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ABSTRACT 

A model which treats the denatured and the native conformers as being confined to harmonic 

Gibbs energy wells has been used to analyse the non-Arrhenius behaviour of spontaneously-

folding fixed two-state systems. The results demonstrate that when pressure and solvent are 

constant: (i) a two-state system is physically defined only for a finite temperature range; (ii) 

irrespective of the primary sequence, the 3-dimensional structure of the native conformer, the 

residual structure in the denatured state, and the magnitude of the folding and unfolding rate 

constants, the equilibrium stability of a two-state system is a maximum when its denatured 

conformers bury the least amount of solvent accessible surface area (SASA) to reach the 

activated state; (iii) the Gibbs barriers to folding and unfolding are not always due to the 

incomplete compensation of the activation enthalpies and entropies; (iv) the difference in heat 

capacity between the reaction-states is due to both the size of the solvent-shell and the non-

covalent interactions; (v) the position of the transition state ensemble along the reaction 

coordinate (RC) depends on the choice of the RC; and (vi) the atomic structure of the 

transiently populated reaction-states cannot be inferred from perturbation-induced changes in 

their energetics.  
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INTRODUCTION 

It was shown elsewhere, henceforth referred to as Papers I and II, that the equilibrium and 

kinetic behaviour of spontaneously-folding fixed two-state systems can be analysed by a 

treatment that is analogous to that given by Marcus for electron transfer.1-3 In this framework 

termed the parabolic approximation, the Gibbs energy functions of the denatured state 

ensemble (DSE) and the native state ensemble (NSE) are represented by parabolas whose 

curvature is given by their temperature-invariant force constants,  and , respectively. The 

temperature-invariant mean length of the reaction coordinate (RC) is given by m
D-N

 and is 

identical to the separation between the vertices of the DSE and the NSE-parabolas along the 

abscissa. Similarly, the position of the transition state ensemble (TSE) relative to the DSE 

and the NSE are given by m
TS-D(T)

 and m
TS-N(T)

, respectively, and are identical to the 

separation between the curve-crossing and the vertices of the DSE and the NSE-parabolas, 

respectively. The Gibbs energy of unfolding at equilibrium, ΔG
D-N(T)

, is identical to the 

separation between the vertices of the DSE and the NSE-parabolas along the ordinate. 

Similarly, the Gibbs activation energy for folding (ΔG
TS-D(T)

) and unfolding (ΔG
TS-N(T)

) are 

identical to the separation between the curve-crossing and the vertices of the DSE and the 

NSE-parabolas along the ordinate, respectively.  

The purpose of this article is to use the framework described in Papers I and II to analyse the 

non-Arrhenius behaviour of the 37-residue FBP28 WW domain, at an unprecedented range 

and resolution.4  

EQUATIONS 

The expressions for the position of the TSE relative to the vertices of the DSE and the NSE 

Gibbs parabolas are given by 
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where the discriminant  D-N( )φ λ   TG   , and  2

D-Nλ  m  is the Marcus 

reorganization energy for two-state protein folding. The expressions for the activation 

energies for folding and unfolding are given by 

   
 
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T() l (2 fo d) )
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where the parameters 
T(fold)(T) 

( TS-D( ) D-NTm m ) and 
T(unfold)(T)

 ( TS-N( ) D-NTm m ) are 

according to Tanford’s framework.5 The expressions for the rate constants for folding (k
f(T)

) 

and unfolding (k
u(T)

), and ΔG
D-N(T)

 are given by  
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where, k0 is the temperature-invariant prefactor with units identical to those of the rate 

constants (s-1), R is the gas constant, T is the absolute temperature. If the temperature-

dependence of ΔG
D-N(T)

 and the values of , , and m
D-N

 are known for any two-state system 

at constant pressure and solvent conditions (see Methods), the temperature-dependence of 

the curve-crossing relative to the ground states may be readily ascertained. The temperature-

dependence of curve-crossing is central to this analysis since all other parameters can be 

readily derived by manipulating the same using standard kinetic and thermodynamic 

relationships. 
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The activation entropies for folding (ΔS
TS-D(T)

) and unfolding (ΔS
TS-N(T)

) are given by the first 

derivatives of ΔG
TS-D(T)

 and ΔG
TS-N(T) 

functions with respect to temperature 
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where T
S
 is the temperature at which the entropy of unfolding at equilibrium is zero (ΔS

D-N(T)
 

= 0) and ΔC
pD-N

 is the temperature-invariant difference in heat capacity between the DSE and 

the NSE.6 The activation enthalpies for folding (ΔH
TS-D(T)

) and unfolding (ΔH
TS-N(T)

) may be 

readily obtained by recasting the Gibbs equation: ( ) ( ) ( )T T TH G T S     , or from the 

temperature-dependence of k
f(T)

 and k
u(T)

 to give 
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The difference in heat capacity between the DSE and the TSE (i.e., for the partial unfolding 

reaction[ ]TS D ) is given by 

 D-TS( ) TS-D( ) D-N D-N ( )

2
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2φ φ

2p T T p TC m C m T S
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Similarly, the difference in heat capacity between the TSE and the NSE (for the partial 

unfolding reaction [ ]N TS ) is given by 

 TS-N( ) TS-N( ) D-N D

2
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2p T T p TC m C m T S
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The reader may refer to Papers I and II for the derivations. 
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RESULTS AND DISCUSSION 

As mentioned earlier and discussed in sufficient detail in Papers I and II, the analysis we are 

going to perform has an explicit requirement for a minimal experimental dataset which are: 

(i) an experimental chevron obtained at constant temperature, pressure and solvent conditions 

(except for the denaturant); (ii) an equilibrium thermal denaturation curve obtained under 

constant pressure, and in solvent conditions identical to those in which the chevron was 

acquired but without the denaturant, using either calorimetry or spectroscopy; and (iii) the 

calorimetrically determined ΔC
pD-N

 value (i.e., the slope of the linear regression of a plot of 

model-independent ΔH
D-N(Tm)

 vs T
m
, where ΔH

D-N(Tm)
 is the enthalpy of unfolding at the 

midpoint of thermal denaturation, T
m
; see Fig. 4 in Privalov, 1989).7 Fitting the chevron to a 

modified chevron-equation using non-linear regression yields the values of m
D-N

, the force 

constants  and , and the prefactor k0 (k0 is assumed to be temperature-invariant; see 

Methods in Paper I). Fitting a spectroscopic sigmoidal equilibrium thermal denaturation 

curve using standard two-state approximation (van’t Hoff analysis using temperature-

invariant ΔC
pD-N

) yields van’t Hoff  ΔH
D-N(Tm)

 and T
m
 and enables the temperature-

dependence of ΔH
D-N(T)

, ΔS
D-N(T)

 and ΔG
D-N(T)

 functions to be ascertained across a wide 

temperature regime (Eqs. (A1)-(A3), Figure 1 and Figure 1−figure supplement 1).6 Once 

the values of m
D-N

, the force constants, the prefactor, and the temperature dependence of 

ΔG
D-N(T)

 are known, the rest of the analysis is fairly straightforward. The values of all the 

reference temperatures that appear in this article are given in Table 1.  

Temperature-dependence of m
TS-D(T)

 and m
TS-N(T)

 

Substituting the expression for the temperature-dependence of G
D-N(T)

 (Eq. (A3), Figure 1) in 

Eqs. (1) and (2) enables the temperature-dependence of the curve-crossing relative to the 

DSE and the NSE to be ascertained (Figure 2; substituted expressions not shown). Because 

by postulate the force constants, ΔC
pD-N

, and m
D-N

 are temperature-invariant for any given 

primary sequence that folds in a two-state manner at constant pressure and solvent conditions, 

we get from inspection of Eqs. (1) and (2) that the discriminant φ, and   must be a 

maximum when ΔG
D-N(T)

 is a maximum. Because ΔG
D-N(T)

 is a maximum at T
S
 (the 

temperature at which the entropy of unfolding at equilibrium, ΔS
D-N(T)

, is zero),6 a corollary is 
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that φ and   must be a maximum at T
S
; and any deviation in the temperature from T

S
 will 

only lead to their decrease. Consequently, m
TS-D(T)

 and 
T(fold)(T) 

( TS-D( ) D-NTm m ) are always 

a minimum, and m
TS-N(T)

 and 
T(unfold)(T)

 ( TS-N( ) D-NTm m ) are always a maximum at T
S
. This 

gives rise to two further corollaries: Any deviation in the temperature from T
S
 can only lead 

to: (i) an increase in m
TS-D(T)

 and 
T(fold)(T)

; and (ii) a decrease in m
TS-N(T)

 and 
T(unfold)(T)

 

(Figure 2 and Figure 2−figure supplement 1). In other words, when T = T
S
, the TSE is the 

least native-like in terms of the SASA (solvent accessible surface area), and any deviation in 

temperature causes the TSE to become more native-like. A further consequence of m
TS-D(T)

 

being a minimum at T
S
 is that if for a two-state-folding primary sequence there exists a 

chevron with a well-defined linear folding arm at T
S
, then m

TS-D(T)
 > 0 and 

T(fold)(T) 
> 0 for all 

temperatures (Figure 2A and Figure 2−figure supplement 1A). Since the curve-crossing is 

physically undefined for φ < 0 owing to there being no real roots, the maximum theoretically 

possible value of m
TS-D(T)

 will occur when φ = 0 and is given by: 

 TS-D( ) D-N D-N 
max

T T=T T
m m m

 
    where T and T are the temperature limits such that for 

T < T and T > T, a two-state system is not physically defined (see Paper II). Because m
D-N

 = 

m
TS-D(T)

 + m
TS-N(T)

 for a two-state system, and m
D-N

 is temperature-invariant by postulate, the 

theoretical minimum of m
TS-N(T)

 is given by:  TS-N( ) D-N  0
min

T T=T T
m m

 
    . Now, since 

m
TS-N(T)

 is a maximum and positive at T
S
 but its minimum is negative, a consequence is that 

m
TS-N(T)

 = 
T(unfold)(T)

 = 0 at two unique temperatures, one in the ultralow (T
S()

) and the other 

in the high (T
S()

) temperature regime, and negative for T 
 ≤ T < T

S()
 and T

S() 
< T ≤ T 

(Figure 2B and Figure 2−figure supplement 1B). Obviously, m
TS-D(T)

 = m
D-N

 and 
T(fold)(T)

 is 

unity at T
S()

 and T
S()

. To summarize, unlike m
TS-D(T)

 and 
T(fold)(T) 

which are positive for all 

temperatures and a minimum at T
S
,  m

TS-N(T)
 and 

T(unfold)(T) 
are a maximum at T

S
, zero at T

S()
 

and T
S()

, and negative for T 
 ≤ T < T

S()
 and T

S() 
< T ≤ T. 

The predicted Leffler-Hammond shift, which must be valid for any two-state system, is in 

agreement with the experimental data on the temperature-dependent behaviour of other two-

state systems (Table 1 in Dimitriadis et al., 2004; Table 1 in Taskent et al., 2008; Fig. 5C in 

Otzen and Oliveberg, 2004),8-12 with the rate at which the curve-crossing shifts with stability 
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(relative to the vertex of the DSE-parabola) being given by TS-D( ) D-N( ) 1 2T Tm G     . 

Importantly, just as the Leffler-Hammond movement is rationalized in physical organic 

chemistry using Marcus theory,13-15 we can similarly rationalize these effects in protein 

folding using parabolic approximation (Figures 3, 4, and Figure 4−figure supplement 1). 

When T = T
S
, ΔG

TS-D(T)
 is a minimum, and ΔG

D-N(T)
 and ΔG

TS-N(T)
 are both a maximum; and 

any increase or decrease in the temperature relative to T
S
 leads to a decrease in ΔG

TS-N(T)
, and 

an increase in ΔG
TS-D(T)

, consequently, leading to a decrease in ΔG
D-N(T)

 (Figures 1, 3B and 

5). Naturally at T
c
 and T

m
, ΔG

TS-D(T)
 = ΔG

TS-N(T)
, k

f(T)
 = k

u(T)
, and ΔG

D-N(T) 
= 0 (Figure 3C). 

The reason why m
TS-D(T)

 = m
D-N

, and m
TS-N(T)

 = 0 at T
S()

 and T
S()

 is apparent from Figures 

4A, 4C and Figure 4−figure supplement 1A: The right arm of the DSE-parabola intersects 

the vertex of the NSE-parabola leading to    2 2

TS-D TS-( ) ( ) -ND D λT TG m m     , 

 ( )

2

TS-N TS-N( ) 0T TG m   , and ΔG
D-N(T)

 = − λ. Importantly, in contrast to unfolding which 

can become barrierless at T
S()

 and T
S()

, folding is barrier-limited at all temperatures, with 

the absolute minimum of ΔG
TS-D(T)

 occurring at T
S
; and any deviation in the temperature from 

T
S
 will only lead to an increase in ΔG

TS-D(T)
 (Figure 5A). Thus, a corollary is that if folding is 

barrier-limited at T
S
 (i.e., the chevron has a well-defined linear folding arm with a finite slope 

at T
S
), then a protein that folds via two-state mechanism can never spontaneously (i.e., 

unaided by ligands, co-solvents etc.) switch to a downhill mechanism (Type 0 scenario 

according to the Energy Landscape Theory; see Fig. 6 in Onuchic et al., 1997), no matter 

what the temperature, and irrespective of how fast or slow it folds. Although unfolding is 

barrierless at T
S()

 and T
S()

, it is once again barrier-limited for T 
 ≤ T < T

S()
 and T

S() 
< T ≤ 

T, with the curve-crossing occurring to the right of the vertex of the NSE-parabola (Figures 

4A, 4B, Figure 4−figure supplement 1B and 5B), such that  m
TS-D(T)

 > m
D-N

, m
TS-N(T)

 < 0, 


T(fold)(T)

 > 1 and 
T(unfold)(T)

 < 0 (Figure 2 and Figure 2−figure supplement 1). 

To summarize, for any two-state folder, unfolding is conventional barrier-limited for T
S()

 < 

T < T
S()

 and the position of the TSE or the curve-crossing occurs in between the vertices of 

the DSE and the NSE parabolas. As the temperature deviates from T
S
, the SASA of the TSE 

becomes progressively native-like, with a concomitant increase and a decrease in ΔG
TS-D(T)

 

and ΔG
TS-N(T)

, respectively. When T = T
S()

 and T
S()

, the curve-crossing occurs precisely at 
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the vertex of the NSE-parabola, the SASA of the TSE is identical to that of the NSE, and 

unfolding is barrierless; and for T 
 ≤ T < T

S()
 and T

S() 
< T ≤ T, unfolding is once again 

barrier-limited but falls under the Marcus-inverted-regime with the curve-crossing occurring 

on the right-arm of the NSE-parabola, leading to the SASA of the NSE being greater than 

that of the TSE (i.e., the TSE is more compact than the NSE). Importantly, for T < T and T > 

T, the TSE cannot be physically defined owing to φ being mathematically undefined for 

φ 0 . A consequence is that k
f(T)

 and k
u(T)

 become physically undefined, leading to 

 D-N( ) ( ) ( )lnT f T u TG RT k k   being physically undefined, such that all of the conformers will 

be confined to a single Gibbs energy well, which is the DSE, and the protein will cease to 

function.16 Thus, from the view point of the physics of phase transitions, T
α
 ≤ T ≤ T

ω
 denotes 

the coexistence temperature-range where the DSE and the NSE, which are in a dynamic 

equilibrium, will coexist as two distinct phases; and for T < T
α
 and T > T

ω
 there will be a 

single phase, which is the DSE, with T
α
 and T

ω
 being the limiting temperatures for 

coexistence, or phase boundary temperatures from the view point of the DSE.17-23 This is 

roughly analogous to the operating temperature range of a logic circuit such as a 

microprocessor; and just as this range is a function of its constituent material, the physically 

definable temperature range of a two-state system is a function of the primary sequence when 

pressure and solvent are constant, and importantly, can be modulated by a variety of cis-

acting and trans-acting factors (see Paper-I). The limit of equilibrium stability below which a 

two-state system becomes physically undefined is given by:  ) ,D-N(  T T TT
G

 
    . 

Consequently, the physically meaningful range of equilibrium stability for a two-state system 

is given by:  D-N( )  
STG       , where ΔG

D-N(TS)
 is the stability at T

S
 and is apparent 

from inspection of Figure 5−figure supplement 1. This is akin to the stability range over 

which Marcus theory is physically realistic (see Kresge, 1973, page 494).24  

Because by postulate m
D-N

, m
TS-D(T)

 and m
TS-N(T)

 are true proxies for ΔSASA
D-N

, ΔSASA
D-TS(T)

 

and ΔSASA
TS-N(T)

, respectively (see Paper I), we have three fundamentally important 

corollaries that must hold for all two-state systems at constant pressure and solvent 

conditions: (i) the Gibbs barrier to folding is the least when the denatured conformers bury 

the least amount of SASA to reach the TSE (Figure 5−figure supplement 2A); (ii) the Gibbs 

barrier to unfolding is the greatest when the native conformers expose the greatest amount of 
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SASA to reach the TSE (Figure 5−figure supplement 2B); and (iii) equilibrium stability is 

the greatest when the conformers in the DSE are displaced the least from the mean of their 

ensemble along the SASA-RC to reach the TSE (the principle of least displacement; Figure 

5−figure supplement 1). 

Temperature-dependence of the folding, unfolding, and the observed rate 

constants  

Inspection of Figures 6A and Figure 6−figure supplement 1A demonstrates that Eq. (5) 

makes a remarkable prediction that k
f(T)

 has a non-linear dependence on temperature. Starting 

from the lowest temperature (T
α
) at which a two-state system is physically defined, k

f(T) 

initially increases with an increase in the temperature and reaches a maximal value at T = 

T
H(TS-D)

 where 2
( ) TS-D( )ln 0f T Tk T H RT     ; and any further increase in temperature 

beyond this point will cause a decrease in k
f(T)

 until the temperature T is reached, such that 

for T > T, k
f(T) 

is undefined. Inspection of Figures 6B and Figure 6−figure supplement 1B 

demonstrates that the temperature-dependence of k
u(T)

 is far more complex: Starting from T
α
, 

k
u(T) 

increases with temperature for the regime T ≤ T < T
S() 

(the low-temperature Marcus-

inverted-regime), reaches a maximum when T = T
S()

 (k
u(T) 

= k0; the first extremum of k
u(T)

), 

and decreases with further rise in temperature for the regime T
S()

 < T < T
H(TS-N)

 such that 

when T = T
H(TS-N)

, k
u(T) 

is a minimum (the second extremum of k
u(T)

). And for T
H(TS-N)

 < T < 

T
S()

, an increase in temperature will lead to an increase in k
u(T)

, eventually leading to its 

saturation at T = T
S()

 (k
u(T) 

= k0; the third extremum of k
u(T)

), and decreases with further rise 

in temperature for T
S()

 < T ≤ T (the high-temperature Marcus-inverted-regime). Thus, in 

contrast to k
f(T)

 which has only one extremum, k
u(T)

 is characterised by three extrema where 

2
( ) TS-N( )ln 0u T Tk T H RT     , and may be rationalized from the temperature-dependence 

of m
TS-D(T)

 and m
TS-N(T)

, the Gibbs barrier heights for folding and unfolding, and the 

intersection of the DSE and the NSE Gibbs parabolas (Figures 2-5 and their figure 

supplements). We will show in subsequent publications that the inverted behaviour at very 

low and high temperatures is not common to all fixed two-state systems and depends on the 

mean and variance of the Gaussian distribution of the SASA of the conformers in the DSE 

and the NSE. 
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Since the ultimate test of any hypothesis is experiment, the most important question now is 

how well do the calculated rate constants compare with experiment? Although Nguyen et al. 

have investigated the non-Arrhenius behaviour of the FBP28 WW, they find that the 

behaviour of its wild type is erratic, with its folding being three-state for T < T
m
 and two-state 

for T > T
m
 (Fig. 3A in Nguyen et al., 2003). Consequently, non-Arrhenius data for the wild 

type FBP28 WW are lacking. Incidentally, this atypical behaviour is probably artefactual 

since the protein aggregates and forms fibrils under the experimental conditions in which the 

measurements were made (see Figs. 2, 3 and 6 in Ferguson et al., 2003).25,26  Nevertheless, 

data for ΔNΔC Y11R W30F, a variant of FBP28 WW are available between ~ 298 and ~357 

K (Fig. 4A in Nguyen et al., 2003). Now since the relaxation time constants for the fast phase 

of wild type FBP28 WW (~ 30 μs at 39.5 oC and < 15 μs at 65 oC, page 3950, Fig. 3A, 

Nguyen et al., 2003) are very similar to those of ΔNΔC Y11R W30F (~ 28 μs at 40 oC and 11 

μs at 65 oC, page 3952), a reasonable approximation is that the temperature-dependence of 

k
f(T) 

and k
u(T)

 of the wild type and the mutant must be similar. Consequently, the temperature-

dependence of the rate constants for the wild type FBP28 WW calculated using parabolic 

approximation must be very similar to the data for ΔNΔC Y11R W30F reported by Nguyen 

et al. The remarkable agreement between the said datasets is readily apparent from a 

comparison of Fig. 4A of Nguyen et al., and Figure 6−figure supplement 2, and serves an 

important test of the hypothesis.  

