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Abstract 22 

Bacterial genomes vary extensively in terms of both gene content and gene 23 

sequence – this plasticity hampers the use of traditional SNP-based methods for 24 

identifying all genetic associations with phenotypic variation. Here we introduce 25 

a computationally scalable and widely applicable statistical method (SEER) for 26 

the identification of sequence elements that are significantly enriched in a 27 

phenotype of interest. SEER is applicable to even tens of thousands of genomes 28 

by counting variable-length k-mers using a distributed string-mining algorithm. 29 

Robust options are provided for association analysis that also correct for the 30 

clonal population structure of bacteria. Using large collections of genomes of the 31 

major human pathogens Streptococcus pneumoniae and Streptococcus pyogenes, 32 

SEER identifies relevant previously characterised resistance determinants for 33 

several antibiotics and discovers potential novel factors related to the 34 

invasiveness of S. pyogenes. We thus demonstrate that our method can answer 35 

important biologically and medically relevant questions.  36 

  37 
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Introduction 38 

The rapidly expanding repositories of genomic data for bacteria hold an 39 

enormous and yet largely untapped potential for building a more detailed 40 

understanding of the evolutionary responses to changing environmental 41 

conditions, such as the widespread use of antibiotics and switches between host-42 

niche as farming practices change.  43 

 44 

Genome-wide association studies (GWAS) for bacterial phenotypes have only 45 

recently started to appear1–5. Use of standard GWAS methods developed 46 

originally for human SNP data have been shown to be successfully applicable to 47 

core genome mutations in bacteria2,3. However, given the high level of genome 48 

plasticity of many of the known bacterial species, we can anticipate that such 49 

methods can only partially identify genetic determinants of phenotypic variation. 50 

To enable discovery of mechanisms related for instance to gene content, 51 

alternative alignment-free methods have also been introduced1,4. These methods 52 

use k-mers, i.e. DNA words of length k, as generalized alternatives to SNPs as 53 

putative explanations for observed differences in phenotype distributions. The 54 

main advantage of k-mers is their ability to capture several different types of 55 

variation present across a collection of genomes, including mutations, 56 

recombinations, variable promoter architecture, differences in gene content as 57 

well as capturing these variations in regions not present in all genomes.    58 

 59 

The previous study using k-mers to overcome limitations of SNP-based 60 

association used Monte-Carlo simulations of word gain and loss along an 61 

inferred phylogeny to control for population structure1, whereas SNP-based 62 

studies have used clustering algorithms on a core alignment and stratified 63 

association tests on the resulting groups of samples2,3. The former does not scale 64 

computationally to the hundreds of isolates required to find lower effect-size 65 

associations, and the latter requires a core alignment, which lacks sensitivity and 66 

difficult to produce when there is a large number of samples, or they are 67 

particularly diverse. 68 

 69 
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Here we present a sequence element enrichment analysis (SEER), a method 70 

computationally scalable to tens of thousands of genomes, implemented as a 71 

stand-alone pipeline that uses either de novo assembled contigs or raw read data 72 

as input. We apply SEER to both simulated and real data from large and diverse 73 

populations, and show that it can accurately detect associations with antibiotic 74 

resistance caused by both presence of a gene and by SNPs in coding regions, as 75 

well as discover novel invasiveness factors.  76 

 77 

Results 78 

Implementation 79 

SEER implements and combines three key insights which we discuss in turn: an 80 

efficient scan of all possible k-mers with a distributed string mining algorithm, 81 

an appropriate alignment-free correction for clonal population structure, and a 82 

fast and fully robust association analysis of all counted k-mers. 83 

 84 

K-mers allow simultaneous discovery of both short genetic variants and entire 85 

genes associated with a phenotype. Longer k-mers provide higher specificity but 86 

less sensitivity than shorter k-mers. Rather than arbitrarily selecting a length 87 

prior to analysis or having to count k-mers at multiple lengths and combine the 88 

results, we provide an efficient implementation that allows counting and testing 89 

simultaneously at all k-mers at lengths over 9 bases long.  90 

 91 

We offer three different methods to count k-mers in all samples in a study. For 92 

very large studies, or for counting directly from reads rather than assemblies, we 93 

provide an implementation of distributed string mining (DSM)6,7 which limits 94 

maximum memory usage per core, but requires a large cluster to run. For data 95 

sets up to around 5 000 sample assemblies we have implemented a single core 96 

version fsm-lite (https://github.com/nvalimak/fsm-lite). For comparison with 97 

older datasets, or where resources do not allow the storage of the entire k-mer 98 

