m− 1

j

)
xj(1− x)m−1−jcj =

m∑
k=0

(
m

j

)
xj(1− x)m−j

(m− j)cj
m

.

where ck−1 = ck+1 = 0.
Applying these to (4) and simplifying, we obtain

S(pA) =

k∑
j=0

(
k

j

)
pjA(1− pA)k−jej ,

where

ej =
rjcj−1 + (k − j)cj + jdj−1 + r(k − j)dj

k
, (5)

and

cj =
∑
`≥0

(
k − 1− j

`

)
r`(1− r)k−1−j−`aj+` −

∑
`≥0

(
j

`

)
r`(1− r)j−`bj−`, (6)

dj =
∑
`≥0

(
k − 1− j

`

)
r`(1− r)k−1−j−`aj+1+` −

∑
`≥0

(
j

`

)
r`(1− r)j−`bj+1−`. (7)

2.6 Diffusion approximation
Within a short interval, ∆t, we have (cf. Eq. (18) in the Supplementary Material of Ref. [2])

E[∆pA] ≈ wpAB

N

k − 1

k
S(pA)∆t ≡ m(pA)∆t

Var[∆pA] ≈ 2

N2
pAB∆t ≡ v(pA)∆t.

The fixation probability, ρA(y) of strategy A with initial frequency pA(t = 0) = y, is governed by the
following differential equation:

m(y)
dρA(y)

dy
+
v(y)

2

d2ρA(y)

dy2
= 0,

with boundary conditions pA(0) = 0 and pA(0) = 1.
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We thus have

ρA(y) =

∫ y

0
Q(x)dx∫ 1

0
Q(x)dx

, (8)

where

Q(x) = exp

(
−
∫ x

2
m(z)

v(z)
dz

)
= exp

(
−Nw(k − 1)

k

∫ x

S(z)dz

)
,

which involves the indefinite integral of S(z). To evaluate this, we make use of the formula for the indefinite
integral of a polynomial in Bernstein form (cf. p. 391 of Ref. [3]), according to which∫ x

S(z)dz =
k+1∑
`=0

(
k + 1

`

)
x`(1− x)k+1−`

(
1

k + 1

`−1∑
k=0

ek

)
+ constant.

Taylor expanding Eq. (8) and assuming that w � 1, we obtain

ρA(y) ≈ y +
wN(k − 1)

k

(
y

∫ 1

0

∫ x

0

S(z)dzdx−
∫ y

0

∫ x

0

S(z)dzdx

)
. (9)

where ∫ 1

0

∫ x

0

S(z)dzdx =
1

(k + 2)(k + 1)

k+1∑
`=0

`−1∑
j=0

ej ,

∫ y

0

∫ x

0

S(z)dzdx =
1

(k + 1)(k + 2)

k+2∑
s=0

(
k + 2

s

)
ys(1− y)k+2−s

s−1∑
q=0

q−1∑
j=0

ej

 , (10)

are obtained by making use of the formula for the definite integral of a polynomial in Bernstein form (cf. p.
391 of Ref. [3]).

If the initial value y = 1/N , i.e., there is only one A-type mutant, and population size N is large, Eq.
(10) can be approximated by

e0
2N2

.
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The fixation probability, Eq. (9), can then be written as

ρA ≈
1

N
+
wN(k − 1)

k

 1

N

1

(k + 2)(k + 1)

k+1∑
`=0

`−1∑
j=0

ej −
e0

2N2


=

1

N
+

w(k − 1)

(k + 2)(k + 1)k

k+1∑
`=0

`−1∑
j=0

ej − (k + 2)(k + 1)
e0
2N


=

1

N
+

w(k − 1)

(k + 2)(k + 1)k

 k∑
`=0

∑̀
j=0

ej − (k + 2)(k + 1)
e0
2N


=

1

N
+

w(k − 1)

(k + 2)(k + 1)k

 k∑
j=0

(k + 1− j)ej − (k + 2)(k + 1)
e0
2N


=

1

N
+

w(k − 1)

(k + 2)(k + 1)k

 k∑
j=1

(k + 1− j)ej + (k + 1)e0

(
1− k + 2

2N

) .

If k � N , then (k + 2)/(2N)� 1 and we finally obtain

ρA ≈
1

N
+

w(k − 1)

(k + 2)(k + 1)k

k∑
j=0

(k + 1− j)ej . (11)

2.7 Sigma rule and structure coefficients

By Eq. (11), the fixation probability of a mutant A is greater than neutral if
∑k

j=0(k + 1 − j)ej > 0.

In the following, we simplify
∑k

j=0(k + 1 − j)ej . By Eq. (5), the coefficients ej are linear in cj and dj .

Furthermore, cj and dj are linear in the payoff entries aj and bj (cf. Eq. (6) and (7)). Thus
∑k

j=0(k+1−j)ej
is also linear in the payoff entries, meaning that there exist αj and βj such that

k∑
j=0

(k + 1− k)ej =
k∑

j=0

(αjaj + βjbj),

and so

ρA ≈
1

N
+

w(k − 1)

(k + 2)(k + 1)k

k∑
j=0

(αjaj + βjbj).