Since the temperature-dependence of k
f(T) 

and k
u(T)

 across a wide temperature range is known, 

the variation in the observed rate constant (k
obs(T)

) with temperature may be readily 

ascertained using (see Appendix) 

 
 

 
 

2 2

D-N D-N0 0
obs( 2 2)

      
exp  exp  

φ

  

φ
ln lnT

m m
k k

RT R
k

T

                

 
   
 


  


 

  (14) 

Inspection of Figure 7 demonstrates that ln(k
obs(T)

) vs temperature is a smooth ‘W-shaped’ 

curve, with k
obs(T) 

being dominated by k
f(T)

 around T
H(TS-N)

, and by k
u(T)

 for T <  T
c
 and T > T

m
, 

which is precisely why the kinks in ln(k
obs(T)

) occur around these temperatures. It is easy to 

see that at T
c
 or T

m
, k

f(T) 
= k

u(T) 
 k

obs(T)
 = 2k

f(T) 
= 2k

u(T)
,  D-N( ) ( ) ( )ln 0T f T u TG RT k k   or 

ΔG
TS-D(T)

 = ΔG
TS-N(T)

 (Figures 3C and Figure 7−figure supplement 1). In other words, for a 
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two-state system, T
c
 and T

m
 determined at equilibrium must be identical to the temperatures 

at which k
f(T)

 and k
u(T) 

intersect. This is a consequence of the principle of microscopic 

reversibility, i.e., the equilibrium and kinetic stabilities must be identical for a two-state 

system at all temperatures.27 It is precisely for this reason that the value of the prefactor in the 

Arrhenius expressions for the rate constants must be identical for both the folding and the 

unfolding reactions at all temperatures (Eqs. (5) and (6)). The steep increase in k
obs(T)

 for T < 

T
c
 and T > T

m
 is due to the ΔG

TS-N(T)
 approaching zero as described earlier. The argument that 

the shapes of the curves must be conserved across two-state systems applies not only to the 

temperature-dependence of m
TS-D(T)

, m
TS-N(T)

, ΔG
TS-D(T)

 and ΔG
TS-N(T)

 described so far, but to 

the rest of the state functions that will be described in this article (see Paper-I). 

An important conclusion that we may draw from these data is the following: Because we 

have assumed a temperature-invariant prefactor and yet find that the kinetics are non-

Arrhenius, it essentially implies that one does not need to invoke a super-Arrhenius 

temperature-dependence of the configurational diffusion constant to explain the non-

Arrhenius behaviour of proteins.28-32 Instead, as long as the enthalpies and the entropies of 

unfolding/folding at equilibrium display a large variation with temperature, and equilibrium 

stability is a non-linear function of temperature, both k
f(T)

 and k
u(T)

 will have a non-linear 

dependence on temperature. This leads to two corollaries: (i) since the large variation in 

equilibrium enthalpies and entropies of unfolding, including the pronounced curvature in 

ΔG
D-N(T)

 of proteins with temperature is due to the large and positive ΔC
pD-N

, “non-Arrhenius 

kinetics can be particularly acute for reactions that are accompanied by large changes in the 

heat capacity”; and (ii) because the change in heat capacity upon unfolding is, to a first 

approximation, proportional to the change in SASA that accompanies it, and since the change 

in SASA upon unfolding/folding increases with chain-length,33,34 “non-Arrhenius kinetics, in 

general, can be particularly pronounced for large proteins, as compared to very small 

proteins and peptides.”  

Temperature-dependence of activation enthalpies 

Inspection of Figure 8 demonstrates that for the partial folding reaction [ ]D TS : (i) ΔH
TS-

D(T) 
> 0 for T ≤ T < T

H(TS-D)
; (ii) ΔH

TS-D(T) 
< 0 for T

H(TS-D) 
< T ≤ T; and (iii) ΔH

TS-D(T) 
= 0 for 

T = T
H(TS-D)

. Thus, the activation of the denatured conformers to the TSE is enthalpically: (i) 
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unfavourable for T ≤ T < T
H(TS-D)

; (ii) favourable for T
H(TS-D) 

< T ≤ T; and (iii) neutral when 

T = T
H(TS-D)

. Consequently, at T
H(TS-D)

, ΔG
TS-D(T) 

is purely due to the difference in entropy 

between the DSE and the TSE (ΔG
TS-D(T) 

= –TΔS
TS-D(T)

) with k
f(T) 

being given by 

(TS-D)

(TS-D) (TS-D)

T ( )S-D TS-D( ) D-N 0 0
( ) exp exp ln

φH

H H

T p S

T
T T

T
f T T

T T

S m C T
k k

R TR
k


 

      
         

  (15) 

Because k
f(T)

 is a maximum at T
H(TS-D)

 ( ( )ln 0f Tk T   ),  a corollary is that “for a two-state 

folder at constant pressure and solvent conditions, if the prefactor is temperature-invariant, 

then k
f(T)

 will be a maximum when the Gibbs barrier to folding is purely entropic.” This 

statement is valid only if the prefactor is temperature-invariant. Now since ΔG
TS-D(T)

 > 0 for 

all temperatures (Figure 5A and Table 1), it is imperative that ΔS
TS-D(T)

 < 0 at T
H(TS-D)

 (see 

activation entropy for folding).   

Unlike the ΔH
TS-D(T)

 function which changes its algebraic sign only once across the entire 

temperature range over which a two-state system is physically defined, the behaviour of 

ΔH
TS-N(T)

 function is far more complex (Figure 9): (i) ΔH
TS-N(T)  

> 0 for T  
≤  T < T

S()
 and 

T
H(TS-N)

 < T < T
S()

; (ii) ΔH
TS-N(T) 

< 0 for T
S()

 < T < T
H(TS-N)

 and T
S()

 < T  ≤ T; and (iii) 

ΔH
TS-N(T) 

= 0 at  T
S()

, T
H(TS-N)

, and  T
S()

. Consequently, we may state that the activation of 

native conformers to the TSE is enthalpically: (i) unfavourable for T  
≤  T < T

S()
 and T

H(TS-N)
 

< T < T
S()

; (ii) favourable for T
S()

 < T < T
H(TS-N)

 and T
S()

 < T  ≤ T; and (iii) neutral at  T
S()

, 

T
H(TS-N)

, and T
S()

. If we reverse the reaction-direction, the algebraic signs invert leading to a 

change in the interpretation. Thus, for the partial folding reaction[ ]TS N , the flux of the 

conformers from the TSE to the NSE is enthalpically: (i) favourable for T  
≤ T < T

S()
 and 

T
H(TS-N)

 < T < T
S()

 (ΔH
N-TS(T) 

< 0); (ii) unfavourable for T
S()

 < T < T
H(TS-N)

 and T
S()

 < T ≤ T 

(ΔH
N-TS(T) 

> 0); and (iii) neither favourable nor unfavourable at  T
S()

, T
H(TS-N)

, and  T
S()

 

(Figure 9−figure supplement 1A). Note that the term “flux” implies “diffusion of the 

conformers from one reaction state to the other on the Gibbs energy surface,” and as such is 

an “operational definition.”  

Importantly, although ( ) TS-N( )ln 0 0u T Tk T H      at T
S()

, T
H(TS-N)

, and T
S()

, the 

behaviour of the system at T
S() 

and T
S()

 is distinctly different from that at T
H(TS-N)

: While 



Page 14 of 129 
 

m
TS-N(T) 

= ΔG
TS-N(T) 

= ΔH
TS-N(T) 

= ΔS
TS-N(T)

 = 0, m
TS-D(T) 

= m
D-N

, ΔG
TS-D(T)

 = ΔG
N-D(T)

 = λ, and 

k
u(T) 

= k0 at T
S() 

and T
S() 

(note that if both ΔG
TS-N(T) 

and ΔH
TS-N(T) 

are zero, then ΔS
TS-N(T)

 

must also be zero, see activation entropies), k
u(T) 

is a minimum (k
u(T) 

<< k0) with the Gibbs 

barrier to unfolding being purely entropic (ΔG
TS-N(T) 

= –TΔS
TS-N(T)

) at T
H(TS-N)

. Consequently, 

we may write 

 
(TS-N )

(TS-N) (TS-N)

T ( )S-N TS-N( ) D-N 0 0
( ) exp exp ln

φH

H H

T p

T
ST T

T
u T T

T T

S m C T
k k

R TR
k


 

      
         

   (16) 

Thus, a corollary is that “for two-state system at constant pressure and solvent conditions, if 

the prefactor is temperature-invariant, then k
u(T) 

will be a minimum when the Gibbs barrier to 

unfolding is purely entropic.” Since ΔG
TS-N(T)

 > 0 at T
H(TS-N)

 (Figure 5B and Table 1), it is 

imperative that ΔS
TS-N(T)

 be negative at T
H(TS-N)

 (see activation entropy for unfolding).  

The criteria for two-state folding from the viewpoint of enthalpy are the following: (i) the 

condition that D-N( ) TS-N( ) TS-D( )  T T TH H H    must be satisfied at all temperatures; (ii) the 

intersection of ΔH
TS-D(T) 

and ΔH
TS-N(T) 

functions calculated directly from the temperature-

dependence of the experimentally determined k
f(T)

 and k
u(T)

, respectively, must be identical to 

the independently estimated T
H
 from equilibrium thermal denaturation experiments; and (iii) 

the condition that T
H(TS-N)

 < T
H
 < T

S
 < T

H(TS-D)
 must be satisfied. A corollary of the last 

statement is that both ΔH
TS-D(T) 

and ΔH
TS-N(T) 

functions must be positive at the point of 

intersection. These aspects are readily apparent from Figure 9−figure supplement 1B and 

Figure 9−figure supplement 2. 

Temperature-dependence of activation entropies 

Inspection of Figure 10 shows that for the partial folding reaction [ ]D TS , ΔS
TS-D(T) 

which 

is positive at low temperature, decreases in magnitude with an increase in temperature and 

becomes zero at T
S
, where the SASA of the TSE is the least native-like, ΔG

TS-D(T)
 is a 

minimum ( TS-D( ) TS-D( ) 0T TG T S     ) and ΔG
D-N(T) 

is a maximum (

D-N( ) D-N( ) 0T TG T S     ; Figures 1, 2, 5A, Figure 10−figure supplements 1 and 2); 

and any further increase in temperature beyond this point causes ΔS
TS-D(T) 

to become 
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negative. Thus, the activation of denatured conformers to the TSE is entropically: (i) 

favourable for T 
≤ T < T

S
; (ii) unfavourable for T

S
 < T ≤ T; and (iii) neutral when T = T

S
. At 

T
S
 the Gibbs barrier to folding is purely due to the difference in enthalpy between the DSE 

and the TSE with k
f(T)

 being given by 

TS-D( ) TS-D( )0 0
( ) exp exp

S

S S

T T

T
T T

f T T
T T

G H
k k

RT RT
k


 

    
    

 


 
    (17) 

Inspection of Figure 11 demonstrates that the behaviour of the ΔS
TS-N(T)

 function is far more 

complex than the ΔS
TS-D(T)

 function: (i) ΔS
TS-N(T)  

> 0 for T 
≤ T < T

S()
 and T

S
 < T < T

S()
; (ii) 

ΔS
TS-N(T) 

< 0 for T
S()

 < T < T
S
 and   T

S() 
< T ≤ T; and (iii) ΔS

TS-N(T) 
= 0 at T

S()
, T

S
, and T

S()
. 

Consequently, we may state that the activation of native conformers to the TSE is 

entropically: (i) favourable for T 
≤ T < T

S()
 and T

S
 < T < T

S()
; (ii) unfavourable for T

S()
 < T 

< T
S
 and   T

S() 
< T ≤ T; and (iii) neutral at T

S()
, T

S
, and T

S()
. If we reverse the reaction-

direction (Figure 11−figure supplement 1A), the algebraic signs invert leading to a change 

in the interpretation. Consequently, we may state that for the partial folding reaction 

[ ]TS N , the flux of the conformers from the TSE to the NSE is entropically: (i) 

unfavourable for T  
≤ T < T

S()
 and T

S
 < T < T

S()
 (ΔS

N-TS(T) 
< 0); (ii) favourable for T

S()
 < T 

< T
S
 and T

S()
 < T ≤ T (ΔS

N-TS(T) 
> 0); and (iii) neutral at T

S()
, T

S
, and T

S()
. 

At T = T
S
, the Gibbs barrier to unfolding is purely due to the difference in enthalpy between 

the TSE and the NSE (ΔG
TS-N(T)

= ΔH
TS-N(T)

) with k
u(T)

 being given by 

TS-N( ) TS-N( )0 0
( ) exp exp

S

S S

T T

T
T T

u T T
T T

G H
k k

RT RT
k


 

    
    

 


 
    (18) 

Although ΔS
TS-N(T)

 = 0  S
TS(T)

 = S
N(T) 

at T
S()

, T
S
, and T

S()
, the underlying thermodynamics 

is fundamentally different at T
S
 as compared to T

S()
 and T

S()
. While both ΔG

TS-N(T)
 and m

TS-

N(T)
 are positive and a maximum,  and ΔG

TS-N(T)
 is purely enthalpic at T

S
 (ΔG

TS-N(T)
 = ΔH

TS-

N(T)
), at T

S()
 and T

S() 
we have m

TS-N(T)
 = 0  2

TS-N( ) TS-N( ) TS-N( )0 0T T TG m H       , 

and ΔG
N-D(T)

 = ΔG
TS-D(T)

 = λ; and because ΔG
TS-N(T)

 = 0 at  T
S()

 and T
S()

, the rate constant 

for unfolding will reach an absolute maximum for that particular solvent and pressure at these 
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two temperatures. To summarize, while at T
S
 we have G

TS(T)
 >> G

N(T)
, S

D(T)
 = S

TS(T)
 = S

N(T)
, 

and k
u(T)

 << k0, when T = T
S()

 and T
S()

,
 
we have G

TS(T)
 = G

N(T)
, H

TS(T)
 = H

N(T)
, S

TS(T)
 = S

N(T)
, 

and k
u(T)

 = k0 (Figure 11−figure supplements 2 and 3). Thus, a fundamentally important 

conclusion that we may draw from these relationships is that “if two reaction-states on the 

folding pathway of a two-state system have identical SASA and Gibbs energy under identical 

environmental conditions, then their absolute enthalpies and entropies must be identical.” 

This must hold irrespective of whether or not the two reaction-states have identical, similar or 

dissimilar structures. We will revisit this scenario when we discuss the heat capacities of 

activation and the inapplicability of the Hammond postulate to protein folding reactions. 

The criteria for two-state folding from the viewpoint of entropy are the following: (i) the 

condition that D-N( ) TS-N( ) TS-D( )  T T TS S S    must be satisfied at all temperatures; (ii) the 

intersection of ΔS
TS-D(T) 

and ΔS
TS-N(T) 

functions calculated directly from the slopes of the 

temperature-dependent shift in the curve-crossing relative to the DSE and the NSE, 

respectively, must be identical to the independently estimated T
S
 from equilibrium thermal 

denaturation experiments (Figure 11−figure supplements 1B, 4 and 5); and (iii) both ΔS
TS-

D(T) 
and ΔS

TS-N(T) 
functions must independently be equal to zero at T

S
. 

Temperature-dependence of the Gibbs activation energies 

Although the general features of the temperature-dependence of ΔG
TS-D(T)

 and ΔG
TS-N(T)

 were 

described earlier (Figure 5 and its figure supplements), it is instructive to discuss the same in 

terms of their constituent enthalpies and entropies.  

The determinants of ΔG
TS-D(T) 

in terms of its activation enthalpy and entropy may be readily 

deduced by partitioning the entire temperature range over which the two-state system is 

physically defined (T
α
 ≤ T ≤ T

ω
) into three distinct regimes using four unique reference 

temperatures: T, T
S
, T

H(TS-D)
, and T (Figure 12 and Figure 12−figure supplement 1). (1) 

For T ≤ T < T
S
, the activation of conformers from the DSE to the TSE is entropically 

favoured (TΔS
TS-D(T) 

> 0) but is more than offset by the endothermic activation enthalpy 

(ΔH
TS-D(T) 

> 0), leading to incomplete compensation and a positive ΔG
TS-D(T) 

(

TS-D( ) TS-D( ) 0T TH T S    ). When T = T
S
, ΔG

TS-D(T) 
is a minimum (its lone extremum), and is 

purely due to the endothermic enthalpy of activation ( TS-D( ) TS-D( ) 0T TG H    ). (2) For T
S
 < 
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T < T
H(TS-D)

, the activation of denatured conformers to the TSE is enthalpically and 

entropically disfavoured (ΔH
TS-D(T) 

> 0 and TΔS
TS-D(T)

< 0) leading to a positive ΔG
TS-D(T)

. (3) 

In contrast, for T
H(TS-D) 

< T ≤ T, the favourable exothermic activation enthalpy (ΔH
TS-D(T) 

<  

0) is more than offset by the unfavourable entropy of activation (TΔS
TS-D(T)

 <  0), leading 

once again to a positive ΔG
TS-D(T)

. When T = T
H(TS-D)

, ΔG
TS-D(T) 

is purely due to the negative 

change in the activation entropy or the negentropy of activation ( TS-D( ) TS-D( ) 0T TG T S     ), 

TS-D( )TG T is a minimum, and k
f(T)

 is a maximum (their lone extrema; see Massieu-Planck 

functions below). An important conclusion that we may draw from these analyses is the 

following: While it is true that for the temperature regimes T ≤ T < T
S
 and T

H(TS-D) 
< T ≤ T, 

ΔG
TS-D(T)

 is due to the incomplete compensation of the opposing activation enthalpy and 

entropy, this is clearly not the case for T
S
 < T < T

H(TS-D)
 where both these two state functions 

are unfavourable and complement each other to generate a positive Gibbs activation barrier.  