index in memory, DSK8 is used to count a single k-mer length in each sample 99 

individually, the results of which are then combined. 100 

 101 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 2, 2016. ; https://doi.org/10.1101/038463doi: bioRxiv preprint 

https://doi.org/10.1101/038463
http://creativecommons.org/licenses/by/4.0/


To correct for the clonal population structure of bacterial populations, a distance 102 

matrix is constructed from a random subsample of these k-mers, on which multi-103 

dimensional scaling is performed (Supplementary figure 1). Compared with 104 

modelling SNP variation9, use of k-mers as variable sequence elements has been 105 

previously shown to accurately estimate bacterial population structure. The 106 

projections of each sample in three dimensions are used as covariates to control 107 

for the clonal population structure. Simulations of bacterial genomes using a 108 

known tree showed this method gave a higher resolution control than using only 109 

population clustering (Supplementary figure 2). Before testing for association we 110 

filter k-mers based on their frequency and unadjusted p-value to reduce false 111 

positives from testing underpowered k-mers and reduce computational time. 112 

 113 

Then, for each k-mer, a logistic curve is fitted to binary phenotype data, and a 114 

linear model to continuous data, using a time efficient optimisation routine to 115 

allow testing of all k-mers. Bacteria can be subject to extremely strong selection 116 

pressures, producing common variants with very large effect sizes, such as 117 

antibiotics inducing resistance-conferring variants. This can make the data 118 

perfectly separable, and consequently the maximum likelihood estimate ceases 119 

to exist for the logistic model. Firth regression10 has been used to obtain results 120 

in these cases. 121 

 122 

For the basal cut-off for significance we use p < 0.05, which in our testing we 123 

conservatively Bonferroni corrected to the threshold 1x10-8 based on every 124 

position in the S. pneumoniae genome having three possible mutations11, and all 125 

this variation being uncorrelated. This is a strict cut-off level that prevents a 126 

large number of false-positives due to the extensive amount of k-mers being 127 

tested, but does not over-penalise by correcting directly on the basis of the 128 

number of k-mers counted. Simulations suggested a cut-off of 1.4x10-8 would be 129 

appropriate, supporting this reasoning. Association effect size and p-value of the 130 

MDS components can also be included in the output, to compare lineage and 131 

variant effects on the phenotype variation. 132 

 133 
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K-mers reaching significance are filtered post-association and mapped onto both 134 

a well-annotated reference sequence and the annotated draft assemblies to allow 135 

discovery of variation in accessory genes not present in the reference strain. The 136 

significant k-mers themselves can also be assembled into a longer consensus 137 

sequence. Annotating variants by predicted function and effect (against a 138 

reference sequence) in the resulting k-mers facilitates fine-mapping of SNPs and 139 

small indels. 140 

 141 

Meta-analysis of association studies increases sample size, which improves 142 

power and reduces false-positive rates12. To facilitate meta-analysis of k-mers 143 

across studies, the output of SEER includes effect size, direction and standard 144 

error, which can be used directly with existing software to meta-analyse all 145 

overlapping k-mers. 146 

 147 

SEER is implemented in C++, and available at https://github.com/johnlees/seer 148 

as source code and a pre-compiled binary. 149 

Application to simulated data 150 

To test the power of SEER across different sample sizes, we simulated 3 069 151 

Streptococcus pneumoniae genomes from the phylogeny observed in a Thai 152 

refugee camp13 using parameters estimated from real data including 153 

accumulation of SNPs, indels (Supplementary figure 3), gene loss and 154 

recombination events. Using knowledge of the true alignments, we then 155 

artificially associated an accessory gene with a phenotype over a range of odds-156 

ratios and evaluated power at different sample sizes (Fig. 1a). The expected 157 

pattern for this power calculation is seen, with higher odds-ratio effects being 158 

easier to detect. Currently detected associations in bacteria have had large effect 159 

sizes (OR > 28 host-specificity1, OR > 3 beta-lactam resistance2), and the required 160 

sample sizes predicted here are consistent with these discoveries. 161 

 162 

The large k-mer diversity, along with the population stratification of gene loss, 163 

makes the simulated estimate of the sample size required to reach the stated 164 

power clearly conservative. Convergent evolution along multiple branches of a 165 
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phylogeny for a real population reacting to selection pressures will reduce the 166 

required sample size14. 167 

 168 

We also used k-mers counted at constant lengths by DSK to perform the gene 169 

presence/absence association (Fig. 1b). Counting all informative k-mers rather 170 