We need to calculate is αj and βj . In particular, for a multiplayer game with only ai = 1 and all the other
entries being zero, we have

k∑
j=0

(k + 1− j)eij = αi.
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Such condition can be written as
k∑

j=0

(k + 1− j)eij =
r

k

k∑
j=0

(k + 1− j)jcij−1 +
1

k

k∑
j=0

(k + 1− j)(k − j)cij

+
1

k

k∑
j=0

(k + 1− j)jdij−1 +
r

k

k∑
j=0

(k + 1− j)(k − j)dij

=
r

k

k∑
j=0

(k − j)(j + 1)cij +
1

k

k∑
j=0

(k + 1− j)(k − j)cij

+
1

k

k∑
j=0

(k − j)(j + 1)dij +
r

k

k∑
j=0

(k + 1− j)(k − j)dij

=
1

k

k−1∑
j=0

(k − j) [r(j + 1) + (k + 1− j)] cij

+
1

k

k−1∑
j=0

(k − j) [(j + 1) + r(k + 1− j)] dij .

Since aj = δi,j and bj = 0 for all j ranging from 0 to k, and by Eq. (6) and (7), we have

cij =

{ (
k−1−j
i−j

)
ri−j(1− r)k−i−1 : j ≤ i

0 : j > i
, dij =

{ (
k−1−j
i−j−1

)
ri−j−1(1− r)k−i : j ≤ i− 1

0 : j > i− 1

and d0j = 0 for every 0 ≤ j ≤ k − 1. Hence

αi =

k∑
j=0

(k + 1− j)eij

=
1

k

k∑
j=0

(k − j) [r(j + 1) + (k + 1− j)]
(
k − 1− j
i− j

)
ri−j(1− r)k−1−i

+
1

k

k∑
j=0

(k − j) [(j + 1) + r(k + 1− j)]
(
k − 1− j
i− j − 1

)
ri−j−1(1− r)k−i.

Similarly, letting the payoff entries be bj = δj,i and aj = 0 leads to

βi = −1

k

k∑
j=0

(k − j) [r(j + 1) + (k + 1− j)]
(

j

j − i

)
rj−i(1− r)i

− 1

k

k∑
j=0

(k − j) [(j + 1) + r(k + 1− j)]
(

j

j − i+ 1

)
rj−i+1(1− r)i−1.

By symmetry, the fixation probability of a single B mutant is given by

ρB ≈
1

N
+

w(k − 1)

(k + 2)(k + 1)k

k∑
k=0

(αjbk−j + βjak−j) .
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Therefore, ρA > ρB is equivalent to

k∑
j=0

(αjaj + βjbj) >
k∑

j=0

(αjbk−j + βjak−j)

or
k∑

j=0

σj (aj − bk−j) > 0.

where
σj = αj − βk−j .

Collecting terms, we finally obtain

σj =
(k − 2)k−1−j

k(k − 1)

k−1∑
`=0

(k − `)
{[
k2 − `(k − 2)

]
υ`,j,k + [2k + `(k − 2)] τ`,j,k

}
,

where

τ`,j,k =

(
k − 1− `
k − j

)
k − 2

(k − 1)k−1−`
+

(
`

k − 1− j

)
1

(k − 1)`
,

υ`,j,k =

(
k − 1− `
k − 1− j

)
1

(k − 1)k−1−`
+

(
`

k − j

)
k − 2

(k − 1)`
.

3 Sum of structure coefficients
The leading order of the fixation probability difference under weak selection can be written as

ρA − ρB ≈ w
(k − 1)

(k + 2)(k + 1)k

k∑
j=0

σj(aj − bk−j). (12)

In particular, this is true for a game with aj = 1 and bj = 0 for all j. The leading order of the fixation
probability difference of this multiplayer game is

ρA − ρB ≈ w
(k − 1)

(k + 2)(k + 1)k

k∑
j=0

σj . (13)

The fixation probability of strategy A is identical to that of the pairwise game

(A B

A 1
k

1
k

B 0 0

)
, (14)

since the accumulated payoff of strategy A is always 1 and that of strategy B is always 0. The same applies to
the fixation probability of strategy B. This is exactly the multiplayer game defined above. For this pairwise
game, we have that (see Eqs. (19) and (21) in the Supplementary Material of Ref. [2])

ρA ≈
1

N
+
w

6k

[
(k2 + 2k + 1)a+ (2k2 − 2k − 1)b− (k2 − k + 1)c− (2k2 + k − 1)d

]
.
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By symmetry:

ρA ≈
1

N
+
w

6k

[
(k2 + 2k + 1)d+ (2k2 − 2k − 1)c− (k2 − k + 1)b− (2k2 + k − 1)a

]
.

Therefore, for the pairwise game described in Eq. (14), we have that

ρA − ρB ≈ w. (15)

Comparing Eqs. (13) and (15), and by the uniqueness of the Taylor expansion, we conclude that

k∑
j=0

σj =
k(k + 1)(k + 2)

k − 1
. (16)

4 A useful identity
If individuals play the pairwise game (A B

A 1 0
B 0 0

)
with each neighbor, then the payoffs for the corresponding multiplayer game in a graph are given by aj = j
and bj = 0. If we consider the difference in fixation probabilities resulting from the pairwise game, and by
Eq. (21) in the Supplementary Material of Ref. [2], we have

ρA − ρB ≈ w
k + 1

2
. (17)

Now consider the difference in fixation probabilities arising from the equivalent multiplayer version.
Replacing the payoffs aj = j and bj = 0 into Eq. (12) leads to

ρA − ρB ≈ w
(k − 1)

(k + 2)(k + 1)k

k∑
i=0

σjj. (18)

Since, by virtue of Eq. (16), the normalized structured coefficients satisfy

ςi =
σi∑
j σj

=
k − 1

(k + 2)(k + 1)k
σi,

Eq. (18) becomes

ρA − ρB ≈ w
k∑

i=0

ςjj. (19)

Comparing Eq. (17) and (19), we hence obtain

k∑
j=0

ςjj =
k + 1

2
.
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