Similarly, the determinants of ΔG
TS-N(T) 

in terms of its activation enthalpy and entropy may be 

readily divined by partitioning the entire temperature range into five distinct regimes using 

six unique reference temperatures: T, T
S()

, T
H(TS-N)

, T
S
, T

S()
, and T (Figure 13 and Figure 

13−figure supplement 1). (1) For T 
≤ T < T

S()
, which is the ultralow temperature Marcus-

inverted-regime for unfolding, the activation of the native conformers to the TSE is 

entropically favoured (TΔS
TS-N(T) 

> 0) but is more than offset by the unfavourable enthalpy of 

activation (ΔH
TS-N(T) 

> 0) leading to incomplete compensation and a positive ΔG
TS-N(T)

 (

TS-N( ) TS-N( ) 0T TH T S    ). When T = T
S()

, ΔS
TS-N(T) 

= ΔH
TS-N(T)

 = 0  ΔG
TS-N(T)

 = 0. The 

first extrema of ΔG
TS-N(T)

 and TS-N( )TG T (which are a minimum), and the first extremum of 

k
u(T)

 (which is a maximum, k
u(T)

 = k0) occur at T
S()

. (2) For T
S() 

< T < T
H(TS-N)

, the activation 

of the native conformers to the TSE is enthalpically favourable (ΔH
TS-N(T)

 < 0) but is more 

than offset by the unfavourable negentropy of activation (TΔS
TS-N(T)

 < 0) leading to ΔG
TS-N(T)

 

> 0. When T = T
H(TS-N)

, ΔH
TS-N(T)

 = 0 for the second time, and the Gibbs barrier to unfolding 

is purely due to the negentropy of activation ( TS-N( ) TS-N( ) 0T TG T S     ). The second 

extrema of TS-N( )TG T (which is a maximum) and k
u(T)

 (which is a minimum) occur at T
H(TS-

N)
. (3) For T

H(TS-N) 
< T < T

S
, the activation of the native conformers to the TSE is entropically 

and enthalpically unfavourable (ΔH
TS-N(T)

 > 0 and TΔS
TS-N(T)

 < 0) leading to ΔG
TS-N(T)

 > 0. 
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When T = T
S
, ΔS

TS-N(T)
 = 0 for the second time, and the Gibbs barrier to unfolding is purely 

due to the endothermic enthalpy of activation ( TS-N( ) TS-N( ) 0T TG H    ). The second 

extremum of ΔG
TS-N(T)

 (which is a maximum) occurs at T
S
. (4) For T

S
 < T < T

S()
, the 

activation of the native conformers to the TSE is entropically favourable (TΔS
TS-N(T)

 > 0) but 

is more than offset by the endothermic enthalpy of activation (ΔH
TS-N(T)

 > 0) leading to 

incomplete compensation and a positive ΔG
TS-N(T)

. When T = T
S()

, ΔS
TS-N(T) 

= ΔH
TS-N(T)

 = 0 

for the third and the final time, and ΔG
TS-N(T)

 = 0 for the second and final time. The third 

extrema of ΔG
TS-N(T)

 and TS-N( )TG T (which are a minimum), and the third extremum of k
u(T)

 

(which is a maximum, k
u(T)

 = k0) occur at T
S()

. (5) For T
S()

< T ≤ T, which is the high-

temperature Marcus-inverted-regime for unfolding, the activation of the native conformers to 

the TSE is enthalpically favourable (ΔH
TS-N(T)

 < 0) but is more than offset by the 

unfavourable negentropy of activation (TΔS
TS-N(T)

 < 0), leading to ΔG
TS-N(T)

 > 0. Once again 

we note that although the Gibbs barrier to unfolding is due to the incomplete compensation of 

the opposing enthalpies and entropies of activation for the temperature regimes T 
≤ T < T

S()
, 

T
S() 

< T < T
H(TS-N)

, T
S
 < T < T

S()
, and T

S()
< T ≤ T, both the enthalpy and the entropy of 

activation are unfavourable and collude to generate the Gibbs barrier to unfolding for the 

temperature regime T
H(TS-N) 

< T < T
S
. Thus, a fundamentally important conclusion that we 

may draw from this analysis is that “the Gibbs barriers to folding and unfolding are not 

always due to the incomplete compensation of the opposing enthalpy and entropy.” 

In a protein folding scenario where the activated conformers diffuse on the Gibbs energy 

surface to reach the NSE, the algebraic signs of the state functions invert leading to a change 

in the interpretation (Figure 13−figure supplements 2 and 3). Thus, for the partial folding 

reaction[ ]TS N : (1) For T 
≤ T < T

S()
, the flux of the conformers from the TSE to the 

NSE is entropically disfavoured (TΔS
TS-N(T) 

> 0  TΔS
N-TS(T) 

< 0) but is more than 

compensated by the favourable change in enthalpy (ΔH
TS-N(T) 

> 0  ΔH
N-TS(T)  

< 0 ), leading 

to ΔG
N-TS(T)

 < 0. (2) For T
S() 

< T < T
H(TS-N)

, the flux of the conformers from the TSE to the 

NSE is enthalpically unfavourable (ΔH
TS-N(T)

 < 0  ΔH
N-TS(T)

 > 0) but is more than 

compensated by the favourable change in entropy (TΔS
TS-N(T)

 < 0  TΔS
N-TS(T)

 > 0) leading 

to ΔG
N-TS(T)

 < 0. When T = T
H(TS-N)

, the flux is driven purely by the positive change in 
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entropy ( N-TS( ) N-TS( ) 0T TG T S     ). (3) For T
H(TS-N) 

< T < T
S
, the flux of the conformers 

from the TSE to the NSE is entropically and enthalpically favourable (ΔH
N-TS(T)

 < 0 and 

TΔS
N-TS(T)

 > 0) leading to ΔG
N-TS(T)

 < 0. When T = T
S
, the flux is driven purely by the 

exothermic change in enthalpy ( N-TS( ) N-TS( ) 0T TG H    ). (4) For T
S
 < T < T

S()
, the flux of 

the conformers from the TSE to the NSE is entropically unfavourable (TΔS
TS-N(T)

 > 0  

TΔS
N-TS(T)

 < 0) but is more than compensated by the exothermic change in enthalpy (ΔH
TS-N(T)

 

> 0  ΔH
N-TS(T)

 < 0) leading to ΔG
N-TS(T) 

< 0. (5) For T
S()

< T ≤ T, the flux of the 

conformers from the TSE to the NSE is enthalpically unfavourable (ΔH
TS-N(T)

 < 0  ΔH
N-

TS(T)
 > 0) but is more than compensated by the favourable change in entropy (TΔS

TS-N(T)
 < 0 

 TΔS
N-TS(T)

 > 0), leading to ΔG
N-TS(T)

 < 0.   

Thus, the criteria for two-state folding from the viewpoint of Gibbs energy are the following: 

(i) the condition that D-N( ) TS-N( ) TS-D( )  T T TG G G    must be satisfied at all temperatures; (ii) 

the cold and heat denaturation temperatures estimated from equilibrium thermal denaturation 

must be identical to independently determined temperatures at which k
f(T) 

and k
u(T)

 are 

identical, i.e., the temperatures at which ΔG
TS-D(T) 

and ΔG
TS-N(T)

 functions intersect must be 

identical to the temperatures at which ΔH
D-N(T)

 – TΔS
D-N(T)

= ΔG
D-N(T) 

 = 0. The basis for these 

relationships, as mentioned earlier, is the principle of microscopic reversibility;27 (iii) ΔG
TS-

D(T) 
and ΔG

TS-N(T)
 must be a minimum and a maximum, respectively, at T

S
; and (iv) the 

condition that T
H(TS-N)

 < T
H
 < T

S
 < T

H(TS-D)
 must be satisfied. A far more detailed explanation 

in terms of chain and desolvation entropies and enthalpies is given in the accompanying 

article. 

Massieu-Planck functions 

The Massieu-Planck function, ΔG/T, or its equivalent lnKR (K is the equilibrium constant) 

predates the Gibbs energy function by a few years and is especially useful when analysing 

temperature-dependent changes in protein behaviour (see Schellman, 1997, on the use of 

Massieu-Planck functions to analyse protein folding, and why the use of ΔG versus T curves 

can sometimes lead to ambiguous conclusions).6,35 Comparison of Figure 6−figure 

supplement 1A and Figure 14A demonstrates that although ΔG
TS-D(T) 

is a minimum at T
S
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(Figure 5A), k
f(T)

 will be a maximum not at T
S
 but instead at T

H(TS-D)
 where the Massieu-

Planck activation potential for folding ( TS-D( ) TS-D( ) lnT TKT RG   ) is a minimum, and is 

readily apparent if we recast the Arrhenius expression for k
f(T)

 in terms of the equilibrium 

constant for the partial folding reaction [ ]D TS . 

0
( ) expf T

R
k

T
k


 TS-D( )ln TK

RT
0

TS-D( )Tk K
 
  
 

      (19) 

Eq. (19) shows that the rate determining K
TS-D(T) 

([TS]/[D]) or the population of activated 

conformers relative to those that nestle at the bottom of the denatured Gibbs energy well is a 

maximum not at T
S
 but at T

H(TS-D) 
(Figure 14−figure supplement 1A). Similarly, comparison 

of Figure 6−figure supplement 1B and Figure 14B shows that although ΔG
TS-N(T) 

is a 

maximum at T
S
 (Figure 5B), the minimum in k

u(T)
 will occur not at T

S
 but instead at T

H(TS-N)
 

where the Massieu-Planck activation potential for unfolding ( TS-N( ) TS-N( ) lnT TKT RG   ) is 

a maximum (Eq. (20)). 

0
( ) expu T

R
k

T
k


 TS-N( )ln TK

RT
0

TS-N( )Tk K
 
  
 

      (20) 

Thus, for the partial unfolding reaction [ ]N TS , the rate determining K
TS-N(T) 

([TS]/[N]) or 

the population of activated conformers relative to those at the bottom of the native Gibbs 

basin is a minimum not at T
S
 but at T

H(TS-N)
 (Figure 14−figure supplement 1B). Similarly, 

we see that although the ΔG
N-D(T)

 is a minimum or the most negative at T
S 

(Figure 1−figure 

supplement 1), K
N-D(T)

 ([N]/[D]) is a maximum not at T
S
 but at T

H
 where ΔH

N-D(T)
= 0 and 

( ) ( )f T u Tk k is a maximum (Figure 14−figure supplement 2A).6 Because the ratio of the 

solubilities of any two reaction-states is identical to the equilibrium constant, we may state 

that for any two-state folder at constant pressure and solvent conditions: (i) the solubility of 

the TSE as compared to the DSE is the greatest when the Gibbs barrier to folding is purely 

entropic, and this occurs precisely at T
H(TS-D)

 (Figure 14−figure supplement 3A); (ii) the 

solubility of the TSE as compared to the NSE is the least when the Gibbs barrier to unfolding 

is purely entropic and occurs precisely at T
H(TS-N)

 (Figure 14−figure supplement 3B); (iii) 

the solubilities of the TSE and the NSE are identical at T
S()

 and T
S()

where ΔS
TS-N(T) 

= ΔH
TS-
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N(T)
 = ΔG

TS-N(T)
 = 0, and k

u(T)
 = k0 (Figure 14−figure supplement 3B); and (iv) the solubility 

of the NSE as compared to the DSE is the greatest when the net flux of the conformers from 

the DSE to the NSE is driven purely by the difference in entropy between these two reaction-

states and occurs precisely at T
H  

(Figure 14−figure supplement 2B). The notion that 

“certain aspects of the temperature-dependent protein behaviour are greatly simplified when 

the Massieu-Planck functions are used in preference to the Gibbs energy” is readily apparent 

from inspection of Figure 14−figure supplements 4 and 5: While the natural logarithms of 

k
f(T)

 and k
u(T)

 have a complex dependence on their respective Gibbs barriers, a simple linear 

relationship exists between the rate constants and their respective Massieu-Planck functions.  

Temperature-dependence of ΔC
pD-TS(T)

 and ΔC
pTS-N(T)

 

In order to provide a rational explanation for the temperature-dependence of the ΔC
pD-TS(T) 

and ΔC
pTS-N(T)

 functions, it is instructive to first discuss the inter-relationships between 

ΔSASA
D-N

, m
D-N

, and ΔC
pD-N

. According to the “liquid-liquid transfer” model (LLTM) the 

greater heat capacity of the DSE as compared to the NSE (i.e., ΔC
pD-N

 > 0 and substantial) is 

predominantly due to anomalously high heat capacity and low entropy of water that 

surrounds the exposed non-polar residues in the DSE (referred to as “microscopic icebergs” 

or “clathrates”; see references in Baldwin, 2014).36 Because the size of the solvation shell 

depends on the SASA of the non-polar solute, it naturally follows that the change in the heat 

capacity must be proportional to the change in the non-polar SASA that accompanies a 

reaction. Consequently, protein unfolding reactions which are accompanied by large changes 

in non-polar SASA lead to large and positive changes in the heat capacity.33,37,38 Because the 

denaturant m values are also directly proportional to the change in SASA that accompanies 

protein unfolding reactions, the expectation is that m
D-N

 and ΔC
pD-N

 values must also be 

proportional to each other: The greater the m
D-N

 value, the greater is the ΔC
pD-N

 value and 

vice versa (Figs. 2, 3 and 5 in Myers et al., 1995). However, since the residual structure in the 

DSEs of proteins under folding conditions is both sequence and solvent-dependent (i.e., the 

SASAs of the DSEs two proteins of identical chain lengths but dissimilar primary sequences 

need not necessarily be the same even under identical solvent conditions),39,40  and because 

we do not yet have reliable theoretical or experimental methods to accurately quantify the 

SASA of the DSEs of proteins under folding conditions (i.e., the values are model-

dependent),41-43 the data scatter in plots that show correlation between the experimentally 
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determined m
D-N

 or ΔC
pD-N

 values (which reflect the true ΔSASA
D-N

) and the calculated 

values of ΔSASA
D-N

 can be significant (Fig. 2 in Myers et al., 1995, and Fig. 3 in Robertson 

and Murphy, 1997). Now, since the solvation shell around the DSEs of large proteins is 

relatively greater than that of small proteins even when the residual structure in the DSEs 

under folding conditions is taken into consideration, large proteins on average expose 

relatively greater amount of non-polar SASA upon unfolding than do small proteins; 

consequently, both m
D-N

 and ΔC
pD-N

 values also correlate linearly with chain-length, albeit 

with considerable scatter since chain length, owing to the residual structure in the DSEs, is 

unlikely to be a true descriptor of the SASA of the DSEs of proteins under folding conditions 

(note that the scatter can also be due to certain proteins having anomalously high or low 

number of non-polar residues).  The point we are trying to make is the following: Because the 

native structures of proteins are relatively insensitive to small variations in pH and co-

solvents,44 and since the number of ways in which foldable polypeptides can be packed into 

their native structures is relatively limited (as inferred from the limited number of protein 

folds, see SCOP: www.mrc-lmb.cam.ac.uk and CATH: www.cathdb.info databases), one 

might find a reasonably good correlation between chain lengths and the SASAs of the NSEs 

of proteins of differing primary sequences under varying solvents (Fig. 1 in Miller et al., 

1987).45,46 However, since the SASAs of the DSEs under folding conditions, owing to 

residual structure are variable, until and unless we find a way to accurately simulate the DSEs 

of proteins, and if and only if these theoretical methods are sensitive to point mutations, 

changes in pH, co-solvents, temperature and pressure, it is almost impossible to arrive at a 

universal equation that will describe how the ΔSASA
D-N

 under folding conditions will vary 

with chain length, and by logical extension, how m
D-N

 and ΔC
pD-N

 will vary with SASA or 

chain length. Nevertheless, if we consider a single two-state-folding primary sequence under 

constant pressure and solvent conditions and vary the temperature, and if the properties of the 

solvent are temperature-invariant (for example, no change in the pH due to the temperature-

dependence of the pK
a
 of the constituent buffer), then the manner in which the ΔC

pD-TS(T) 
and 

ΔC
pTS-N(T)

 functions vary with temperature must be consistent with the temperature-

dependence of m
TS-D(T)

 and m
TS-N(T)

, respectively, and by logical extension, with ΔSASA
D-

TS(T)
 and ΔSASA

TS-N(T)
, respectively. 

Inspection of Figures 15 and Figure 15−figure supplements 1, 2 and 3 demonstrate that: (i) 

both ΔC
pD-TS(T) 

and ΔC
pTS-N(T)

 vary with temperature; and (ii) their gross features stem 
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primarily from the second derivatives of the temperature-dependence of the curve-crossing 

with respect to the DSE and the NSE. The prediction that the change in heat capacities for the 

partial unfolding reactions, [ ]N TS  and[ ]TS D , must vary with temperature is due to 

Eqs. (12) and (13). Although this may not be readily apparent from a casual inspection of the 

equations, even a cursory examination of Figures 8 and 9 shows that it is simply not possible 

for ΔC
pD-TS(T) 

and ΔC
pTS-N(T)

 functions to be temperature-invariant since the slopes of the 

ΔH
TS-D(T)

 and the ΔH
TS-N(T)

 functions are continuously changing with temperature. If we 

recall that the force constants are temperature-invariant, it becomes readily apparent that the 

second terms in the brackets on the right-hand-side (RHS) of Eqs. (12) and (13) i.e., 

 D-N

2

( )TT S  and  D-N

2

( )TT S  , respectively, will be parabolas with a minimum (zero) at 

T
S
. This is due to ΔS

D-N(T)
 being negative for T < T

S
, positive for T > T

S
, and zero for T = T

S
. 

Furthermore, since  φ, φ and m
TS-N(T)

 are a maximum, and m
TS-D(T)

 a minimum at T
S
,  the 

expectation is that ΔC
pD-TS(T)

 must be a minimum (or ΔC
pTS-D(TS)

 is the least negative), and 

ΔC
pTS-N(T)

 must be a maximum at T
S
. Thus, for T = T

S
, Eqs. (12) and (13) become 

TS-D( ) D-N
D-TS

TS-N TS-N( )

TS-N( ) D-N D-TS TS-D( )
T

(

S-N

)

( )

( )
( )

φ
0

φ
S S

S

T

T

T T T T T
T

T

T p
p

p T

T p

T

p T
p

m C
C

C m

m C C m
C  



  
        
 








  (21) 

The prediction that the extrema of ΔC
pD-TS(T)

 and ΔC
pTS-N(T)

 functions must occur at T
S
 is 

readily apparent from Figure 15 and Figure 15−figure supplement 1B. Importantly, 

consistent with the relationship between m
D-N

 and ΔC
pD-N

 values, comparison of these two 

figures with Figure 2 and Figure 2−figure supplement 1 demonstrates that just as m
TS-D(T)

 

and m
TS-N(T)

 are a minimum and a maximum at T
S
, respectively, so too are ΔC

pD-TS(T)
and 

ΔC
pTS-N(T)

 functions. This leads to two obvious corollaries: (i) the difference in heat capacity 

between the DSE and the TSE is a minimum when the difference in SASA between the DSE 

and the TSE is a minimum; and (ii) the difference in heat capacity between the TSE and the 

NSE is a maximum when the difference in SASA between the TSE and the NSE is a 

maximum. Because ΔS
TS-D(T)

 = ΔS
TS-N(T) 

= 0, ΔG
TS-D(T)

 is a minimum, and both ΔG
TS-N(T)

 and 

ΔG
D-N(T) 

are a maximum, at T
S 

(Figures 1, 5 and Figure 11−figure supplement 1B), a 

fundamentally important conclusion is that the Gibbs barriers to folding and unfolding are a 
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minimum and a maximum, respectively, and equilibrium stability is a maximum, and are all 

purely enthalpic when ΔC
pD-TS(T)

 and ΔC
pTS-N(T)

 are a minimum and a maximum, respectively. 

Inspection of Figure 15 and Figure 15−figure supplement 1 demonstrates that unlike ΔC
pD-

TS(T) 
which is positive across the entire temperature range, ΔC

pTS-N(T)
 which is a maximum and 

positive at T
S
, decreases with any deviation in temperature from T

S
, and is zero at T

CpTS-N()
 

and T
CpTS-N()

; consequently, ΔC
pTS-N(T)

 < 0 for T ≤ T < T
CpTS-N()

 and T
CpTS-N() 

< T  ≤ T. 