than a range of pre-defined k-mer lengths gives greater power to detect 171 

associations, with 80% power being reached at around 1 500 samples, compared 172 

with 2 000 samples required by the pre-defined lengths. The slightly lower 173 

power at low sample numbers is due to a stricter Bonferroni adjustment being 174 

applied to the larger number of DSM k-mers over the DSK k-mers. This is exactly 175 

the expected advantage from including shorter k-mers to increase sensitivity, but 176 

as k-mers are correlated with each other due to evolving along the same 177 

phylogeny, using the same Bonferroni correction for multiple testing does not 178 

decrease specificity. 179 

 180 

The strong linkage disequilibrium (LD) caused by the clonal reproduction of 181 

bacterial populations means that non-causal k-mers may also appear to be 182 

associated. This is well documented in human genetics; non-causal variants tag 183 

the causal variant increasing discovery power, but make it more difficult to fine-184 

map the true link between genotype and phenotype15. In simulations it is difficult 185 

to replicate the LD patterns observed in real populations, as recombination maps 186 

for specific bacterial lineages are not yet known. To evaluate fine-mapping 187 

power of a SNP we instead used the real sequence data and simulated 188 

phenotypes based on changing the effect size of a known causal variant and 189 

evaluating the physical distance of significant k-mers from the variant site. 190 

 191 

Using DSM we counted 68M k-mers which we then tested for association. The 192 

2 639 significant k-mers were placed into three categories if after mapping to a 193 

reference genome they contained the causal variant I100L (10), were within the 194 

same gene (74), or within 2.5kb in either direction (207). Figure 1c) shows the 195 

resulting power when random subsamples of the population are taken. As 196 

expected, power is higher when not specifying that the causal variant must be 197 
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hit, as there are many more k-mers which are in LD with the SNP than directly 198 

overlapping it, thus increasing sensitivity. 199 

Confirmation of known resistance mechanisms in a large population of S. 200 

pneumoniae 201 

SEER was applied to the sequenced genomes from the study described above, 202 

using measured resistance to five different antibiotics as the phenotype: 203 

chloramphenicol, erythromycin, β-lactams, tetracycline and trimethoprim. 204 

Chloramphenicol resistance is conferred by the cat gene on the integrative 205 

conjugative element (ICE) Tn5253 in the S. pneumoniae chromosome, and 206 

similarly tetracycline resistance is conferred by the tetM gene which is also 207 

carried on the ICE16. For both of these drug resistance phenotypes the ICE 208 

contains 99% of the significant k-mers, and the causal genes rank highly within 209 

the clusters (Table 1, Supplementary figure 4). 210 

 211 

Resistance to erythromycin is also conferred by presence of a gene, but there are 212 

multiple genes that can perform the same function (ermB, mef, mel)17. In the 213 

population studied, this phenotype was strongly associated with two large 214 

lineages (Supplementary figure 5), making the task of disentangling association 215 

with a lineage versus a specific locus more difficult. Significant k-mers are found 216 

in the mega and omega cassettes, which carry the mel/mef and ermB resistance 217 

elements respectively. Some k-mers do not map to the reference, as they are due 218 

to lineage specific associations with genetic elements not found in the reference 219 

strain. This highlights both the need to map to a close reference or draft 220 

assembly to interpret hits, as well as the use of functional follow-up to validate 221 

potential hits from SEER. 222 

 223 

Multiple mechanisms of resistance to β-lactams are possible2. Here, we consider 224 

just the most important (i.e. highest effect size) mutations, which are SNPs in the 225 

penicillin binding proteins pbp2x, pbp2b and pbp1a. In this case looking at 226 

highest coverage annotations finds these genes, but is not sufficient as so many 227 

k-mers are significant – either due to other mechanisms of resistance, physical 228 

linkage with causal variants or co-selection for resistance conferring mutations. 229 

Instead, looking at the k-mers with the most significant p-values gives the top 230 
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four hit loci as pbp2b (p=10-132), pbp2x (p=10-96), putative RNA pseudouridylate 231 

synthase UniParc B8ZPU5 (p=10-92) and pbp1a (p=10-89). The non-pbp hit is a 232 

homologue of a gene in linkage disequilibrium with pbp2b, which would suggest 233 

mismapping rather than causation of resistance. 234 

 235 

Trimethoprim resistance in S. pneumoniae is conferred by the SNP I100L in the 236 

folA/dyr gene18. The dpr and dyr genes, which are adjacent in the genome, have 237 

the highest coverage of significant k-mers (Fig. 2). Following our fine-mapping 238 

procedure, we call four high-confidence SNPs that are predicted to be more likely 239 

to affect protein function than synonymous SNPs. One is the causal SNP, and the 240 

others appear to be hitchhikers in LD with I100L. By evaluating whether sites are 241 

conserved across the protein family19, the known causal SNP is ranked as the 242 

highest variant, showing that in this case fine-mapping is possible using the 243 

output from SEER. 244 

 245 

We then compared the results from SEER with the results from two existing 246 

methods (as described in online methods). The first method uses mapping of 247 

SNPs against a reference, followed by applying the Cochran–Mantel–Haenszel 248 

test at every variable site2. The second uses dsk8 to count k-mers of length 31, 249 

and a highly robust correction for population structure which scales to around 250 

100 genomes1. 251 

 252 

The results are shown in supplementary table 1. Both SEER and association of a 253 

core mapping of SNPs identify resistances caused by presence of a gene, when it 254 

is present in the reference used for mapping. Both produce their most significant 255 

p-values in the causal element, though SEER appears to have a lower false-256 

positive rate. However, as demonstrated by chloramphenicol resistance, if not 257 

enough SNP calls are made in the causal gene this hinders fine-mapping. SNP-258 

mediated resistance showed the same pattern since many other SNPs were 259 

ranked above the causal variant. In the case of β-lactam resistance both methods 260 

seem to perform equally well, likely due to the higher rate of recombination and 261 

the creation of mosaic pbp genes. 262 

 263 
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Additionally, as for erythromycin resistance, when an element is not present in 264 

the reference SNPs have been called against it is not detectable in SNP-based 265 

association analysis. In such cases multiple mappings against other reference 266 

genomes would have to be made, which is a tedious and computationally costly 267 

procedure. Alternatively a draft assembly with the phenotype from the study 268 

could be picked as a second reference to map to, however this may be lower 269 

quality than those in public databases picked by genetic content rather than 270 

phenotype, and would not necessarily be able to detect multiple genetic 271 

mechanisms (as in the case of erythromycin resistance, no single sequenced 272 

genome contains all known resistance mechanisms).  273 

 274 

Since the k-mer results from SEER are reference-free, these issues are avoided as 275 

just the significant k-mers can quickly be mapped to all available references. 276 

Alternatively, the significant k-mers can be mapped to all draft assemblies in the 277 

study, at least one of which is guaranteed to contain the k-mer, to check if any 278 

annotations are overlapped. 279 

 280 

For the small sample, 31mer approach significance was not reached for 281 

chloramphenicol, tetracycline or trimethoprim as the effect size of any k-mer is 282 

too small to be detected in the number of samples accessible by the method. 283 

Erythromycin had 19 307 hits, and β-lactams 419 hits, at between 1-2% MAF 284 

which are all false positives that would likely have been excluded by a fully 285 

robust population structure correction method. 286 

Discovery of conjugative elements associated with Streptococcus pyogenes 287 

isolation location and invasiveness 288 

Most bacterial GWAS studies to date have searched for genotypic variants that 289 

contribute towards or completely explain antibiotic resistance phenotypes. As a 290 

proof of principle that SEER can be used for the discovery stage of sequence 291 

elements associated with other clinically important phenotypes, we applied our 292 

tool to 675 S. pyogenes (group A Streptococcus) genomes from invasive and non-293 

invasive isolates.  294 

 295 
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The top hit was the tetM gene in a conjugative transposon (Tn916) carried by 296 

23% of isolates (Supplementary figures 6 and 7). These elements are variably 297 

present in the chromosome of S. pyogenes20, and the lack of co-segregation with 298 

population structure explains our power to discover the association. However, as 299 

a different proportion of the isolates from each collection were invasive (Fiji – 300 

13%; Kilifi – 43%), the significant k-mers will also include elements specific to 301 

Kilifi. Indeed, we found that this version of Tn916 was never present in genomes 302 

collected from Fiji. When country of isolation was included as a covariate in the 303 

regression, these hits were no longer significant – highlighting the importance of 304 

such considerations in performing association studies in large bacterial 305 

populations.  306 

 307 

After applying this correction, we find two significant hits (Supplementary figure 308 

8). The first corresponds to SNPs associating a specific allele of pepF 309 

(Oligoendopeptidase F; UniProt:P54124) with invasive isolates. This could 310 

indicate a recombination event, due to the high SNP density and discordance 311 

with vertical evolution with respect to the inferred phylogeny21,22. The second hit 312 

represents SNPs in the intergenic region upstream of both IgG-binding protein H 313 

and nrdI (ribonucleotide reductase). If this were found to affect expression of the 314 