The reason for this behaviour is apparent from inspection of Figures 9 and 11: The slope of 

the ΔH
TS-N(T) 

and ΔS
TS-N(T)

 functions becomes zero at T
CpTS-N()

 and T
CpTS-N()

; and any further 

decrease or increase in temperature, respectively, causes the slope to invert. This can be 

mathematically shown as follows: Since m
TS-N(T)

 = 0 at T
S()

 and  T
S()

, we have D-Nφ m 

and  D N

2

-φ m   at T
S()

 and  T
S()

. Substituting these relationships in Eq. (13) leads to 

 
( ) ( )

( ) ( )( ) ( )

2

D-N D-N( ) D-N( )
TS-N( ) ,

D-

2

N
,,

22φ φS S

S SS S

T

T T
p T T T

T TT TTT

m T S ST
C

m 

  





  
   


   

(22) 

Further, since D-N D-TS( ) TS-N( )p p T p TC C C    for a two-state system, we have 

( ) ( )

( ) ( )

2

D-N( )
D-TS( ) D-N D-N,

D-N
,

2S S

S S

T
p T p pT T

T T

T

T

ST
C C C

m 

 





 
   


 

     (23) 

Because ΔC
pTS-N(T)

 < 0 at T
S()

 and T
S()

, and the lone extremum of ΔC
pTS-N(T)

 (which is 

algebraically positive and a maximum) occurs at T
S
, it implies that there will be two unique 

temperatures at which ΔC
pTS-N(T)

 = 0, one in the low temperature (T
CpTS-N()

) such that T
S() 

< 

T
CpTS-N()

 < T
S
, and the other in the high temperature regime (T

CpTS-N()
) such that T

S
 < T

CpTS-

N()
 < T

S()
. Thus, at the these two unique temperatures T

CpTS-N()
 and T

CpTS-N()
, we have 

ΔC
pD-TS(T)

 = ΔC
pD-N

  
H(fold)(T)

 = 1 and 
H(unfold)(T) 

= 0; and for the temperature regimes T 
≤ 

T < T
CpTS-N() 

and T
CpTS-N() 

< T ≤ T, we have ΔC
pD-TS(T)

 > ΔC
pD-N

  
H(fold)(T)

 > 1, and 

ΔC
pTS-N(T)

 < 0  
H(unfold)(T) 

< 0 (see heat capacity RC below for the definition of 
H(fold)(T)

 and 


H(unfold)(T)

). 
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Although the prediction that ΔC
pTS-N(T)  

must approach zero at very low and high temperatures 

may not be readily verified by experiment for the low-temperature regime owing to technical 

difficulty in making a measurement, the prediction for the high-temperature regime is 

strongly supported by the data on CI2 from the Fersht lab: Despite the temperature-range not 

being substantial (320 to 340 K), and the data points that define the ΔH
TS-N(T) 

function being 

sparse (7 in total), it is apparent even from a cursory inspection that it is clearly non-linear 

with temperature (Fig. 5B in Tan et al., 1996).47 Although Fersht and co-workers have fitted 

the data to a linear function and reached the natural conclusion that the heat capacity of 

activation for unfolding is temperature-invariant, they nevertheless explicitly mention that if 

the non-linearity of ΔH
TS-N(T) 

were given due consideration, and the data are fit to an 

empirical-quadratic instead of a linear function, ΔC
pTS-N(T) 

indeed becomes temperature-

dependent and is predicted to approach zero at ~ 360 K (see text in page 382 in Tan et al., 

1996).47 Now, since  ΔC
pTS-N(T) 

> 0 and a maximum, and ΔC
pD-TS(T)

 is a minimum and positive 

at T
S
, and decrease and increase, respectively, with any deviation in temperature from T

S
, and 

since ΔC
pTS-N(T) 

becomes zero at T
CpTS-N()

 and T
CpTS-N()

, the obvious mathematical 

consequence is that ΔC
pD-TS(T)

 and ΔC
pTS-N(T)

 functions must intersect at two unique 

temperatures. Because at the points of intersection we have the relationship:

D-TS( ) TS-N( ) D-N 2p T p T pC C C    , a consequence is that ΔC
pTS-N(T) 

must be positive at the 

said temperatures, with the low-temperature intersection occurring between T
CpTS-N()

 and T
S
, 

and the high-temperature intersection between T
S
 and T

CpTS-N()
. This is readily apparent from 

inspection of Figure 15−figure supplement 1B: Both ΔC
pD-TS(T)

 and ΔC
pTS-N(T)

 are identical 

at 214.1 K and 345.9 K. An equivalent interpretation is that at these temperatures, the 

absolute heat capacity of the TSE is exactly half the algebraic sum of the absolute heat 

capacities of the DSE and the NSE. As we shall show in subsequent publications, the 

intersection of various state functions is a source of interesting relationships that may be used 

as constraints in simulations (see also Figure 9−figure supplement 2). 

The position of the TSE along the heat capacity RC 

Inspection and comparison of Figure 2−figure supplement 1 and Figure 15−figure 

supplement 1B demonstrates that although the manner in which the ΔC
pD-TS(T)

 and ΔC
pTS-N(T)

 

functions vary with temperature is consistent with the relationship between m
D-N

 and ΔC
pD-N
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values, there is nevertheless an intriguing anomaly that is at odds with the LLTM for heat 

capacity. If we consider the partial folding reaction [ ]D TS , it is readily apparent from 

these figures that although the denatured conformer diffuses > ~ 70% along the normalized 

SASA-RC to reach the TSE for 240 K < T < 320 K, ΔC
pD-TS(T)

 << ΔC
pTS-N(T) 

throughout this 

regime. Conversely, if we consider the total unfolding reaction N D , a large fraction of 

ΔC
pD-N

 is accounted for not by the second-half of the unfolding reaction ([ ]TS D ) but by 

the first-half ( [ ]N TS ), despite the native conformer diffusing less than ~30% along the 

SASA-RC to reach the TSE. To put things into perspective, we will need to normalize the 

heat capacities of activation. Adopting Leffler’s framework for the relative sensitivities of the 

activation and equilibrium enthalpies in response to a perturbation in temperature,48 we may 

write 

TS-D( ) TS-D( ) D-TS( )
H(fold)( )

N-D( ) N-D D-N

T p T p T
T

T p p

T

T

H C C

H C C

 
 

  


  

      (24) 

TS-N( ) TS-N( )
H(unfold)( )

D-N( ) D-N

T p T
T

T p

H C

H C

T

T

 






 


 

      (25) 

where 
H(fold)(T)

= 
S(fold)(T)

 and 
H(unfold)(T)

 = 
S(unfold)(T)

 (see Paper-II) are classically interpreted 

to be a measure of the position of the TSE along the heat capacity RC.49 Naturally, for a two-

state system the algebraic sum of 
H(fold)(T) 

and 
H(unfold)(T)

 is unity. Recasting Eqs. (24) and 

(25) in terms of (12) and (13) gives 

 

 

H(fold)( ) TS-D( ) D-N D-N D-N( )

D-N

D-N
T(fold)( ) D-N D-N( )

2

D

2

-N

φ
2φ φ

φ

2

2
2φ φ

T T p T

p

T p T

p

m C m T S
C

m
C T S

C

        




        


   (26) 

 

 

H(unfold)( ) TS-N( ) D-N D-N D-N( )

D-N

D-N
T(unfold)( ) D-N D-N( )

D-N

2

2

2

2

φ
2φ φ

φ
2φ φ

T T p T

p

T p T

p

m C m T S
C

m
C T S

C

        

        

   (27) 

When T = T
S
, ΔS

D-N(T)
 = 0  and Eqs. (26) and (27) reduce to    
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TS-D( ) T(fold)( ) D-N
H(fold)( )

φ φS

S S

T T
T T T

T T T T

m m


 

 
        (28) 

TS-N( ) T(unfold)( ) D-N
H(unfold)( )

φ φS

S S

T T
T T T

T T T T

m m


 

 
        (29) 

As explained earlier, because ΔC
pD-N

 is temperature-invariant by postulate, and ΔC
pD-TS(T) 

is a 

minimum, and ΔC
pTS-N(T)

 is a maximum at T
S
, 

H(fold)(T)  
and 

H(unfold)(T)  
are a minimum and a 

maximum, respectively, at T
S
. How do 

H(fold)(T)
 and 

H(unfold)(T)
 compare with their 

counterparts, 
T(fold)(T)

 and 
T(unfold)(T)

? This is important because a statistically significant 

correlation exists between m
D-N

 and ΔC
pD-N

, and both these two parameters independently 

correlate with ΔSASA
D-N

. Recasting Eqs. (28) and (29) gives 

H(fold)( ) S(fold)( ) D-N

T(fold)( ) T(fold)( )

1
φ

SS S

T T

T T T TT T T T

m

 

  
  

 
      (30) 

H(unfold)( ) S(unfold)( ) D-N

T(unfold)( ) T(unfold)( )

1
φ

SS S

T T

T T T TT T T T

m

 

  
  

 
     (31) 

Since m
TS-N(T)

 > 0 and a maximum, and m
TS-D(T)

 > 0 and a minimum, respectively, at T
S
, it is 

readily apparent from inspection of Eqs. (1) and (2) that D-Nφ m   and D-N φm   at T
S
. 

Consequently, we have: T(fold)( ) H(fold)( )
S S

T TT T T T 
   and T(unfold)( ) H(unfold)( )

S S
T TT T T T 

   .  

In agreement with the predictions of Eqs. (30) and (31), inspection of Figure 16 demonstrates 

that although the denatured conformer advances by > ~ 70% along the SASA-RC to reach the 

TSE when T = T
S
, it accounts for < ~20% of the total change in ΔC

pD-N
 (i.e., 

T(fold)( ) H(fold)( )
S S

T TT T T T 
   ), with the rest of the change (> ~ 80%) in heat capacity coming 

from a mere ~ 30% diffusion of the activated conformer along the SASA-RC to reach the 

bottom of the native Gibbs basin (i.e., T(unfold)( ) H(unfold)( )
S S

T TT T T T 
   ). The theoretical 

prediction that 
T(fold)(T) 

> 
H(fold)(T)

 across a substantial temperature range is supported by the 

finding by Gloss and Matthews (1998) that the position of the TSE relative to the DSE along 
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the heat capacity RC is consistently lower than the same along the SASA-RC (see also page 

178 in Bilsel and Matthews, 2000, and references therein).50,51 

Now, if we accept the long held premise that the greater heat capacity of the DSE as 

compared to the NSE is purely or predominantly due to structured water around the exposed 

non-polar residues in the DSE, then the only way we can explain why ΔC
pD-TS(T)

 << ΔC
pTS-

N(T)
 despite 

T(fold)(T) 
> ~70% for the partial folding reaction [ ]D TS is that the non-polar 

SASA of both the DSE and the TSE are very similar at T
S
. Because it is physically near-

impossible for the denatured conformer to advance by > ~ 70% along the SASA-RC to reach 

the TSE, and yet keep the non-polar SASA fairly constant such that ΔC
pD-TS(T)

 is just about 

20% of ΔC
pD-N

, the natural conclusion is that “the large and positive difference in heat 

capacity between the DSE and the NSE cannot be only due to the clathrates of water 

molecules around exposed non-polar residues in the DSE.”38,52-54 This brings us to two 

studies on the heat capacities of proteins, one by Sturtevant almost four decades ago, and the 

other by Lazaridis and Karplus.55,56 While Sturtevant identified six possible sources of heat 

capacity which are: (i) the hydrophobic effect; (ii) electrostatic charges; (iii) hydrogen bonds; 

(iv) conformational entropy; (v) intramolecular vibrations; and (vi) changes in equilibria, and 

concluded that the most important of these are the hydrophobic, conformational and 

vibrational effects, Lazaridis and Karplus concluded from their molecular dynamics 

simulations on truncated CI2 that the heat capacity can have a significantly large and a 

positive contribution from intra-protein non-covalent interactions. What these two studies 

essentially imply is that when the pressure and solvent properties are defined and 

temperature-invariant, the ability of the conformers in a protein reaction-state to absorb 

thermal energy and yet resist an increase in temperature is dependent on: (i) its molecular 

structure; and (ii) the size and the character of its molecular surface (i.e., the relative 

proportion of polar and non-polar SASA). While the first variable determines the capacity of 

the reaction-state to absorb thermal energy and distribute it across its various internal modes 

of motion (the vibrational, rotational, and to some extent, the translational entropy from 

elements such as the N and C-terminal regions, loops etc. that can flap around in the solvent), 

the second variable determines not only the size and thickness of the solvent shell but also 

how tightly or loosely the solvent molecules are bound to the protein surface and to 

themselves (i.e., the dynamics of water in the solvation shell as compared to bulk water; see 

Fig. 1 in Frauenfelder et al., 2009), and by extension, the amount of excess thermal energy 



Page 29 of 129 
 

needed to disrupt the solvent shell as the reaction-states interconvert due to thermal 

noise.36,52,57-61  Further discussion on the determinants of heat capacity is beyond the scope of 

this article and will be addressed elsewhere.  

On the inapplicability of the Hammond postulate to protein folding 

Although it is difficult to provide a detailed physical explanation for the temperature-

dependence of the heat capacities of activation without deconvoluting the activation 

enthalpies and entropies into their constituent chain and desolvation enthalpies and entropies 

(shown in the accompanying article), it is instructive to give one extreme example to 

emphasize why both the solvent shell and the non-covalent interactions make a significant 

contribution to heat capacity (note that as long as the difference in the number of covalent 

bonds between the reaction-states is zero, to a first approximation, their contribution to the 

difference in heat capacity between the reaction-states can be ignored; see Lecture II in 

Finkelstein and Ptitsyn, 2002, and references therein).38,56,62,63  

It was shown earlier that when T = T
S()

 and T
S()

, we have m
TS-N(T)

 = 0  ΔSASA
TS-N(T)

= 0, 

leading to a unique set of relationships: G
TS(T)

 = G
N(T)

, H
TS(T)

 = H
N(T)

, S
TS(T)

 = S
N(T)

, and k
u(T)

 = 

k0 (Figures 2B, Figure 2−figure supplement 1B, 4C, 5B, 6B, 9, and 11). However, we note 

from Eq. (22) that ΔC
pTS-N(T)

 < 0 at these two temperatures and is ~ −6.2 kcal.mol-1.K-1 for 

FBP28 WW (Figure 15B). Since the molar concentration of the TSE is identical to that of the 

NSE at T
S()

 and T
S()

, what this physically means is that if we were to take a mole of NSE 

and a mole of TSE and heat them at constant pressure under identical solvent conditions, we 

will find that the NSE, relative to the TSE, will absorb thermal energy equivalent to ~6.2 

calories before both the TSE and the NSE will independently register a 10-3 K rise in 

temperature. Because at these two temperatures the SASA, the Gibbs energy, the enthalpy, 

and the entropy of the TSE and the NSE are identical, this large difference in heat capacity 

which is ~15-fold greater than ΔC
pD-N

 (6.2/0.417 = 14.8) must stem from a complex 

combination of: (i) a difference in the number and kinds of non-covalent interactions;64 (ii) 

the precise 3D-arrangement of the non-covalent interactions (i.e., the network of interactions) 

leading to a difference in their fundamental frequencies;55,56 and (iii) the character of the 

surface exposed to the solvent (i.e., polar vs non-polar SASA) between the said reaction-

states.65-67 Thus, a fundamentally important conclusion that we may draw from this behaviour 

is that “two reaction-states on a protein folding pathway need not necessarily have the same 
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structure even if their interconversion proceeds with concomitant zero net-change in SASA, 

enthalpy, entropy, and Gibbs energy.” A corollary is that the reaction-states on a protein 

folding pathway are distinct entities with respect to both their internal structure and the 

character of their molecular surface. What this implies is that the Hammond postulate which 

states that “if two states, as for example, a transition state and an unstable intermediate, 

occur consecutively during a reaction process and have nearly the same energy content, their 

interconversion will involve only a small reorganization of the molecular structures,”68 

although may be applicable to reactions of small molecules, is inapplicable to protein folding. 

The inapplicability stems primarily from the profound differences between non-covalent 

protein folding reactions and covalent reactions of small molecules. In the simplest reactions 

of small molecules, except for the one or two bonds that are being reconfigured, the rest of 

the reactant-structure, to a first approximation, usually remains fairly intact as the reaction 

proceeds (this need not necessarily hold for all simple chemical reactions and probably not 

for complex reactions). Consequently, if we were to use the bond-length of the bond that is 

being reconfigured as the RC, and find that the difference in Gibbs energy between any two 

reaction-states that occur consecutively along the RC are very similar, a reasonable 

assumption/expectation would be that their structures must be very similar.69-77 However, 

such an assumption cannot be valid for protein folding since an incredibly large number of 

chain and solvent configurations can lead to conformers having exactly the same Gibbs 

energy. Consequently, it is difficult to imagine how one can infer the structure of the 

transiently populated protein reaction-states, including the TSEs, to a near-atomic resolution 

purely from energetics (see Φ-value analysis later).78-80 

The position of the TSE along the entropic RC 

The Leffler parameters for the relative sensitivities of the activation and equilibrium Gibbs 

energies in response to a perturbation in temperature are given by the ratios of the derivatives 

of the activation and equilibrium Gibbs energies with respect to temperature.13-15,81 Thus, for 

the partial folding reaction [ ]D TS , we have 

TS-D( ) TS-D( ) TS-D( )
G(fold)( )

N-D( ) N-D( ) D-N( )

T T T
T

T T T

T S S

G ST

G

S

  
 




   



     (32) 
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where 
G(fold)(T) 

is classically interpreted to be a measure of the position of the TSE relative to 

the DSE along the entropic RC.49 Recasting Eq. (32) in terms of (8) and (A4) and rearranging 

gives 

TS-D( ) D-N( )

G (fold)( )

T T

T

m S 
 

D-N( )TS
TS-D( ) T(fold)( ) D-N

φ φ φ
T Tm m 

      (33) 

Similarly for the partial unfolding reaction [ ]N TS we have 

TS-N( ) TS-N( )
G(unfold)( )

D-N( ) D-N( )

T T
T

T T

G S

G

T

T S

 


 

 
 
 

      (34) 

where 
G(unfold)(T) 

is a measure of the position of the TSE relative to the NSE along the 

entropic RC. Substituting Eqs. (9) and (A6) in (34) gives 

TS-N( ) D-N( )

G(unfold)( )

T T

T

m S 
 

D-N( )TS
TS-N( ) T(unfold)( ) D-N

φ φ φ
T Tm m

 
 

   (35) 

Inspection of Eqs. (32) and (34) shows that 
G(fold)(T) 

+ 
G(unfold)(T)

 = 1 for any given reaction-

direction. Now, since ΔS
D-N(T)

 = ΔS
TS-D(T)

 = ΔS
TS-N(T)

 = 0 at T
S
, 

G(fold)(T) 
and 

G(unfold)(T)
 will be 

undefined for T = T
S
. However, these are removable discontinuities as is apparent from Eqs. 

(33) and (35); consequently, curves simulated using the latter set of equations will have a 

hole at T
S
. If we ignore the hole at T

S
 to enable a physical description and their comparison to 

other RCs, the extremum of 
G(fold)(T)

 (which is positive and a minimum) and the extremum of 


G(unfold)(T)

 (which is positive and a maximum) will occur at T
S
 (Figure 17 and Figure 

17−figure supplement 1) and is a consequence of m
TS-D(T)

 being a minimum, and both m
TS-

N(T)
 and φ being a maximum, respectively, at T

S
. This can also be demonstrated by 

differentiating Eqs. (32) and (34) with respect to temperature (not shown). Comparison of 

Eqs. (28) and (33), and Eqs. (29) and (35) demonstrate that when T = T
S
, we have 

H (fold)( ) G (fold)( )T T   and H(unfold)( ) G (unfold)( )T T   , i.e., the position of the TSE along the heat 

capacity and entropic RCs are identical at T
S
, and non-identical for T ≠ T

S
 (Figure 17). 

Further, since m
TS-N(T)

 = 
T(unfold)(T)

 = 0 at T
S()

 and T
S()

 (Figure 2B and Figure 2−figure 

supplement 1B),  
G(unfold)(T)

 ≡ 
T(unfold)(T)

 = 0 and 
G(fold)(T)

 ≡ 
T(fold)(T)

 = 1, and not identical 
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for T ≠ T
S()

 and T
S()

; and for T 
≤ T < T

S()
 and T

S()
< T ≤ T (the ultralow and high 

temperature Marcus-inverted-regimes, respectively), 
G(fold)(T)

 and 
T(fold)(T)

 are greater than 

unity, and 
G(unfold)(T)

 and 
T(unfold)(T)

 are negative (Figure 18). Note that although 
G(fold)(T)

 is 

unity at T
S()

 and T
S()

, the structures of the TSE and the NSE cannot be assumed to be 

identical as explained earlier. 

Although it is beyond the scope of this manuscript to perform a large-scale survey of 

literature for corroborating evidence, the notion that these equations must hold for any two-

state folder (as long as they conform to the postulates laid out in Paper-I) is readily apparent 

from the experimental data of Kelly, Gruebele and colleagues.25,82-84 However, the reader will 

note that what Gruebele and coworkers refer to as 
T
 (T, P) (see Eq. (8) in Crane et al., 2000 

and Jäger et al., 2001, Eq. (5) in Ervin and Gruebele, 2002, and Eq. (3) in Nguyen et al., 

2003) is equivalent to 
G(T)

 in this article. We will reserve the letter Φ for Φ-value analysis 

which we will address later.79 Inspection of Fig. 7a in Crane et al., 2000 demonstrates that 


G(fold)(T)

 increases with temperature for T > T
S 

for both the wild type hYAP WW domain and 

its mutant W39F (~0.4 at 38 oC and ~0.8 at 78 oC). This pattern is once again repeated for the 

wild type and several mutants of Pin WW domain (Fig. 8 in Jäger et al., 2001) and more 

importantly for ΔNΔC Y11R W30F, a variant of FBP28 WW (inset in Fig. 4B in Nguyen et 

al., 2003). Nevertheless, all is not in agreement since the shapes of their 
G(fold)(T)

 curves are 

distinctly different from what is expected from the formalism discussed in this article. This 

discrepancy most probably has to do with their use of Taylor expansion with three adjustable 

parameters to calculate the temperature-dependence of equilibrium stability and the Gibbs 

activation energies. While it is stated that the use of this non-classical model and the 

associated adjustable parameters in preference to the physically realistic Schellman 

formalism (which requires the model-independent calorimetrically determined value of ΔC
pD-

N
)6 makes little or no difference to the temperature-dependence of equilibrium stability over 

an extended temperature range, this may not be true for the activation energy. Once again in 

good agreement with prediction that 
G(unfold)(T)

 must decrease with temperature for T > T
S
, 

Tokmakoff and coworkers find that 
G(unfold)(T)

 for ubiquitin decreases with temperature (0.77 

at 53 oC and 0.67 at 67 oC).85 Note that although raw data of the said groups and their 

conclusion that the position of the TSE shifts closer to the NSE as the temperature is raised 

for T > T
S
 is in agreement with the predictions of the equations derived here, their Hammond-
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postulate-based inference of the structure of the TSE is flawed from the perspective of the 

parabolic approximation.  