IgG-binding protein, this would be a plausible novel genetic mechanism affecting 315 

pathogenesis23,24. 316 

 317 

The association of both of these variations would have to be validated either in 318 

vitro or a replication cohort, and functional follow-up such as RNA-seq may also 319 

further help with their interpretation. 320 

 321 

Applying a Cochran-Mantel-Haenszel test to SNPs called against a reference 322 

sequence found no sites significantly associated with invasiveness. The tetM 323 

gene and transposon are not found in the reference sequence, and therefore 324 

cannot be discovered by this method. The population structure is so diverse that 325 

88 different clusters are found, which overcorrects leaving too few samples 326 

within each group to have power to discover associations. 327 
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Discussion 328 

SEER is a reference-independent, scalable pipeline capable of finding bacterial 329 

sequence elements associated with a range of phenotypes while controlling for 330 

clonal population structure. The sequence elements can be interpreted in terms 331 

of protein function using sequence databases, and we have shown that even 332 

single causal variants can be fine-mapped using the SEER output. 333 

 334 

Our use of all informative k-mers together with robust regression methods, and 335 

the ability to analyse very large sample sizes show improved sensitivity over 336 

existing methods. This provides a generic approach capable of analysing the 337 

rapidly increasing number of bacterial whole genome sequences linked with a 338 

range of different phenotypes. The output can readily be used in a meta-analysis 339 

of sequence elements to facilitate the combination of new studies with published 340 

data, increasing both discovery power and confirming the significance of results. 341 

As with all association methods, our approach is limited by the amount of 342 

recombination and convergent evolution that occurs in the observed population, 343 

since the discovery of causal sequence elements is principally constrained by the 344 

extent of linkage disequilibrium. However, by introducing improved 345 

computational scalability and statistical sensitivity SEER significantly pushes the 346 

existing boundaries for answering important biologically and medically relevant 347 

questions. 348 

Online methods 349 

Counting informative k-mers in samples 350 

Over all N samples, all k-mers over 9 bases long that occur in more than one 351 

sample are counted. All non-informative k-mers are omitted from the output; a 352 

k-mer X is not informative if any one base extension to the left (aX) or right (Xa) 353 

has exactly the same frequency support vector as X. The frequency support 354 

vector has N entries, each being the number of occurrences of k-mer X in that 355 

sample. Further filtering conditions are explained in the sections below. 356 

 357 

Distributed string mining (DSM)6,7 parallelises to as much as one sample per 358 

core, and either 16 or 64 master server processes. DSM includes an optional 359 
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entropy-filtering setting that filters the output k-mers based on both number of 360 

samples present and frequency distribution. On our 3 069 simulated genomes 361 

this took 2 hrs 38 min on 16 cores, and used 1Gb RAM. The distributed approach 362 

is applicable up to terabytes of short-read data7, but requires a cluster 363 

environment to run. As an easy-to-use alternative, we propose a single core 364 

version of DSM that is applicable for gigabyte-scale data. We implemented the 365 

single core version based on a succinct data structure library25 to produce the 366 

same output as DSM. On 675 S. pyogenes genomes this took 3hrs 44min and used 367 

22.3Gb RAM. 368 

 369 

To count single k-mer lengths, an associative array was used to combine the 370 

results from DSK in memory. We concatenated results from k-mer lengths of 21, 371 

31 and 41, as in previous studies1. This can scale to large genome numbers by 372 

instead using external sorting to avoid storing the entire array in memory. 373 

Filtering k-mers 374 

K-mers are filtered if either they appear in <1% or >99% of samples, or are over 375 

100 bases long. We also test if the p-value of association in a simple χ2 test (1 376 

d.f.) is less than 10-5, as in simulations this was true for all true positives. In the 377 

case of a continuous phenotype a Welch two-sample t-test is used instead. 378 

Covariates to control for population structure 379 

A random sample of between 0.1% and 1% of k-mers appearing in between 5-380 

95% of isolates is taken. We then construct a pairwise distance matrix D, with 381 

each element being equal to a sum over all m sampled k-mers: 382 

��� � � ���� � ����
�

 

where kim is 1 if the mth sampled k-mer is present in sample i, and 0 otherwise. 383 

 384 

Metric multi-dimensional scaling is then performed, projecting these distances 385 

into three dimensions. The normalised eigenvectors of each dimension are used 386 

as covariates in the regression model. The number of dimensions used is a user-387 

adjustable parameter, and can be evaluated by the goodness-of-fit and the 388 

magnitude of the eigenvalues. In species tree with two lineages and 96 isolates 389 
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one dimension was sufficient as a population control, whereas for the larger 390 

collection of 3069 isolates 10-15 dimensions were needed to give tight control 391 

(Supplementary figure 9). Over all our studies, generally three dimensions 392 

appeared a good trade-off between sensitivity and specificity. 393 

Logistic and linear regression 394 

For samples with binary outcome vector y, for each k-mer a logistic model is 395 

fitted: 396 

log 
 �
� � �
 � �� 

where absence and presence for each k-mer coded as 0 and 1 respectively in 397 

column 2 of the design matrix X (column 1 is a vector of ones, giving an intercept 398 

term). Subsequent columns j of X contain the eigenvectors of the MDS projection, 399 

user-supplied categorical covariates (dummy encoded), and quantitative 400 

covariates (normalised). The BFGS algorithm is used to maximise the log 401 

likelihood L in terms of the gradient vector β (using an analytic expression for 402 

d(log L)/dβ): 403 

log � � � �� �  log �sig������ � �1 � ��� �  log �sig�1 � �����
�

 

where sig is the sigmoid function. If this fails to converge, n Newton-Raphson 404 

iterations are applied to β: 405 

���� � �� � ������������ � ������ 

from a starting point using the mean phenotype as the intercept, and the root-406 

mean squared beta from a test of k-mers passing filtering 407 

��,� � Σ��  

��,�
� � 0.1 

which is slower, but has a higher success rate. If this fails to converge due to the 408 

observed points being separable in the high dimensional space, or the standard 409 

error of the slope is greater than 3 (which empirically indicated almost separable 410 

data, with no counts in one element of the contingency table), Firth logistic 411 

regression10 is then applied. This adds an adjustment to log L: 412 

log ����� � log ���� �  12 � log $���
���

���$ 
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using which Newton-Raphson iterations are applied as above. 413 

 414 

In the case of a continuous phenotype a linear model is fitted: 415 

% � &� 

The squared distance U(β) 416 

'��� �  (� � &�(� 

is minimised using the BFGS algorithm. If this fails to converge then the analytic 417 

solution is obtained by orthogonal decomposition: 418 

& � )* 

then back-solving for β in: 419 

*� � )T� 

 420 

In both cases the standard error on β1 is calculated by inverting the Fisher 421 

information matrix d2L/dβ2 (inversions are performed by Cholesky 422 

decomposition, or if this fails due to the matrix being almost singular the Moore-423 

Penrose pseudoinverse is taken) to obtain the variance-covariance matrix. The 424 

Wald statistic is calculated with the null hypothesis of no association (β1 = 0): 425 

+ �  ��SE���� 

which is the test statistic of a χ2 distribution with 1 d.f. This is equivalent to the 426 

positive tail of a standard normal distribution, the integral of which gives the p-427 

value. To calculate an empirical significance testing cut-off for the p-value under 428 

multiple correlated tests, we observed the distribution of p-values from 100 429 

random permutations of phenotype. Setting the family-wise error rate (FWER) at 430 

0.05 gave a cut-off of 1.4x10-8. 431 

SEER implementation 432 

SEER is implemented in C++ using the armadillo linear algebra library26, and dlib 433 

optimisation library27. On a simulation of 3 069 diverse 0.4Mb genomes, 143M k-434 

mers were counted by DSM and 25M 31-mers by DSK. On the largest DSM set, 435 

using 16 cores and subsampling 300 000 k-mers (0.2% of the total), calculating 436 

population covariates took 6hr 42min and 8.33GB RAM. This step is O(N2M) 437 
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where N is number of samples and M is number of k-mers, but can be 438 

parallelised across up to N2 cores.  439 

 440 

Processing all 143M informative k-mers as described took 69min 44s and 23MB 441 

RAM on 16 cores. This step is O(M) and can be parallelised across up to M cores. 442 

 443 

On the real dataset of full length genomes the 68M informative k-mers counted 444 

was less than the simulated dataset above, as the parameters of the simulation 445 

created particularly diverse final genomes. 446 

Interpreting significant k-mers 447 

K-mers reaching the threshold for significance are then post-association filtered 448 

requiring β1 > 0 as a negative effect size does not make biological sense. 449 

Remaining k-mers are searched for by exact match in their de novo assemblies, 450 

and annotations of features examined for overlap of function. BLAT28 is also used 451 

with a step size of 2 and minimum match size of 15 to find inexact but close 452 

matches to a well annotated reference sequence. 453 

 454 

To better search for gene clusters associated with phenotype, these k-mers are 455 

assembled using Velvet29 choosing a smaller sub-k-mer size which maximises 456 

longest contig length of the final assembly. K-mers which are then substrings of 457 

others significant k-mers are removed. 458 

Mapping of a single SNP 459 

Using the BLAT mapping of significant k-mers to a reference sequence, SNPs are 460 

called using bcftools30. Quality scores for a read are set to be identical, and are 461 

set as the Phred-scaled Holm-adjusted p-values from association. High quality 462 