Now, at the midpoint of thermal (T
m
) or cold denaturation (T

c
), ΔG

D-N(T)
 = 0; therefore, Eqs. 

(1) and (2) become 

 
 

D-N

TS-D( ) T(fold)( ), ,  c m c m
T TT T T T T T

m
m

 

   
 

 



    (36) 

 
 

D-N

TS-N( ) T(unfold)( ), ,  c m c m
T TT T T T T T

m
m

 

   
 

 



   (37) 

Substituting Eqs. (36) and (37), and ( ) D-N
,

φ λω  
c m

T
T T T

m


   in (33) and (35), 

respectively, and simplifying gives 

G(fold)( ) T(unfold)( ), , c m c m
T TT T T T T T 

 
   


      (38) 

G(unfold)( ) T(fold)( ), , c m c m
T TT T T T T T 

 
   


      (39) 

Simply put, at the midpoint of cold or heat denaturation, the position of the TSE relative to 

the DSE along the entropic RC is identical to the position of the TSE relative to the NSE 

along the SASA-RC (Figure 19A). Similarly, the position of the TSE relative to the NSE 

along the entropic RC is identical to the position of the TSE relative to the DSE along the 

SASA-RC (Figure 19B). Dividing Eq. (38) by (39) gives 

G (fold)( ) T(unfold)( ) TS-D( ) TS-N( )

G (unfold)( ) T(fold)( ) TS-N( ) TS-D( ), , , ,c m c m c m c m

T T T T

T T T TT T T T T T T T T T T T

S m

S m
   

  
  

  
  (40) 

This seemingly obvious relationship has far deeper physical meaning. Simplifying further and 

recasting gives 

2
N-TS( ) TS-D( ) DSE( ) DSE( )

2
TS-D( ) TS-N( ) NSE( ) NSE( ),, , ,,

σ σ

σ σ
c mc m c m c mc m

T T T T

T T T TT T TT T T T T T T T TT T T

S m

S m
  

 
   

 
  (41) 
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Thus, at the temperatures T
c
 and T

m
 where the concentration of the DSE and the NSE are 

identical, the ratio of the slopes of the folding and unfolding arms of the chevron determined 

at the said temperatures are a measure of the ratio of the change in entropies for the partial 

folding reactions [ ]TS N and [ ]D TS , or the square root of the ratio of the Gaussian 

variances of the DSE ( 2
DSE( )σ T ) and the NSE ( 2

NSE( )σ T ) along the SASA-RC, or equivalently, 

the ratio of the standard deviations of the DSE ( DSE( )σ T ) and the NSE ( NSE( )σ T ) Gaussians 

(Figure 19−figure supplement 1; see Paper-I for the relationship between force constants, 

Gaussian variances and equilibrium stability). A corollary is that irrespective of the primary 

sequence, or the topology of the native state, or the residual structure in the DSE, if for a 

spontaneously folding two-state system at constant pressure and solvent conditions it is found 

that at a certain temperature the ratio of the distances by which the denatured and the native 

conformers must travel from the mean of their ensemble to reach the TSE along the SASA 

RC is identical to the ratio of the standard deviations of the Gaussian distribution of the 

SASA of the conformers in the DSE and the NSE, then at this temperature the Gibbs energy 

of unfolding or folding must be zero. 

As an aside, the reader will note that 
G(fold)(T)

 and 
G(unfold)(T)

 are equivalent to the Brønsted 

exponents alpha and beta, respectively, in physical organic chemistry; and their classical 

interpretation is that they are a measure of the structural similarity of the transition state to 

either the reactants or the products.81 If the introduction of a systematic perturbation (often a 

change in structure via addition or removal of a substituent, pH, solvent etc.) generates a 

reaction-series, and if for this reaction-series it is found that alpha is close to zero (or beta 

close to unity), then it implies that the energetics of the transition state is perturbed to the 

same extent as that of the reactant, and hence inferred that the structure of the transition state 

is very similar to that of the reactant. Conversely, if alpha is close to unity (or beta is almost 

zero), it implies that the energetics of the transition state is perturbed to the same extent as the 

product, and hence inferred that the transition state is structurally similar to the product. 

Although the Brønsted exponents in many cases can be invariant with the degree of 

perturbation (i.e., a constant slope leading to linear free energy relationships),70,86 this is not 

necessarily true, especially if the degree of perturbation is substantial (Fig. 3 in Cohen and 

Marcus, 1968; Fig. 1 in Kresge, 1975).14,72,81 Further, this seemingly straightforward and 

logical Hammond-postulate-based conversion of Brønsted exponents to similarity or 

dissimilarity of the structure of the transition states to either of the ground states nevertheless 
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fails for those systems with Brønsted exponents greater than unity and less than zero (see 

page 1897 in Kresge, 1974).24,81,87-91 

To summarise, a comparison of the position of the TSE along the solvent (
T(T)

), heat 

capacity (
H(T)

), and entropic (
G(T)

) RCs leads to three important general conclusions (Figure 

20): (i) as long as ΔSASA
D-N

 is large, and by extension ΔC
pD-N

 is large and positive, the 

position of the TSE relative to the ground states along the various RCs is neither constant nor 

a simple linear function of temperature when investigated over a large temperature range; (ii) 

for a given temperature, the position of the TSE along the RC depends on the choice of the 

RC; and (iii) although the algebraic sum of 
T(fold)(T) 

and 
T(unfold)(T)

, 
H(fold)(T) 

and 
H(unfold)(T)

, 

and 
G(fold)(T) 

and 
G(unfold)(T)

 must be unity for a two-state system for any particular 

temperature, individually they can be positive, negative, or zero. Consequently, the notion 

that the atomic structure of the transiently populated reaction-states in protein folding can be 

inferred from their position along the said RCs is flawed.78 

Temperature-dependence of Φ-values 

-value analysis is a variation of the Brønsted procedure introduced by Fersht and co- 

workers which when properly implemented claims to provide a near-atomic-level description 

of the transiently populated reaction-states in protein folding.79,80 In this procedure, the 

primary sequence of the target protein is modified using protein engineering, and the effect of 

these perturbations are quantified through a parameter  (0 ≤  ≤ 1) which by definition is 

the ratio of mutation-induced change in the Gibbs activation energy of folding/unfolding to 

the corresponding change in equilibrium stability. According to the canonical formulation, 

when 
F(T)

 = 0 (-value for folding), it implies that the energetics of the TSE is perturbed to 

the same extent as that of the DSE upon mutation, and hence inferred that the said reaction-

states are structurally identical with respect to the site of mutation. In contrast, when 
F(T)

 = 

1, it implies that the energetics of the TSE is perturbed to the same extent as that of the NSE, 

and hence inferred that the structure at the site of mutation is identical in both the TSE and 

the NSE. Partial -values are difficult to interpret and are thought to be due to partially 

developed interactions in the TSE, or multiple routes to the TSE. Thus, while  per se is the 

slope a two-point Brønsted plot, the conversion of this value to relative-structure is based on 

the Hammond postulate and the canonical range: The Hammond postulate provides the 
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licence to infer structure from energetics, and the canonical scale enables one to infer how 

similar or dissimilar the TSE is to either the DSE or the NSE. Assuming that the prefactor is 

identical for the wild type and the mutant proteins, we may write for the partial folding (

[ ]D TS  ) and unfolding ( [ ]N TS  ) reactions 

 (wt)( ) (mut)( ) TS-D(mut)( ) TS-D(wt)( )
F( )

N-D(mut)( ) N-D(wt)( ) N-D(mut)( ) N-D(wt)( )

ln f T f T T T
T

T T T T

RT k k G G

G G G G

 
  

   
    (42) 

 (mut)( ) (wt)( ) TS-N(wt)( ) TS-N(mut)( )
U( )

D-N(wt)( ) D-N(mut)( ) D-N(wt)( ) D-N(mut)( )

ln u T u T T T
T

T T T T

RT k k G G

G G G G

 
  

   
   (43) 

where the subscripts “wt” and “mut” denote the reference or the wild type, and the 

structurally perturbed protein, respectively, and 
U(T)

 is the -value for unfolding. Inspection 

of Eqs. (42) and (43) shows that for a two-state system, 
F(T)

 + 
U(T)

 = 1. Now, although the 

primary sequence is intact in thermal denaturation experiments, we can readily calculate the 

temperature-dependence of  values for folding and unfolding using the protein at one 

unique temperature as the internal reference or the wild type, and protein at all the rest of the 

temperatures as the mutants. Thus, if the protein at T
S
 is defined as the internal reference or 

the wild type, Eqs. (42) and (43) become  

( ) ( ) TS-D( ) TS-D( )
F(internal)( )

N-D( ) N-D( ) N-D( ) N-D( )

ln ln
S S

S S

f T f TT T T T
T

T T T T

RT k RT k G G

G G G G


   
  

     
   (44) 

( ) ( ) TS-N( ) TS-N( )
U(internal)( )

D-N( ) D-N( ) D-N( ) D-N( )

ln ln
S S

S S

u T u T T T T T
T

T T T T

RT k RT k G G

G G G G


   
  

     
   (45) 

Similarly, if the protein at T
m
 is defined as the internal reference or the wild type, Eqs. (42) 

and (43) become 

TS-D( ) TS-D( ) TS-D( ) TS-D( ) TS-D( )
F(internal)( )

N-D( ) N-D( ) N-D( )

m m

m

T T T T T
T

T T T

G G G G G x

G G G y

     
   

  
  (46) 

TS-N( ) TS-N( ) TS-N( ) TS-N( ) TS-N( )
U(internal)( )

D-N( ) D-N( ) D-N( )

m m

m

T T T T T
T

T T T

G G G G x G

G G G y

    
   

  
  (47) 
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where x = ΔG
TS-D(Tm)

 = ΔG
TS-N(Tm)

 and y = ΔG
N-D(T)

 ≡ −ΔG
D-N(T)

 (the denominator reduces to a 

single quantity since ΔG
D-N(Tm)

 ≡ −ΔG
N-D(Tm) 

= 0). The parameters 
F(internal)(T)

 and 
U(internal)(T)

 

(which are obviously undefined for the reference temperatures) when interpreted according to 

the canonical -value framework (i.e., the notion that 0 ≤  ≤ 1) are a measure of the global 

similarity or dissimilarity of the structure of the TSE to either the DSE or the NSE. Thus, if 


F(internal)(T)

 = 0, it implies that the energetics of the TSE is perturbed to the same extent as 

that of the DSE upon a perturbation in temperature, and hence inferred that the global 

structure of the TSE is identical to that of the DSE.  Conversely, if  
F(internal)(T)

 = 1, it implies 

that the energetics of the TSE is perturbed to the same extent as the NSE upon a perturbation 

in temperature, and hence inferred that the global structure of the TSE is identical to that of 

the NSE.  

Inspection of Figures 21 and Figure 21−figure supplements 1, 2, 3 and 4 immediately 

demonstrates that: (i) irrespective of which temperature is defined as the internal reference 

(i.e., the wild type), 
F(internal)(T)

 must be a minimum and 
U(internal)(T)

 must be a maximum at 

T
S
 (see Appendix); (ii) the magnitude of 

F(internal)(T)
 is always the least, and the magnitude of 


U(internal)(T)

 is always the greatest when the protein at T
S
 is defined as the reference or the 

wild type protein, and any deviation in the definition of the reference temperature from T
S
 

must lead to a uniform increase in 
F(internal)(T)

 and a uniform decrease in 
U(internal)(T)

 for all 

temperatures; (iii) although the algebraic sum of 
F(internal)(T)

 and 
U(internal)(T)

 is unity for all 

temperatures, the notion that they must independently be restricted to 0 ≤  ≤ 1 is flawed; 

and (iv) although both Leffler 
G(T)

 and Fersht Φ values are derived from changes in Gibbs 

activation energies for folding and unfolding relative to changes in equilibrium stability upon 

a perturbation in temperature, their response is not the same since the equations that govern 

their behaviour are not the same. While the magnitude of the Leffler 
G(T)

 is independent of 

the reference owing to it being the ratio of the derivatives of the change in Gibbs energies 

with respect to temperature, the magnitude of 
(internal)(T)

 is dependent on the definition of the 

reference state. For example, if the protein at T
S
 is defined as the wild type, then 

G(fold)(T)
 ≈ 


F(internal)(T)

 and 
G(unfold)(T)

 ≈ 
U(internal)(T)

 around the temperature of maximum stability; but as 

the temperature deviates from T
S
, 

G(fold)(T)
 increases far more steeply than 

F(internal)(T)
, and 
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
G(unfold)(T)

 decreases far more steeply than 
U(internal)(T)

 such that for T ≠T
S
 we have 

G(fold)(T)
 > 


F(internal)(T)

 and 
G(unfold)(T)

 < 
U(internal)(T)

 (Figure 21−figure supplement 3). In contrast, if the 

protein at T
m
 is defined as the wild type, then we have: (i) 

G(fold)(T)
 < 

F(internal)(T)
 for T

c
 < T < 

T
m
 and 

G(fold)(T)
 > 

F(internal)(T)
 for T < T

c
 and T > T

m
; and (ii) 

G(unfold)(T)
 > 

U(internal)(T)
 for T

c
 < 

T < T
m
 and 

G(unfold)(T)
 < 

U(internal)(T)
 for T < T

c
 and T > T

m
(Figure 21−figure supplement 4). 

The point we are trying to make is that a comparison of the position of the TSE along Leffler 


G(T)

 and 
(internal)(T)

 RCs is not straightforward since both 
G(T)

 and 
(internal)(T)

 are 

temperature-dependent, and importantly respond differently to temperature-perturbation; and 

even if we restrict the comparison to one particular temperature, the answer we get is still 

subjective since the magnitude of 
(internal)(T)

 is dependent on how we define the wild type.92  

Although the mathematical formalism for why the extrema of 
F(internal)(T)

 (which is a 

minimum) and 
U(internal)(T)

 (which is a maximum) must always occur precisely at T
S
 has been 

shown in the appendix, it is instructive to examine the same graphically. Inspection of Figure 

21−figure supplements 5, 6 and 7 demonstrates that this is a consequence of ΔG
TS-D(T) 

and 

ΔG
N-D(T)

 being a minimum, and ΔG
TS-N(T) 

and ΔG
D-N(T)

 being a maximum at T
S
. Subtracting 

the reference Gibbs energies from the numerator and the denominator (Eq. (44)) has the 

effect of lowering the ΔG
TS-D(T) 

curve and raising the ΔG
N-D(T)

, such that the value of the said 

curves are zero at the reference temperature, but the shapes of the curves are not altered in 

any way (Figure 21−figure supplement 5). On the other hand, for ΔG
TS-N(T) 

and ΔG
D-N(T)

 

curves (Eq. (45)), apart from the value of the curves becoming zero at the reference, it causes 

them to flip vertically (Figure 21−figure supplement 6).  Consequently, if we divide the 

transformed Gibbs activation energies by the transformed equilibrium Gibbs energies, we end 

up with 
F(internal)(T)

 and 
U(internal)(T)

 which are a minimum and a maximum, respectively, at T
S
 

(Figure 21−figure supplement 7). 

Now that the process that leads to the temperature-dependence of  has been addressed, the 

question is “Can we infer the structure of the TSE as being similar to either the DSE or the 

NSE from these data?” The answer is “no” for several reasons. First, as argued earlier, the 

Hammond postulate cannot be valid for protein folding; and because the structural 

interpretation of  values is based on the Hammond postulate, it too must be deemed 

fallacious.  Second, even if we accept the premise that Hammond postulate is applicable to 
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protein folding, the inference that the global structure of the TSE as being denatured-like for 


F(internal)(T)

 = 0, and native-like for  
F(internal)(T)

 = 1 is flawed since  values need not 

necessarily be restricted to 0 ≤  ≤ 1 (Figure 21−figure supplement 2). Third, even if we 

summarily exclude those wild types that lead to anomalous  values as being unsuitable for 

 analysis, we still have a problem since even within the restricted set of wild types that yield 

0 ≤  ≤ 1, their magnitude depends on the definition of the wild type; consequently, for the 

same temperature, the degree of structure in the TSE relative to that in the DSE appears to 

increase as the definition of the wild type deviates from T
S
 (Figure 21−figure supplement 

1). If we try to circumvent this interpretational problem by arguing that the “inference of the 

structure of the TSE” is always relative to the residual structure in the DSE, and that 

changing the definition of what constitutes the wild type will invariably affect  values, then 

we can’t really say much about the structure of the TSE without first solving the structure of 

the DSE. Fourth, even if through a judicious combination of various structural and 

biophysical methods (residual dipolar couplings, paramagnetic relaxation enhancement, small 

angle X-ray scattering, single molecule spectroscopy etc.), and computer simulation, we are 

able to determine the residual structure in the DSE,93-96 the structural interpretation of  

values leads to physically unrealistic scenarios. For example, inspection of Figure 21A 

shows that around room temperature (298 K) 
F(internal)(T)

 ≈ 0.18. A canonical interpretation of 

this number implies that the global structure of the TSE is very similar to that of the DSE. 

However, inspection of Figure 2−figure supplement 1A shows that the denatured conformer 

has buried ~70% of the total SASA to reach the TSE (i.e., advanced by about 70% along the 

SASA-RC). Similarly, inspection of Figure 5A shows that ΔG
TS-D(T)

 = 2.6 kcal.mol-1 at 298 

K (note that this is not a small number that can be ignored since ΔG
D-N(T)

 = 2.1 kcal.mol-1 at 

298 K). Further, we have shown earlier in the section on the “Inapplicability of the Hammond 

postulate to protein folding,” that even when two reaction-states have identical SASA, Gibbs 

energies, enthalpies, and entropies, there need not necessarily have identical structure. Thus, 

the question is: How can we conclude with any measure of certainty that the global structure 

of the TSE is very similar to that of the DSE at 298 K when they have such a large difference 

in SASA, and a substantial difference in Gibbs energy? To illustrate why it is difficult to 

rationalize the theoretical basis of  analysis, it is instructive to directly examine the ratio of 

the Gibbs activation energies and the difference in Gibbs energy between the ground states 

(Figure 21−figure supplement 8). It is immediately apparent that the ratios are a complex 
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function of temperature; and although we can readily provide an explanation for the 

particular features of these complex dependences, it is difficult to see how subtracting 

reference energies from the numerator and denominator of the ratios TS-D( ) N-D( )T TG G  and 

TS-N( ) D-N( )T TG G  allows us to divine the structure of the TSE to a near-atomic resolution. 

This is once again readily apparent from the complex non-linear relationship between 

equilibrium stability and the rate constants (Figure 21−figure supplement 9). 

To further illuminate the difficulty in rationalizing the Φ-value procedure, it is instructive to 

apply Eqs. (44) and (45) to treat enthalpies. Thus, for the partial folding ( [ ]D TS  ) and 

unfolding ( [ ]N TS ) reactions we have 

F

TS-D( ) TS-D( )
H (internal)( )

N-D( ) N-D( )

S

S

T T
T

T T

H H

H H

 
 

 
       (48) 

U

TS-N( ) TS-N( )
H (internal)( )

D-N( ) D-N( )

S

S

T T
T

T T

H H

H H

 
 

 
       (49) 

where the parameters 
HF(internal)(T)

 and 
HU(internal)(T)

 are the “enthalpic analogues” of 


F(internal)(T)

 and 
U(internal)(T)

, respectively (the subscript “H” indicates we are using enthalpy 

instead of Gibbs energy), when the protein at the temperature T
S
 is defined as the wild type. 