(QUAL > 100) SNPs are then annotated for function using SnpEff31, and the effect 463 

of missense SNPs on protein function is ranked using SIFT19. 464 

Comparison to existing methods 465 

We compare to two existing methods. The first uses a core-genome SNP mapping 466 

along with population clusters defined from the same alignment to perform a 467 

Cochran-Mantel-Haenszel test at every called variant site2. The second uses a  468 
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fixed k-mer length of 31 as counted by dsk8, with a Monte Carlo phylogeny-based 469 

population control1.  As the second method is not scalable to this population size 470 

we used our population control as calculated from all genomes in the population, 471 

and a subsample of 100 samples to calculate association statistics, which is 472 

roughly the number computationally accessible by this method. In both cases, 473 

the same Bonferroni correction is used as for SEER. 474 

Simulating bacterial populations 475 

A random subset of 450 genes from the Streptococcus pneumoniae ATCC 476 

70066916 strain were used as the starting genome for ALF32. ALF simulated 3069 477 

final genomes along the phylogeny observed in a Thai refugee camp13. An 478 

alignment between S. pneumoniae strains R6, 19F and Streptococcus mitis B6 479 

using Progressive Cactus was used to estimate rates in the GTR matrix and the 480 

size distribution of insertions and deletions (INDELs – Supplementary figure 3). 481 

Previous estimates for the relative rate of SNPs to INDELs33 and the rate of 482 

horizontal gene transfer and loss13 were used. 483 

pIRS34 was used to simulate error-prone reads from genomes at the tips of the 484 

tree, which were then assembled by Velvet29. DSM was used to count k-mers 485 

from these de novo assemblies. 486 

 487 

To test the similarity of the population control to existing methods, 96 full 488 

Streptococcus pneumoniae ATCC 700669 genomes were evolved with ALF. 489 

Intergenic regions were also evolved using Dawg35 at a previously determined 490 

rate36. These were combined, and assemblies generated and k-mers counted as 491 

above. A distance matrix was created from 1% of the k-mers as described above, 492 

and a neighbour-joining tree produced from this. 493 

 494 

The resulting tree was ranked against the true tree by counting one for each pair 495 

of isolates in each BAPS37 cluster which had an isolate not in the same BAPS 496 

cluster as a descendent of their MRCA. 497 

Simulating phenotype based on genotype and odds-ratio 498 

Ratio of cases to controls in the population (SR) was set at 50% to represent 499 

antibiotic resistance, and a single variant (gene presence/absence or a SNP) was 500 
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designated as causal. Minor allele frequency (MAF) in the population is set from 501 

the simulation, and odds-ratio (OR) can be varied. The number of disease cases 502 

DE is then the solution to a quadratic equation38, which is related to probability of 503 

a sample being a case by: 504 

.
case|exposed

 �  /�MAF 

.
case| not exposed

 �  
3�3� � 1 �  /�

1 � MAF  

The population was then randomly subsampled 100 times, with case and control 505 

status assigned for each run using these formulae. Power was defined by the 506 

proportion of runs that had at least one k-mer in the gene associated with 507 

phenotype reaching significance. 508 

Elements enriched in S. pyogenes invasiveness 509 

We sequenced 675 isolates of S. pyogenes on the Illumina HiSeq platform, of 510 

which 347 were from Fiji and 328 were from Kilifi. We defined those isolated 511 

from blood, cerebrospinal fluid (CSF) or broncho-pulmonary aspirate as invasive 512 

(n = 185), and those isolated from throat, skin or urine as non-invasive (n = 490). 513 

Including country as a categorical covariate was necessary, as without doing so 514 

many elements which stratify by isolate collection appear as significant. The 515 

SEER pipeline was run as described, yielding 1233 k-mers which exceeded the 516 

threshold for significance.  517 

 518 

BLAST of the k-mers with the nr/nt database was used to determine a suitable 519 

reference to map to, and after mapping SNPs were called as above. 520 
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Figure Captions 688 

Fig. 1: Using simulations and subsamples of the population as described in the 689 

online methods, power for a) detecting gene presence/absence at different odds-690 

ratios b) using all informative k-mers versus a single length c) detecting k-mers 691 

near, in the correct gene, or containing the causal variant for trimethoprim 692 

resistance. All curves are logistic fits to the mean power over 100 subsamples. 693 

 694 

Fig. 2: Fine mapping trimethoprim resistance. The locus pictured contains 72 695 

significant k-mers, the most of any gene cluster. Coverage over the locus is 696 

pictured at the bottom of the figure. Shown above the genes are high quality 697 

missense SNPs, plotted using their p-value for affecting protein function as 698 

predicted by SIFT. 699 

Figures 700 

Fig. 1  701 

 702 
Fig. 2 703 

 704 
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Tables 705 

 706 

Table 1: Results from SEER for antibiotic resistance binary outcome on a 707 

population of 3069 S. pneumoniae. Significant k-mers are first interpreted by 708 

mapping to the ATCC 700669 reference genome. Up to the first four highest 709 

covered annotations are shown, and if the known mechanism is amongst these it 710 

is highlighted in orange. The ICE is the top hit in three analyses, as it carries 711 

multiple drug-resistance elements and is commonly found in multi-drug 712 

resistant strains16. The distribution of phenotype across the phylogeny is shown 713 

in Supplementary figure 5. 714 

  715 
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Supplementary data 716 

 717 

Supplementary table 1: Comparison of SEER with results from existing 718 

methods in finding genetic associations with antibiotic resistance in the 719 

Chewapreecha et. al. study of 3069 Thai carriage S. pneumoniae samples. For 720 

each of the five antibiotics, the true causal variant is listed, as are the number of 721 

hits passing the significance threshold for each method (plink and dsk) and the 722 

number which map to the correct region. 723 

 724 

725 
  726 
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 727 

Supplementary figure 1: Plot of the k-mer distances projected into three 728 

dimensions by MDS for the Chewapreecha et. al. study of 3069 Thai carriage S. 729 

pneumoniae samples. Shade from black to red is by y-coordinate (2nd MDS 730 

component). 731 
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Supplementary figure 2: a) Tree used for Monte Carlo simulations of 96 S. 733 

pneumoniae genomes. b) UPGMA tree from k-mer distance matrix produced from 734 
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simulated reads. Colours are hierBAPS clusters. 735 

 736 
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 738 

Supplementary figure 3: Estimated size distribution for INDELs, as estimated 739 

from a Progressive Cactus alignment of three members of the Streptococcus 740 

genus. A power law p=Lk (Zipfian function; p is probability, L is INDEL length, k is 741 

a free parameter) is fit to the data, the parameter k is used in the simulations. 742 
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 745 
 746 

Supplementary figure 4: JScandy view of ATCC 700669 reference genome (blue 747 

blocks at top genes on forward and reverse strands) and Manhattan plot of start 748 

positions of the 1 508 of 1 526 k-mers significantly associated with 749 

chloramphenicol resistance which map to the integrative conjugative element 750 

(ICE) Tn5253. The hits are all in within the ICE, and the most significant hits 751 

cluster around the cat gene (which is outlined in red). 752 
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 755 

Supplementary figure 5: Neighbour joining tree from Chewapreecha et. al. 756 

study of 3069 Thai carriage S. pneumoniae samples, from a SNP alignment 757 

produced by mapping to the ATCC 700669 reference strain. Outer ring: red if 758 

resistant to Erythromycin, grey if sensitive. 759 
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 761 
 762 

Supplementary figure 6: JSCandy view of S. pyogenes metadata on the right, 763 

showing whether isolates are invasive/non-invasive (orange/purple), presence 764 

of tetM (orange – absent, purple – present) and country of isolation (orange – 765 

Fiji, purple – Kilifi). Tree from a core genome alignment of all isolates is drawn 766 

on the left, with tips aligned to the metadata.  767 
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 768 
Supplementary figure 7: JScandy view of S. pyogenes HKU488 reference 769 

genome (blue blocks at top genes on forward and reverse strands, tetM 770 

highlighted in red) and Manhattan plot of start positions of k-mers significantly 771 

associated with invasiveness when not adjusted for country of origin.  772 
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 775 

 776 

Supplementary figure 8: As supplementary figure 7, except with the Manhattan 777 

plot showing p-values when adjusted for country of isolation. a) pepF; b) IgG 778 

binding protein H precursor. 779 
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 781 
Supplementary figure 9: Scree plot for the first fifty dimensions of the 96 782 

Listeria monocytogenes isolates (Supplementary figure 2) in red, 3 069 783 

Streptococcus pneumoniae isolates (Supplementary figure 5) in blue, and 675 784 

Streptococcus pyogenes isolates (Supplementary figures 6 and 7) in green. 785 
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