Now, if we apply an analogous version of the canonical interpretation given by Fersht and 

coworkers, it implies that when 
HF(internal)(T)

 = 0, the enthalpy of the TSE is perturbed to the 

same extent as that of the DSE upon a perturbation in temperature; and when 
HF(internal)(T)

 = 

1, it implies that the enthalpy of the TSE is perturbed to the same extent as that of the NSE. It 

is easy to see that just as 
F(internal)(T)

 and 
U(internal)(T)

 are the Fersht-analogues of the Leffler 


G(fold)(T)

 and 
G(unfold)(T)

, respectively (see entropic RC), the parameters 
HF(internal)(T)

 and 


HU(internal)(T)

 are similarly the Fersht-analogues of the Leffler 
H(fold)(T)

 and 
H(unfold)(T)

, 

respectively (see heat capacity RC). 

Inspection of Figure 22 and its supplements immediately demonstrates that the same 

anomalies that prevent a straightforward structural interpretation of 
F(internal)(T)

 and 


U(internal)(T)

 are also emerge if we try to assign structure to their enthalpic analogues, 
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
HF(internal)(T)

 and 
HU(internal)(T)

. First, although the algebraic sum of 
HF(internal)(T) 

and 


HU(internal)(T)

 is unity for all temperatures, they need not independently be restricted to a 

canonical range of 0 ≤  ≤ 1 (Figure 22). Second, the magnitude of 
HF(internal)(T) 

and 


HU(internal)(T)

 are dependent on the definition of the wild type (Figure 22−figure supplement 

1). Third, changing the definition of the wild type has a dramatic effect on the relationship 

between the Leffler 
H(T)

 and its analogue, the Fersht 
H(internal)(T)

. Consequently, the question 

of whether Leffler 
H(T)

 underestimates or overestimates structure is dependent on how we 

analyse the system (Figure 22−figure supplements 2 and 3). Fourth, just as the temperature-

dependent position of the TSE relative to the ground states depends on the choice of the RC 

(Figure 20), we see that 
(internal)(T)

 and its enthalpic analogue, 
H(internal)(T)

, change at 

different rates upon a perturbation in temperature (Figure 22−figure supplement 4). The 

difficulty in rationalizing how subtracting reference values from the numerator and the 

denominator of Eqs. (48) and (49) can yield residue-level information is once again apparent 

from the complex dependence of the ratios N-D( ) TS-D( ) N-D(( )) lnln T T Tf T Kk H H     and 

D-N( ) TS-N( ) D-N(( )) lnln T T Tu T Kk H H     on temperature (Figure 22−figure supplement 5). 

Comparison of theoretical and experimental Φ-values obtained from 

structural perturbation across 31 two-state systems 

Given that the framework of Φ-value analysis was primarily developed to be used in 

conjunction with structural rather than temperature perturbation, and despite its anomalies has 

been used extensively for more than twenty years to divine the structures of the TSEs of not 

just globular but also membrane proteins, it is imperative to demonstrate that the notion that 

the structure of the TSE cannot be inferred from Φ-values is also valid for structural 

perturbation.97-101 Although a detailed reappraisal is beyond the scope of this article and will 

be presented elsewhere, because we have questioned the validity of Φ analysis, one is 

compelled to provide some justification in this article. 

Consider the wild type of a hypothetical two-state folder whose equilibrium stability and the 

mean length of the RC at constant temperature, pressure and solvent conditions are given by 

ΔG
D-N(T)

 = 6 kcal.mol-1 and m
D-N

  = 2 kcal.mol-1.M-1, respectively. Although not necessarily 

true and addressed elsewhere, to limit the number of hypothetical scenarios to a manageable 
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number, we will assume that the force constants of the DSE and the NSE-parabolas of the 

wild type and all its mutants are given by  = 1 M2.mol.kcal-1 and  = 30 M2.mol.kcal-1. The 

effect of single point mutations on the wild type may be classified into a total of five unique 

scenarios (Figure 23A).  

Case I (Quadrant x2): The introduced mutation causes a concomitant decrease in both the 

stability and the mean length of the RC (i.e., ΔG
D-N(T)(wt)

 > ΔG
D-N(T)(mut)

 and m
D-N(wt)

 > m
D-

N(mut)
). This is equivalent to the introduced mutation causing the separation between the 

vertices of the DSE and the NSE-parabolas along the abscissa and ordinate to decrease 

(Figure 23−figure supplement 1A).  

Case II (Quadrant y1): The introduced mutation causes a decrease in stability but 

concomitantly causes an increase in the mean length of the RC (i.e., ΔG
D-N(T)(wt)

 > ΔG
D-

N(T)(mut)
 and m

D-N(wt)
 < m

D-N(mut)
). This is equivalent to the mutation causing a decrease in the 

separation between the vertices of the DSE and the NSE-parabolas along the ordinate, but an 

increase along the abscissa (Figure 23−figure supplement 1B). 

Case III (Quadrant x1): The introduced mutation leads to an increase in stability but 

concomitantly causes a decrease in the mean length of the RC (i.e., ΔG
D-N(T)(wt)

 < ΔG
D-N(T)(mut)

 

and m
D-N(wt)

 > m
D-N(mut)

). This is equivalent to the mutation causing an increase in the 

separation between the vertices of the DSE and the NSE-parabolas along the ordinate, but a 

decrease along the abscissa (Figure 23−figure supplement 1C). 

Case IV (Quadrant y2): The introduced mutation leads to a concomitant increase in both the 

stability and the mean length of the RC (i.e., ΔG
D-N(T)(wt)

 < ΔG
D-N(T)(mut)

 and m
D-N(wt)

 < m
D-

N(mut)
). This is equivalent to the mutation causing an increase in the separation between the 

vertices of the DSE and the NSE-parabolas along the ordinate and the abscissa (Figure 

23−figure supplement 1D). 

Case V: The introduced mutation leads to a change in stability but has no effect on the mean 

length of the RC (m
D-N(wt)

 = m
D-N(mut)

). This is equivalent to the mutation causing an increase 

or a decrease in the separation between the vertices of the DSE and the NSE-parabolas along 

the ordinate, but the separation along the abscissa is invariant (Figure 23−figure supplement 

2). 
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In summary, what we done is taken a pair of intersecting parabolas of differing curvature ( 

> ), and systematically varied the separation between their vertices along the abscissa (m
D-N

) 

and ordinate (ΔG
D-N(T)

) without changing the curvature of the parabolas. Once this is done, 

we can calculate a priori the position of the curve-crossings relative to the vertex of the DSE-

parabola along the abscissa (i.e., m
TS-D(T)

; Eq. (1)) and ordinate (i.e., ΔG
TS-D(T)

; Eq. (3)). Once 

the ΔG
TS-D(T)

 values for all combinations of ΔG
D-N(T)

 and m
D-N

 are obtained (each 

combination is equivalent to a point mutation), 
F(T)

 values can be readily calculated using 

Eq. (50) by arbitrarily choosing one particular combination of ΔG
D-N(T)

 (= 6 kcal.mol-1) and 

m
D-N

 (= 2 kcal.mol-1.M-1) as the wild type. 

   2 2

TS-D(mut)( ) TS-D(wt)( )
TS-D(mut)( ) TS-D(wt)( )

F(theory)( )
N-D(mut)( ) N-D(wt)( ) D-N(wt-mut)( )

T T
T T

T
T T T

m mG G

G G G

        
  


  (50) 

Figure 23A which has been generated by plotting the theoretical 
F(T) 

values as a function of 

ΔΔG
D-N(wt-mut)(T)

 leads to two important conclusions: (i) 
F(T)

 values are not restricted to 0 ≤  

≤ 1, and that the perceived unusualness of anomalous or non-classical  values is a 

consequence of flawed canonical limits; and (ii) the magnitude of 
F(T)

 values decrease as the 

difference in stability between the wild type and the mutant proteins increase, and at once 

debunks the idea that one must use an arbitrary ΔΔG
D-N(wt-mut)(T) 

cut-off (± 0.6 kcal.mol-1 

according to the Fersht lab, and ± 1.7 kcal.mol-1 according to Sanchez and Kiefhaber) for 


F(T)

 values to be interpretable.98,102 While it is true that  values would be error prone when 

|ΔΔG
D-N(wt-mut)(T)

|
 
is less than the error with which one can determine ΔG

D-N(T)
 of both the wild 

type and the mutant proteins (typically about ± 5-10% of ΔG
D-N(T)

),103 the increase in the 

magnitude of 
F(T)

 values when ΔΔG
D-N(wt-mut)(T)

 approaches zero (the vertical asymptotes) is 

a mathematical certainty and not because of error as is commonly argued. Nevertheless, 

because these conclusions are based on the results of a model that is purely hypothetical, they 

would naturally be meaningless without experimental validation. Thus, as a test of the 

hypothesis, experimental 
F(T)

 values in water were calculated according to Eq. (51) using 

published kinetic data of a total of 1064 proteins (1035 mutants + 29 wild types) from 31 

two-state systems (details of the systems analysed will be provided elsewhere). 
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 (wt)( ) (mut)( ) TS-D(mut-wt)( )
F(experimental)( )

D-N(wt-mut)( )(wt)( ) (mut)( )

(wt)( ) (mut)( )

ln

ln ln

f T f T T
T

Tf T f T

u T u T

RT k k G

Gk k
RT

k k


  

     
            

  (51) 

The remarkable agreement between theoretical prediction and experimental 
F(T)

 values is 

immediately apparent from an overlay of the said datasets (Figure 23B), and serves as 

arguably one of the most rigorous tests of the hypothesis for the following reasons:  (1) The 

space enclosed by the curves in Figure 23A is complex and restricted. Therefore, if the 

experimental 
F(T) 

values fall within this restricted theoretical space it would be highly 

unlikely for it to be purely due to some dramatic coincidence. (2) The sample size of 

experimental dataset is sufficiently large (1035 mutations), and the two-state systems 

investigated include , , and / proteins (note that  and  refer to secondary structure in 

this context and not to the force constant of the DSE or the Tanford beta value, respectively), 

with size ranging from 37 to 107 residues. (3) The published kinetic data used to calculate 

experimental 
F(T)

 values were acquired by various labs under varying solvent conditions 

(buffers, co-solvents and pH; denaturant is either guanidine hydrochloride or urea) and 

temperature (as low as 278 K to as high as 301.16 K), over a period of about two decades 

using a variety of experimental methods, including infrared laser-induced and electrical 

discharge temperature-jump relaxation measurements, stopped flow and manual mixing 

experiments, and lineshape analysis of exchange-broadened NMR resonances. These results, 

including those on the temperature-dependence of 
F(T)

 values lead to an important 

conclusion: Because the canonical scale itself has no basis, -value-based interpretation of 

the structure of the transiently populated protein reaction-states is dubious.   

CONCLUDING REMARKS 

Although the temperature-dependent behaviour of FBP28 WW was analysed in great detail 

using the theory developed in the Papers I and II, and novel conclusions have been drawn, 

this is by no means sufficient since we have barely addressed the physical chemistry 

underlying the effect of temperature on the Gibbs energies, the enthalpies, the entropies, and 

the heat capacities of activation for folding and unfolding. These aspects will be dealt with in 

the accompanying articles. Further, there is a good reason why we have given little 

importance to the actual values of the reference temperatures and instead focussed on what 

they actually mean and how they relate to each other. Although the remarks in Table 1 are 
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valid for all reference temperatures, except for the values of the equilibrium reference 

temperatures (T
c
, T

H
, T

S
, and T

m
), the values for the rest of them can change depending on the 

values of the force constants. However, what will not change is the inter-relationship between 

them. The nature of this limitation will be addressed when the mechanism of action of 

denaturants is investigated. 

METHODS 

The temperature-dependence of ΔG
D-N(T)

 of FBP28 WW wild type (Figure 1) was simulated 

according to Eq. (A1) using T
m = 337.2 K, ΔH

D-N(Tm)
 = 26.9 kcal.mol-1 and ΔC

pD-N
 = 417 

cal.mol-1.K-1 (Table 1 in Petrovich et al., 2006).4 The values of k0 = 2180965 s-1,  = 7.594  

M2.mol.kcal-1,  = 85.595 M2.mol.kcal-1, and m
D-N 

= 0.82 kcal.mol-1.M-1 were extracted from 

the chevron of FBP28 WW (acquired at 283.16 K in 20 mM 3-[morpholino] propanesulfonic 

acid, ionic strength adjusted to150 mM with Na
2
SO

4
, pH 6.5) by fitting it to a modified 

chevron-equation using non-linear regression as described in Paper-I.  The data required to 

simulate the chevron (k
f(H2O)(T)

, k
u(H2O)(T)

, m
TS-D(T)

 and m
TS-N(T)

) were taken from Table 4 in 

Petrovich et al., 2006.4  Once the parameters ΔH
D-N(Tm)

, T
m
, ΔC

pD-N
, m

D-N
, the force constants 

 and , and k0 are known, the left-hand side of all the equations in this article may be 

readily calculated for any temperature. Note that the spring constants, k0, m
D-N

, and ΔC
pD-N

 

are temperature-invariant. 
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APPENDIX 

The temperature-dependence of ΔG
D-N(T)

, ΔH
D-N(T)

, and ΔS
D-N(T)

 functions 

The temperature-dependence of the change in Gibbs energy, enthalpy and entropy of two-

state systems upon unfolding at equilibrium are given by6 

 D-N( ) D-N( ) D-N( ) D-N( ) D-N =  +   +  
m m

m

T

T T p T T p mT
H H C dT H C T T          (A1) 

D-N( )
D-N( ) D-N( ) D-N( ) D-N 

D-N( ) 
D-N 

 =  +  = + ln

            + ln

m m
m

m

T p T
T T T pT

m

T
p

m m

C T
S S dT S C

T T

H T
C

T T

  
     

 
   

    
   


    (A2) 

 D-N( ) D-N( ) D-N D-N  = 1  +  +  ln
m

m
T T p m p

m

T T
G H C T T T C

T T

           
  

   (A3) 

where ΔH
D-N(T)

, ΔH
D-N(Tm)

 and ΔS
D-N(T)

, ΔS
D-N(Tm) 

denote the equilibrium enthalpies and 

entropies of unfolding, respectively, at any given temperature, and at the midpoint of thermal 

denaturation (T
m
), respectively, for a given two-state folder under defined solvent conditions. 

The temperature-invariant and the temperature-dependent difference in heat capacity between 

the DSE and NSE are denoted by ΔC
pD-N

 and ΔC
pD-N(T)

, respectively.  

The first derivatives of m
TS-D(T)

, m
TS-N(T)

, 
T(fold)(T)

 and 
T(unfold)(T) 

with respect 

to temperature 

The first derivative of m
TS-D(T)

 is given by 

TS-D( ) D-N( ) D-N ln
φ2 2 φ

T T p

S

m S C T

TT

   
 




 
 

      (A4) 

Because T(fold)( ) TS-D( ) D-Nβ T Tm m , we also have 

TS-D( ) D-N 

D-

T(fold)( )

N D-N

β 1
ln

φ2
T T p

S

m C T

m T mT T

 
 

  
 
 

     (A5)  
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Since TS-D( ) /Tm T   and T(fold)( )β /T T  are physically undefined for φ < 0, their algebraic 

sign at any given temperature is determined by the  ln ST T term. This leads to three 

scenarios: (i) for T < T
S
 we have TS-D( ) / 0Tm T   and T(fold)( )β / 0T T   ; (ii) for T > T

S
 we 

have TS-D( ) / 0Tm T    and T(fold)( )β / 0T T   ; and (iii) for T = T
S
 we have TS-D( ) / 0Tm T  

and T(fold)( )β / 0T T   . 

Because m
TS-N(T)

 = (m
D-N

 − m
TS-D(T)

) for a two-state system, and T(unfold)( ) TS-N( ) D-Nβ T Tm m , we 

have 

TS-N( ) TS-D( ) D-N( ) D-N ln
φ2 φ2

T T T p S

T

m m S C T

T T

 
   

  
 


 
 

    (A6) 

TS-N( ) D-N 

D-N D-N

T(unfold)( ) ln
φ

β 1

2
TT p S

T

m C T

TmTm

 
 

  
 
 

     (A7) 

Eqs. (A6) and (A7) once again lead to three scenarios: (i) for T < T
S
 we have 

TS-N( ) / 0Tm T    and T(unfold)( )β / 0T T   ; (ii) for T > T
S
 we have TS-N( ) / 0Tm T    and 

T(unfold)( )β / 0T T   ; and (iii) for T = T
S
 we have TS-N( ) / 0Tm T    and T(unfold)( )β / 0T T   . 

The second derivatives of m
TS-D(T)

 and m
TS-N(T)

 with respect to temperature 

Differentiating Eq. (A4) with respect to temperature gives 

TS-D( ) D-N( )
2

2
D-N( )

φ

1

22 φ
T T TS

T

m

T

S

T

     
         

 
  

     (A8) 

Simplifying Eq. (A8) yields  

 TS-D( )
D-

2

N D

2

2 -N( )

1
2φ (  

4
)

φ φ
T

p T

m
C T S

T T
 

     
     (A9) 

Similarly, we may show that 

 
2 2

TS-N( ) TS-D( )
D-N D-N( )2 2

2
φ (  )

φ φ

1
2

4
T T

p T

m m
C T S

T T T

 
        


 

  (A10) 
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Expression for the temperature-dependence of the observed rate constant 

The observed rate constant k
obs(T)

 for a two-state system is the sum of k
f(T)

 and k
u(T)

.104 

Therefore, we can write 

 obs ( ) ( ) ( ) obs ( ) ( ) ( )ln lnT f T u T T f T u Tk k k k k k           (A11) 

Substituting Eqs. (5) and (6) in (A11) gives 

 
 

 
 

2 2

D-N D-N0 0
obs( 2 2)

      
exp  exp  

φ

  

φ
ln lnT

m m
k k

RT R
k

T

                

 
   
 


  


 

  (A12) 

Expressions to demonstrate why the extrema of 
F(internal)(T)

 and 
U(internal)(T)

 

must occur at T
S
 

Differentiating Eq. (44) with respect to temperature gives 

   
 

TS-D( )F(internal)( )

N-D( )

N-D( ) TS-D( ) TS-D( ) N-D( )

2

N-D( )

Ref

Ref

Ref Ref Ref Ref

Ref

T -TT

T -T

T -T T -T T -T T -T

T -T

G

T T G

G G G G
T T

G

    
    
         

 
 

  (A13) 

 
TS-D( ) N-D( ) N-D( ) TS-D( )F(internal)( )

2

N-D( )

Ref Ref

Ref

T -T T T -T TT

T -T

G S G S

T G

    
 

 
   (A14) 

where the protein at the temperature T
Ref

 is by definition the wild type protein. Because ΔS
N-

D(T)
 and ΔS

TS-D(T)
 are both zero at T

S
, irrespective of T

Ref
, the derivative of 

F(internal)(T) 
will be 

zero at T
S
. Similarly, we can show by differentiating Eq. (45) that 

 
D-N( ) TS-N( ) TS-N( ) D-N( )U(internal)( )

2

D-N( )

Ref Ref

Ref

T -T T T -T TT

T -T

G S G S

T G

    


 
    (A15) 

Once again, since ΔS
D-N(T)

 and ΔS
TS-N(T)

 are both zero at T
S
, irrespective of T

Ref
, the derivative 

of 
U(internal)(T) 

will be zero at T
S
. 
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Table 1: Reference temperatures 

Temperature Value Remark 

T 182 K A two-state system is physically undefined for  T < T 

T
S()

 184.4 K m
TS-N(T) 

= 0, ΔH
TS-N(T) 

= ΔS
TS-N(T) 

= ΔG
TS-N(T) 

= 0, k
u(T)

 = k0 

T
CpTS-N()

 201 K ΔC
pTS-N(T)

 = 0 

T
c
 223.6 K Midpoint of cold denaturation, ΔG

D-N(T) 
= 0, k

f(T)
 = k

u(T)
 

T
H(TS-N)

 264.3 K ΔH
TS-N(T) 

= 0, k
u(T)

 is a minimum 

T
H
 272.9 K ΔH

TS-D(T) 
= ΔH

TS-N(T)
, ΔH

D-N(T) 
= 0, ΔH

TS-D(T) 
> 0, ΔH

TS-N(T) 
> 0,  

T
S
 278.8 K ΔS

TS-D(T) 
= ΔS

TS-N(T) 
= ΔS

D-N(T) 
= 0, ΔG

D-N(T) 
is a maximum 

T
H(TS-D)

 311.4 K ΔH
TS-D(T) 

= 0, k
f(T)

 is a maximum 

T
m
 337.2 K Midpoint of heat denaturation, ΔG

D-N(T) 
= 0, k

f(T)
 = k

u(T)
 

T
CpTS-N()

 361.7 K ΔC
pTS-N(T)

 = 0 

T
S()

 384.5 K m
TS-N(T) 

= 0, ΔH
TS-N(T) 

= ΔS
TS-N(T) 

= ΔG
TS-N(T) 

= 0, k
u(T)

 = k0 

T 388 K A two-state system is physically undefined for  T > T 

 

 

 



Page 59 of 129 
 

FIGURES 

 

Figure 1.  

Stability curve for the unfolding reaction N D . 

(A) Temperature-dependence of ΔH
D-N(T)

, ΔS
D-N(T)

 and ΔG
D-N(T) 

according to Eqs. (A1), (A2) 

and (A3), respectively. The green pointers identify the cold (T
c
) and heat (T

m
) denaturation 

temperatures. The slopes of the red and black curves are given by D-N( ) D-N( )T TG T S    

and D-N( ) D-NT pH T C   , respectively. (B) An appropriately scaled version of the plot on 

the left. T
H
 is the temperature at which ΔH

D-N(T)
 = 0, and T

S
 is the temperature at which ΔS

D-

N(T)
 = 0. The values of the reference temperatures are given in Table 1. 
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Figure 1−figure supplement 1.  

Stability curve for the folding reaction D N . 

(A) Temperature-dependence of ΔG
N-D(T)

, ΔH
N-D(T)

, and TΔS
N-D(T)

. The green pointers 

identify T
c
 and T

m
. The slopes of the red and black curves are given by 

N-D( ) N-D( )T TG T S    and N-D( ) N-DT pH T C   , respectively.  (B) An appropriately 

scaled version of plot on the left. The reference temperatures are as described in the parent 

figure. 
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Figure 2.  

Temperature-dependence of m
TS-D(T)

 and m
TS-N(T)

.  

(A) m
TS-D(T)

 is a minimum at T
S
, is identical to m

D-N
 at T

S()
 and T

S()
, and is greater than m

D-N
 

for T ≤ T < T
S()

 and T
S() 

< T ≤ T. The slope of this curve is given by D-N( ) 2 φTS  (B) 

m
TS-N(T)

 is a maximum at T
S
, zero at T

S()
 and T

S()
, and negative for T 

 ≤ T < T
S()

 and T
S() 

< 

T ≤ T. The slope of this curve is given by N-D( ) 2 φTS . While the slopes of these curves 

are related to the activation entropies, the second derivatives of these functions with respect 

to temperature are related to the heat capacities of activation as shown in Paper-II. The values 

of the reference temperatures are given in Table 1. 
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Figure 2−figure supplement 1.  

Temperature-dependence of 
T(fold)(T)

 and 
T(unfold)(T)

. 

(A) 
T(fold)(T)

 is a minimum at T
S
, unity at T

S()
 and T

S()
, and greater than unity for T ≤ T < 

T
S()

 and T
S() 

< T ≤ T. The slope of this curve is given by D-N( ) D-N φ2TS m  (B) 
T(unfold)(T)

 

is a maximum at T
S
, zero at T

S()
 and T

S()
, and negative for T ≤ T < T

S()
 and T

S() 
< T ≤ T. 

The slope of this curve is given by N-D( ) D-N φ2TS m . From the perspective of Tanford’s 

framework, the SASA of the TSE is the least native-like at T
S
 but becomes progressively 

more native-like as the temperature deviates from the T
S
, and is identical to the SASA of the 

NSE at T
S()

 and T
S()

; and for T ≤ T < T
S()

 and T
S() 

< T ≤ T, the TSE is more compact than 

the NSE.  
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Figure 3.  

Marcus curve-crossings at T
S
 and T

m
. 

(A) Figure 2A reproduced for comparison. (B) Curve-crossing at T
S
 where ΔG

D-N(T)
 is a 

maximum and purely enthalpic (Figure 1). The relevant parameters are as follows: ΔG
TS-D(T) 

= 2.547 kcal.mol-1, ΔG
TS-N(T)

 = 4.964 kcal.mol-1, ΔG
D-N(T)

 = 2.417 kcal.mol-1, k
f(T)

 = 22009 s-1, 

k
u(T)

= 280.8 s-1, m
TS-D(T)

= 0.5792 kcal.mol-1.M-1 and m
TS-N(T)

= 0.2408 kcal.mol-1.M-1. (C) 

Curve-crossing at T
m
 and T

c
 where ΔG

TS-D(T)
= ΔG

TS-N(T)
 = 3.032 kcal.mol-1, ΔG

D-N(T)
 = 0, k

f(T)
 

= k
u(T) 

= 23618 s-1, m
TS-D(T)

= 0.6319 kcal.mol-1.M-1 and m
TS-N(T)

= 0.1881 kcal.mol-1.M-1.The 

DSE and the NSE-parabolas are given by 2
DSE( , )  r TG r and 

 2

NSE( , ) D-N D-N( )= –   – r T TG m r G  , respectively,  = 7.594  M2.mol.kcal-1,  = 85.595 

M2.mol.kcal-1, m
D-N

 (0.82 kcal.mol-1.M-1) is the separation between the vertices of the DSE 

and the NSE-parabolas along the abscissa, and r is any point on the abscissa. The abscissae 

are identical for plots B and C. The values of the reference temperatures are given in Table 1. 
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Figure 4.  

Marcus curve-crossings at T
S()

 and T. 

(A) Figure 2A reproduced for comparison. The blue and red dots represent T and T, 

respectively. The red reference line represents m
D-N

. (B) Curve-crossing at T where m
TS-D(T)

 

> m
D-N

. The relevant parameters are as follows: ΔG
TS-D(T) 

= 5.9136 kcal.mol-1, ΔG
TS-N(T)

 = 

0.3338 kcal.mol-1, ΔG
D-N(T)

 = −5.5798 kcal.mol-1, k
f(T)

 = 1017 s-1, k
u(T)

= 1414594 s-1, m
TS-D(T)

= 

0.8824 kcal.mol-1.M-1 and m
TS-N(T)

= −0.0624 kcal.mol-1.M-1. (C) Curve-crossing at T
S()

 and 

T
S()

 where m
TS-D(T)

 = m
D-N

 = 0.82 kcal.mol-1.M-1, m
TS-N(T)

 = 0, ΔG
TS-N(T) 

= 0, ΔG
TS-D(T) 

= λ = 

5.106 kcal.mol-1, ΔG
D-N(T)

 = − λ, and k
u(T) 

= k0 = 2180965 s-1. The parabolas have been 

generated as described in the legend for Figure 3.The values of the reference temperatures 

are given in Table 1. The rate at which the curve-crossing shifts with stability relative to the 

vertex of the DSE-parabola is given by TS-D( ) D-N( ) 1 2T Tm G     . 
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Figure 4−figure supplement 1.  

An appropriately scaled view of Marcus curve-crossings at T
S()

 and T. 

(A) Curve-crossing at T
S()

 and T
S()

 where m
TS-D(T)

 = m
D-N

, m
TS-N(T)

 = 0, ΔG
TS-N(T) 

= 0,

 2

TS-D ( ) D-N λT mG    , ΔG
D-N(T)

 = − λ, and k
u(T) 

= k0. (B) Curve-crossing at T where m
TS-

D(T)
 > m

D-N
.  
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Figure 5.  

Temperature-dependence of the Gibbs activation energies for folding and unfolding. 

(A) ΔG
TS-D(T) 

is a minimum at T
S
, identical to  2

D-Nλ  m  = 5.106 kcal.mol-1  at T
S()

 and 

T
S()

, and greater than λ for T ≤ T < T
S()

 and T
S() 

< T ≤ T. Note that 

TS-D( ) TS-D( ) 0T TG T S      at T
S
. (B) In contrast to ΔG

TS-D(T)
 which has only one 

extremum, ΔG
TS-N(T) 

is a maximum at T
S
 and a minimum (zero) at T

S()
 and T

S()
; 

consequently, TS-N( ) TS-N( ) 0T TG T S     at T
S()

, T
S
 and T

S()
. Although unfolding is 

barrierless at T
S()

 and T
S()

, it is once again barrier-limited for  T ≤ T < T
S()

 and T
S() 

< T ≤ 

T; however, unlike the conventional barrier-limited unfolding which is characteristic for 

T
S() 

< T < T
S()

, these two regimes fall under the Marcus-inverted-region and can be 

rationalized from Figures 2, 4, and their figure supplements. The values of the reference 

temperatures are given in Table 1. 
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Figure 5−figure supplement 1.  

The principle of least displacement. 

(A) The stability of a two-state system at constant pressure and solvent conditions is the 

greatest when the denatured conformers are displaced the least from the mean of their 

ensemble along the SASA-RC to reach the TSE. The length of the green dotted line is 

identical to  D-N( )  
STG         , where ΔG

D-N(TS)
 is the stability at T

S
. The slope of this 

curve equals D-N φ2m . (B) ΔG
D-N(T)

 will be the greatest when the native conformers expose 

the greatest amount of SASA to reach the TSE. The slope of this curve equals D-N2 φm . 
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Figure 5−figure supplement 2.  

Gibbs activation energies as a function of the position of the TSE along the RC. 

(A) ΔG
TS-D(T)

 is the least when the denatured conformers bury the least amount of SASA to 

reach the TSE. The slope of this curve equals T(fold)( )λ T  . (B) ΔG
TS-N(T)

 is the greatest when 

the native conformers expose the greatest amount of SASA to reach the TSE. The green 

pointer indicates T
S()

 and T
S()

 where  m
TS-D(T)

 = m
D-N

, m
TS-N(T)

 = 
T(unfold)(T)

 = 0, ΔG
TS-N(T) 

= 0,

 2

TS-D ( ) D-N λT mG    , and ΔG
D-N(T)

 = − λ. The slope of this curve equals TS-N( ) D-Nω Tm m . 

Because m
TS-N(T)

 < 0 for T 
 ≤ T < T

S()
 and T

S() 
< T ≤ T, the slope is negative for the part 

that is to the left of the green pointer. 
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Figure 6.  

Arrhenius plots for the temperature-dependence of the rate constants.  

(A) k
f(T)

 is a maximum and ΔH
TS-D(T)

= 0 at T
H(TS-D)

. The slope of this curve is given by

TS-D( )TH R . (B) Unlike k
f(T)

 which has only one extremum, k
u(T)

 is a minimum at T
H(TS-N)

 

and a maximum at T
S()

 and T
S()

. Consequently, ΔH
TS-N(T)

= 0 at T
S()

, T
H(TS-N)

 and T
S()

. The 

slope of this curve is given by TS-N( )TH R . When T = T
S()

 or T
S()

, we have a unique 

scenario: m
TS-N(T) 

= ΔG
TS-N(T) 

= ΔH
TS-N(T) 

= 0  ΔS
TS-N(T) 

= 0, and k
u(T) 

= k0. Although 

unfolding is barrier-limited for T ≤ T < T
S()

 and T
S() 

< T ≤ T, leading to k
u(T) 

< k0, these 

ultra-low and high temperature regimes fall under the Marcus-inverted-regime as compared 

to the conventional barrier-limited unfolding which is characteristic for T
S() 

< T < T
S()

 (the 

curve-crossing occurs in-between the vertices of the DSE and the NSE Gibbs basins) and can 

be rationalized comprehensively when considered in conjunction with Figures 2, 4, and 5 

(see also their figure supplements if any). The maxima of k
f(T)

 and k
u(T)

, as well as the 

inverted-region can be better appreciated on a linear scale as shown in the figure supplement. 

The values of the reference temperatures are given in Table 1. 
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Figure 6−figure supplement 1.  

Temperature-dependence of k
f(T)

 and k
u(T)

 on a linear scale. 

(A) k
f(T)

 is a maximum and ΔH
TS-D(T) 

= 0 at T
H(TS-D)

. The slope of this curve is given by

2
( ) TS-D( )f T Tk H RT . (B) Unlike k

f(T)
 which has only one extremum, k

u(T)
 is a minimum at 

T
H(TS-N)

 and a maximum at T
S()

 and T
S()

. Although the minimum of k
u(T)

 is not apparent on a 

linear scale,  the barrierless and inverted-regimes for unfolding are readily apparent. The 

slope of this curve is given by
2

( ) TS-N( )u T Tk H RT . The features of these curves arise 

primarily from the temperature-dependence of the equilibrium constants for the partial 

folding ( [ ]D TS ) and unfolding ( [ ]N TS ) reactions as shown later. The green dots 

represent T
S
. 
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Figure 6−figure supplement 2.  

Arrhenius plot for the temperature-dependence of the rate constants with the ordinate 

on a Log scale (base10).  

A combined and appropriately rescaled version of Figure 6 to enable a ready comparison of 

the rate constants for FBP28 WW wild type (calculated using parabolic approximation) and 

the experimental rate constants for ΔNΔC Y11R W30F, a variant of FBP28 WW (reported by 

Nguyen et al., 2003, Fig. 4A). Note that the intersection of k
f(T)

 and k
u(T)

 is shifted to the left 

along the abscissa for the wild type FBP28 WW since its T
m
 is ~ 10 K greater than that of 

ΔNΔC Y11R W30F (see Table 1 in Nguyen et al., 2003).25  
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Figure 7.  

Temperature-dependence of the observed rate constant. 

(A) k
obs(T)

 is a maximum at T
S()

 and T
S()

, and a minimum around T
c
 (blue pointer). The red 

pointer indicates T
m
. The steep increase in k

obs(T)
 at very low and high temperatures is due to 

ΔG
TS-N(T)

 approaching zero as described in previous figures. (B) An overlay of k
f(T)

, k
u(T)

 and 

k
obs(T)

 to illuminate how the features of k
obs(T)

 arise from the sum of k
f(T)

 and k
u(T)

. The slopes 

of the red and blue curves are given by 2
TS-D( )TH RT and 2

TS-N( )TH RT , respectively.  
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Figure 7−figure supplement 1.  

The principle of microscopic reversibility. 

(A) k
f(T)

 is a maximum at T
H(TS-D)

 and k
u(T)

 is a minimum at T
H(TS-N)

. The slopes of the black 

and grey curves are given by 2
TS-D( )TH RT and 2

TS-N( )TH RT , respectively. (B) ΔG
TS-D(T)

 

and ΔG
TS-N(T)

 are a minimum and a maximum, respectively, at T
S
 (red pointers) leading to 

ΔG
D-N(T)

 being a maximum at T
S
 (Figure 1). Equilibrium stability is thus a consequence or 

the equilibrium manifestation of the underlying kinetic behaviour. The rate constants are 

identical at T
c
 and T

m
, leading to  D-N( ) ( ) ( ) TS-N( ) TS-D( )ln 0T f T u T T TG RT k k G G      . 
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Figure 8.  

Temperature-dependence of the activation enthalpy for folding. 

(A) The variation in ΔH
TS-D(T)

 function with temperature. The slope of this curve varies with 

temperature, equals ΔC
pTS-D(T)

, and is algebraically negative. (B) An appropriately scaled 

version of the plot on the left to illuminate the three important scenarios: (i) ΔH
TS-D(T) 

> 0 for 

T ≤ T < T
H(TS-D)

; (ii) ΔH
TS-D(T) 

< 0 for T
H(TS-D) 

< T ≤ T; and (iii) ΔH
TS-D(T) 

= 0 when T = 

T
H(TS-D)

. Note that k
f(T)

 is a maximum at T
H(TS-D)

. 
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Figure 9.  

Temperature-dependence of the activation enthalpy for unfolding. 

(A) The variation in ΔH
TS-N(T)

 function with temperature. The slope of this curve equals 

ΔC
pTS-N(T)

 and is zero at T
CpTS-N()

 and T
CpTS-N()

. (B) An appropriately scaled version of the 

figure on the left to illuminate the various temperature-regimes and their implications: (i) 

ΔH
TS-N(T)  

> 0 for T  
≤  T < T

S()
 and T

H(TS-N)
 < T < T

S()
; (ii) ΔH

TS-N(T) 
< 0 for T

S()
 < T < T

H(TS-

N)
 and T

S()
 < T  ≤ T; and (iii) ΔH

TS-N(T) 
= 0 at  T

S()
, T

H(TS-N)
, and  T

S()
. Note that at T

S()
 and 

T
S()

, we have the unique scenario: m
TS-N(T) 

= ΔG
TS-N(T) 

= ΔS
TS-N(T)

 = ΔH
TS-N(T) 

= 0, and k
u(T) 

= 

k0. The values of the reference temperatures are given in Table 1. 
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Figure 9−figure supplement 1.  

The variation in ΔH
N-TS(T)

 with temperature and the intersection of ΔH
TS-D(T)

 and ΔH
TS-

N(T)
 functions. 

(A) An appropriately scaled view of the change in enthalpy for the partial folding reaction 

[ ]TS N . The flux of the conformers from the TSE to the NSE is enthalpically: (i) 

favourable for T  
≤ T < T

S()
 and T

H(TS-N)
 < T < T

S()
 (ΔH

N-TS(T) 
< 0); (ii) unfavourable for T

S()
 

< T < T
H(TS-N)

 and T
S()

 < T ≤ T (ΔH
N-TS(T) 

> 0); and (iii) neither favourable nor unfavourable 

at  T
S()

, T
H(TS-N)

, and  T
S()

. The blue pointers indicate the temperatures where ΔC
pN-TS(T)

 (or 

−ΔC
pTS-N(T)

) is zero. (B) The intersection of the ΔH
TS-D(T)

 and ΔH
TS-N(T)

 functions occurs 

precisely at T
H
. The requirement that both ΔH

TS-D(T)
 and ΔH

TS-N(T)  
be positive at the point of 

intersection is a consequence of the theoretical relationship: T
H(TS-N)

 < T
H
 < T

S
 < T

H(TS-D)
 and 

must be satisfied by all two-state systems (see Paper II). Note that the net flux of the 

conformers from the DSE to the NSE at T
H
 is driven purely by entropy (ΔG

D-N(T) 
= –T

 
ΔS

D-

N(T)
). 
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Figure 9−figure supplement 2.  

Comparison of equilibrium and activation enthalpies. 

(A) ΔH
D-N(T)

 for the reaction N D  is zero at the temperature where ΔH
TS-D(T)

 and ΔH
TS-

N(T)
 functions intersect (the intersection of green curve and zero reference line must align 

vertically with the point where the blue and the red curves intersect). The intersection of 

ΔH
D-N(T)

 and ΔH
TS-N(T)

 functions (green and blue curves) occurs precisely when T = T
H(TS-D)

. 

This is expected since ΔH
TS-D(T) 

= 0 at T
H(TS-D)

. The similarity in the slopes of the ΔH
D-N(T)

 

and ΔH
TS-N(T)

 functions between ~ 240 K and ~ 320 K implies that most of ΔC
pD-N

 stems 

from the first-half of the unfolding reaction [ ]N TS . (B) An appropriately scaled view of 

the encircled area in the figure on the left. When T = T
H(TS-N)

, ΔH
TS-D(T)

 is identical to |ΔH
D-

N(T)
| or ΔH

N-D(T)
. Further, at the temperature where ΔH

TS-D(T)
 and ΔH

D-N(T)
 functions intersect 

(i.e., the intersection of the red and the green curves), the absolute enthalpy of the DSE 

(H
D(T)

) is exactly half the algebraic sum of the absolute enthalpies of the TSE (H
TS(T)

) and the 

NSE (H
N(T)

), i.e.,  D( ) TS( ) N( ) 2T T TH H H  . The various auxiliary relationships that may 

obtained from the intersection of various state functions are addressed in subsequent 

publications.  
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Figure 10.  

Temperature-dependence of the activation entropy for folding. 

(A) The variation in ΔS
TS-D(T)

 function with temperature. The slope of this curve varies with 

temperature and equals TS-D( )p TC T . (B) An appropriately scaled version of the figure on 

the left to illuminate the three temperature regimes and their implications: (i) ΔS
TS-D(T)

 > 0 for  

T 
≤ T < T

S
; (ii) ΔS

TS-D(T)
 < 0 for T

S
 < T ≤ T; and (iii) ΔS

TS-D(T)
 = 0 when T = T

S
. 
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Figure 10−figure supplement 1.  

Activation entropy for folding vs curve-crossing. 

(A) ΔS
TS-D(T)

 is zero when the denatured conformers are displaced the least from the mean of 

their ensemble to reach the TSE along the SASA-RC. The slope of this curve is given by 

D-N( ) TS-D( ) φ2T p TT S C   (B) ΔS
TS-D(T)

 is zero when the SASA of the TSE is the least native-

like. The slope of this curve is given by D-N( ) D-N TS-D( )2 φT p TT S m C  .The blue and the red 

sections of the curves represent the temperature regimes T 
≤ T ≤ T

S
 and T

S 
≤ T ≤ T, 

respectively. 
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Figure 10−figure supplement 2.  

Activation entropy vs ΔG
TS-D(T)

 and ΔG
D-N(T)

.  

(A) ΔG
TS-D(T)

 is always the least when it is purely enthalpic. The slope of this curve equals 

TS-D( ) TS-D( )T p TT S C   . (B) The stability is always the greatest when the activation entropy 

for folding is the zero. The slope of this curve equals D-N( ) TS-D( )T p TT S C   . The blue and 

the red sections of the curves represent the temperature regimes T 
≤ T ≤ T

S
 and T

S 
≤ T ≤ T, 

respectively. 
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Figure 11.  

Temperature-dependence of the activation entropy for unfolding. 

(A) The variation in ΔS
TS-N(T)

 function with temperature. The slope of this curve, given by

TS-N( )p TC T , varies with temperature, and is zero at T
CpTS-N()

 and T
CpTS-N()

. (B) An 

appropriately scaled version of the figure on the left to illuminate the temperature regimes 

and their implications: (i) ΔS
TS-N(T)  

> 0 for T 
≤ T < T

S()
 and T

S
 < T < T

S()
; (ii) ΔS

TS-N(T) 
< 0 

for T
S()

 < T < T
S
 and   T

S() 
< T ≤ T; and (iii) ΔS

TS-N(T) 
= 0 at T

S()
, T

S
, and T

S()
. Note that at 

T
S()

 and T
S()

, we have the unique scenario: m
TS-N(T) 

= ΔG
TS-N(T) 

= ΔS
TS-N(T)

 = ΔH
TS-N(T) 

= 0, 

and k
u(T) 

= k0. The values of the reference temperatures are given in Table 1. 
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Figure 11−figure supplement 1.  

The variation in ΔS
N-TS(T)

 with temperature and comparison of equilibrium and 

activation entropies. 

(A) An appropriately scaled view of the change in entropy for the partial folding reaction 

[ ]TS N . The slope of this curve equals N-TS( )p TC T  (or TS-N( )p TC T ) and is zero at 

T
CpTS-N()

 and T
CpTS-N()

. The flux of the conformers from the TSE to the NSE is entropically: 

(i) unfavourable for T  
≤ T < T

S()
 and T

S
 < T < T

S()
 (ΔS

N-TS(T) 
< 0); (ii) favourable for T

S()
 < 

T < T
S
 and T

S()
 < T ≤ T (ΔS

N-TS(T) 
> 0); and (iii) neutral at T

S()
, T

S
, and T

S()
. (B) An overlay 

of ΔS
D-N(T)

, ΔS
TS-D(T)

 and ΔS
TS-N(T)

 functions. Unlike the ΔH
TS-D(T)

 and ΔH
TS-N(T) 

functions 

which must be positive at the point of intersection (Figure 9−figure supplement 1B), theory 

dictates that both ΔS
TS-D(T)

 and ΔS
TS-N(T)

 functions must independently be equal to zero at T
S
, 

leading to the unique scenario: S
D(T)

 = S
TS(T)

 = S
N(T)

. The similarity in the slopes of the ΔS
D-

N(T)
 and ΔS

TS-N(T)
 functions between ~ 240 K and ~ 320 K implies that most of ΔC

pD-N
 stems 

from the first-half of the unfolding reaction [ ]N TS . Consequently at T
S
, ΔG

D-N(T) 
= ΔH

D-

N(T)
, i.e., the net flux of the conformers from the DSE to the NSE is driven purely by enthalpy. 
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Figure 11−figure supplement 2.  

Activation entropy for unfolding vs curve-crossing. 

(A) Unlike the ΔS
TS-D(T) 

function which is zero only once, ΔS
TS-N(T)

 is zero once when the 

native conformers are displaced the greatest to reach the TSE (T
S
), and twice when this 

displacement is zero (green pointer; T
S() 

and T
S()

). The slope of this curve is given by 

D-N( ) TS-N( )2 φT p TT S C   . (B) ΔS
TS-N(T)

 is zero once when the difference in SASA between 

the TSE and the NSE is the greatest (T
S
), and twice when the SASA of the TSE is identical to 

that of the NSE (green pointer; T
S() 

and T
S()

). The slope of this curve is given by 

D-N( ) D-N TS-N( )2 φT p TT S m C   . The blue and the red sections of the curves represent the 

temperature regimes T 
≤ T ≤ T

S
 and T

S 
≤ T ≤ T, respectively. 
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Figure 11−figure supplement 3.  

Activation entropy vs ΔG
TS-N(T)

 and ΔG
D-N(T)

.  

(A) ΔG
TS-N(T)

 is the greatest and also the least (zero) when it is purely enthalpic, with the 

former occurring at T
S
, and the latter occurring at T

S() 
and T

S()
 (green pointer).  The slope of 

this curve equals TS-N( ) TS-N( )T p TT S C   . (B) The stability is always the greatest at T
S
 where 

the Gibbs barrier to unfolding is purely enthalpic; and at T
S() 

and T
S()

 (green pointer), ΔG
D-

N(T)
 = − λ.  The slope of this curve equals D-N( ) TS-N( )T p TT S C   . The blue and the red 

sections of the curves represent the temperature regimes T 
≤ T ≤ T

S
 and T

S 
≤ T ≤ T, 

respectively. 

 

 

 

 

 

 

 

 

STS-N(T) (kcal.mol-1.K-1)

-0.6 -0.4 -0.2 0.0 0.2 0.4

 G
T

S
-N

(T
) 

(k
ca

l.m
ol

-1
)

0

1

2

3

4

5

STS-N(T) (kcal.mol-1.K-1)

-0.6 -0.4 -0.2 0.0 0.2 0.4

 G
D

-N
(T

) 
(k

ca
l.m

ol
-1

)

-6

-3

0

3

A B

TS
TS



Page 85 of 129 
 

 

Figure 11−figure supplement 4.  

The first derivatives of m
TS-D(T)

 and the square of m
TS-D(T) 

with respect to temperature.  

(A) TS-D( )Tm T  is negative for T 
≤ T < T

S
, positive for T

S
 < T ≤ T, and zero at T

S
 and is 

dictated by Eq. (A4). (B) Because    TS-D( ) TS-D( ) TS-

2

D( )2T T TmTm m T      and m
TS-D(T)

 > 0 

throughout the temperature regime, the variation of its algebraic sign is identical to that of 

TS-D( )Tm T  . The relationship between TS-D( )Tm T   and ΔS
TS-D(T)

 is given by Eq. (8). 
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Figure 11−figure supplement 5.  

The first derivatives of m
TS-N(T)

 and the square of m
TS-N(T)

 with respect to temperature.  

(A) TS-N( )Tm T  is positive for T 
≤ T < T

S
, negative for T

S
 < T ≤ T, and zero at T

S
 and is 

governed by Eq. (A6).  (B) Because    TS-N( ) TS-N( ) TS-

2

N( )2T T TmTm m T      and m
TS-N(T)

 

can be negative, zero or positive depending on the temperature, the variation of its algebraic 

sign with temperature is far more complex: (i)  TS-N( )

2

Tm T   is negative for T 
≤ T < T

S()
 

and T
S
 < T < T

S()
 ; (ii) positive for T

S()
 < T < T

S
 and T

S()
 < T ≤ T; and (iii) zero at T

S()
, T

S
, 

and T
S()

. The relationship between TS-N( )Tm T   and ΔS
TS-N(T)

 is given by Eq. (9). The blue 

pointers indicate the temperatures at which the second derivative of the square of m
TS-N(T)

 is 

zero and are identical to the temperatures at which ΔC
pTS-N(T)

 is zero. 
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Figure 12.  

Entropy-enthalpy compensation for the partial folding reaction [ ]D TS . 

Despite large changes in ΔH
TS-D(T)

 (~ 400 kcal.mol-1) ΔG
TS-D(T)

 which is a minimum at T
S
, 

varies only by ~3.4 kcal.mol-1 due to compensating changes in ΔS
TS-D(T)

. See the 

appropriately scaled figure supplement for description. The physical basis for entropy-

enthalpy compensation is addressed in the accompanying article. 
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Figure 12−figure supplement 1.  

Deconvolution of the Gibbs activation energy for the reaction [ ]D TS .. 

This is an appropriately scaled view of Figure 12B. For T ≤ T < T
S
, TΔS

TS-D(T) 
> 0 but is 

more than offset by unfavourable ΔH
TS-D(T)

, leading to incomplete compensation and a 

positive ΔG
TS-D(T) 

( TS-D( ) TS-D( ) 0T TH T S    ). When T = T
S
, ΔG

TS-D(T)
 is a minimum and 

purely enthalpic ( TS-D( ) TS-D( ) 0T TG H    ). For T
S
 < T < T

H(TS-D)
, the activation is 

enthalpically and entropically disfavoured (ΔH
TS-D(T) 

> 0 and TΔS
TS-D(T)

< 0) leading to a 

positive ΔG
TS-D(T)

. In contrast, for T
H(TS-D) 

< T ≤ T, ΔH
TS-D(T) 

<  0 but is more than offset by 

the unfavourable entropy (TΔS
TS-D(T)

 <  0), leading once again to a positive ΔG
TS-D(T)

. When T 

= T
H(TS-D)

, ΔG
TS-D(T) 

is purely entropic ( TS-D( ) TS-D( ) 0T TG T S     ) and k
f(T)

 is a maximum. 
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Figure 13.  

Entropy-enthalpy compensation for the partial unfolding reaction [ ]N TS . 

Despite large changes in ΔH
TS-N(T)

, ΔG
TS-N(T)

 which is a maximum at T
S
, varies only by ~5 

kcal.mol-1 due to compensating changes in ΔS
TS-N(T)

. See the appropriately scaled figure 

supplement for description.  
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Figure 13−figure supplement 1.  

Deconvolution of the Gibbs activation energy for unfolding. 

These are appropriately scaled split views of Figure 13B. (A) For T 
≤ T < T

S()
, [ ]N TS

entropically favoured (TΔS
TS-N(T) 

> 0) but is more than offset by endothermic enthalpy (ΔH
TS-

N(T) 
> 0) leading to TS-N( ) TS-N( ) 0T TH T S    . When T = T

S()
, ΔS

TS-N(T) 
= ΔH

TS-N(T)
 = 0  

ΔG
TS-N(T)

 = 0, and k
u(T)

 = k0. For T
S() 

< T < T
H(TS-N)

, [ ]N TS is enthalpically favourable 

(ΔH
TS-N(T)

 < 0) but is more than offset by the unfavourable negentropy (TΔS
TS-N(T)

 < 0) 

leading to ΔG
TS-N(T)

 > 0. When T = T
H(TS-N)

, ΔH
TS-N(T)

 = 0 for the second time, ΔG
TS-N(T)

 is 

purely due to the negentropy ( TS-N( ) TS-N( ) 0T TG T S     ), and k
u(T)

 is a minimum. For T
H(TS-

N) 
< T < T

S
, [ ]N TS  is entropically and enthalpically unfavourable (ΔH

TS-N(T)
 > 0 and 

TΔS
TS-N(T)

 < 0) leading to ΔG
TS-N(T)

 > 0. When T = T
S
, ΔS

TS-N(T)
 = 0 for the second time, and 

ΔG
TS-N(T)

  is a minimum and purely enthalpic ( TS-N( ) TS-N( ) 0T TG H    ). (B) For T
S
 < T < 

T
S()

, [ ]N TS  is entropically favourable (TΔS
TS-N(T)

 > 0) but is more than offset by the 

endothermic enthalpy (ΔH
TS-N(T)

 > 0) leading to a positive ΔG
TS-N(T)

. When T = T
S()

, ΔS
TS-N(T) 

= ΔH
TS-N(T)

 = 0 for the third and the final time, ΔG
TS-N(T)

 = 0 for the second and final time, 

and  k
u(T)

 = k0. For T
S()

< T ≤ T, [ ]N TS is enthalpically favourable (ΔH
TS-N(T)

 < 0) but is 

more than offset by the unfavourable negentropy (TΔS
TS-N(T)

 < 0), leading to ΔG
TS-N(T)

 > 0 

and k
u(T)

 < k0. 
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Figure 13−figure supplement 2.  

Entropy-enthalpy compensation for the partial folding reaction [ ]TS N  

Despite large changes in ΔH
N-TS(T)

, ΔG
N-TS(T)

 which is a minimum at T
S
, varies only by ~5 

kcal.mol-1 due to compensating changes in ΔS
N-TS(T)

. See the appropriately scaled figure 

supplement for description. 
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Figure 13−figure supplement 3.  

Deconvolution of the change in Gibbs energy for the partial folding reaction [ ]TS N . 

These are appropriately scaled split views of Figure 13−figure supplement 2B. (A) For T 
≤ 

T < T
S()

, [ ]TS N  is entropically disfavoured (TΔS
N-TS(T) 

< 0) but is more than 

compensated by the exothermic enthalpy (ΔH
N-TS(T)  

< 0 ), leading to ΔG
N-TS(T)

 < 0. When T = 

T
S()

, ΔS
N-TS(T) 

= ΔH
N-TS(T)

 = ΔG
N-TS(T)

 = 0, and the net flux of the conformers from the TSE to 

the NSE is zero. For T
S() 

< T < T
H(TS-N)

, [ ]TS N is enthalpically unfavourable (ΔH
N-TS(T)

 > 

0) but is more than compensated by entropy (TΔS
N-TS(T)

 > 0) leading to ΔG
N-TS(T)

 < 0. When T 

= T
H(TS-N)

, the net flux from the TSE to the NSE is driven purely by the favourable change in 

entropy ( N-TS( ) N-TS( ) 0T TG T S     ). For T
H(TS-N) 

< T < T
S
, the net flux of the conformers 

from the TSE to the NSE is entropically and enthalpically favourable (ΔH
N-TS(T)

 < 0 and 

TΔS
N-TS(T)

 > 0) leading to ΔG
N-TS(T)

 < 0. When T = T
S
, the net flux is driven purely by the 

exothermic change in enthalpy ( N-TS( ) N-TS( ) 0T TG H    ). (B) For T
S
 < T < T

S()
,[ ]TS N

is entropically unfavourable (TΔS
N-TS(T)

 < 0) but is more than compensated by the exothermic 

enthalpy (ΔH
N-TS(T)

 < 0) leading to ΔG
N-TS(T) 

< 0. When T = T
S()

, ΔS
N-TS(T) 

= ΔH
N-TS(T)

 = ΔG
N-

TS(T)
 = 0, and the net flux of the conformers from the TSE to the NSE is zero. For T

S()
< T ≤ 

T, [ ]TS N is enthalpically unfavourable (ΔH
N-TS(T)

 > 0) but is more than compensated by 

the favourable change in entropy (TΔS
N-TS(T)

 > 0), leading to ΔG
N-TS(T)

 < 0. 

 

Temperature (K)

180 194 208 222 236 250 264 278

kc
al

.m
ol

-1

-10

-5

0

5

10

15

20

TSN-TS(T) 
HN-TS(T) 

Temperature (K)

278 290 302 314 326 338 350 362 374 386

kc
al

.m
ol

-1

-30

-20

-10

0

10

TH(TS-N)

TS

TS()

TS()

A B



Page 93 of 129 
 

 

Figure 14.  

Temperature-dependence of the Massieu-Planck activation potentials. 

 (A) The Massieu-Planck activation potential for folding is a minimum at T
H(TS-D)

. The slope 

of this curve is given by 
2

TS-D( )TH T .  (B) The Massieu-Planck activation potential for 

unfolding is a maximum at T
H(TS-N)

 and a minimum (zero) at T
S()

 and T
S()

.  The slope of this 

curve is given by 
2

TS-N( )TH T . The temperature T
S
 at which ΔG

TS-D(T)
 and ΔG

TS-N(T)
 are a 

minimum and a maximum, respectively, are indicated by green circles.  
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Figure 14−figure supplement 1.  

Temperature-dependence of K
TS-D(T)

 and  K
TS-N(T)

. 

(A) Temperature-dependence of  TS-D  [ ] [ ]TK TS D  for the partial folding reaction 

[ ]D TS . K
TS-D(T)

 is a maximum not when ΔG
TS-D(T)

 is a minimum (green circle) but when 

the Massieu-Planck activation potential for folding,  TS-D  TG T , is a minimum, and occurs 

precisely when T = T
H(TS-D)

. The slope of this curve is given by
2

TS-D( ) TS-D( )T TK H RT . (B) 

Temperature-dependence of  TS-N  [ ] [ ]TK TS N  for the partial unfolding reaction [ ]N TS . 

K
TS-N(T)

 is a minimum not when ΔG
TS-N(T)

 is a maximum (green circle) but when the Massieu-

Planck activation potential for unfolding,  TS-N  TG T , is a maximum, and occurs precisely 

when T = T
H(TS-N)

. The slope of this curve is given by
2

TS-N( ) TS-N( )T TK H RT . Note that K
TS-

N(T)
 is unity at T

S()
 and T

S()
. It is not possible to capture the minimum of K

TS-N(T)
 on a linear 

scale; hence the ordinate is shown on a log scale (base 10). The green circles represent the 

temperature T
S
 at which ΔG

D-N(T)
 and ΔG

TS-N(T)
 are both a maximum, ΔG

TS-D(T)
 is a minimum, 

and the absolute entropies of the DSE, the TSE and the NSE are identical. 
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Figure 14−figure supplement 2.  

Temperature-dependence of the equilibrium constant for the reaction D N .  

(A) An overlay of the ratio of the rate constants for folding and unfolding and the equilibrium 

constant derived from the Gibbs energy of folding at equilibrium. The curve fits to 

Boltzmann distribution and is a maximum at T
H
. The slope of this curve is given by

2
N-D( ) N-D( )T TK H RT .  Although the value of ΔH

D-N(T)
 can be calculated for any temperature 

above absolute zero using Eq. (A1), it has physical meaning only for T 
≤ T ≤ T. This 

applies to ΔS
D-N(T)

 and ΔG
D-N(T)

 as well (Eqs. (A2) and (A3)). (B) The solubility of the NSE 

as compared to the DSE is the greatest when the net flux of the conformers from the DSE to 

the NSE is driven purely by the difference in entropy between these two reaction-states. The 

slope of this curve is given by
2

N-D( ) N-D( ) N-DT T pK H C RT  . 
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Figure 14−figure supplement 3.  

The solubility of the TSE relative to the DSE and the NSE across a broad temperature 

regime. 

(A) The solubility of the TSE as compared to the DSE is the greatest when ΔH
TS-D(T)

= 0, or 

equivalently, when the Gibbs barrier to folding is purely entropic. The slope of this curve is 

given by 2
TS-D( ) TS-D( ) TS-D( )T T p TK H C RT  . The blue and red sections of the curve represent the 

temperature regimes T ≤ T ≤ T
H(TS-D)

  and  T
H(TS-D) 

≤ T ≤ T, respectively. (B) The solubility 

of the TSE as compared to the NSE is the least when ΔH
TS-N(T)

= 0 and when the Gibbs barrier 

to unfolding is purely entropic. The slope of this curve is given by
2

TS-N( ) TS-N( ) TS-N( )T T p TK H C RT  . The point where the solubility of the TSE is identical to that 

of the NSE is indicated by the unlabelled black pointer, and described earlier, occurs 

precisely at T
S()

 and T
S()

. The blue and red sections of the curve represent the temperature 

regimes T ≤ T ≤ T
H(TS-N)

  and  T
H(TS-N) 

≤ T ≤ T, respectively. Note that the ordinate is on a 

log scale (base 10). 

 

 

 

 

HTS-D(T) (kcal.mol-1)

-250 -200 -150 -100 -50 0 50 100

10
00

 x
 K

T
S

-D
(T

) 

0

2

4

6

8

10

12

14

HTS-N(T) (kcal.mol-1)

-200 -150 -100 -50 0 50

K
T

S
-N

(T
) 

1e-4

1e-3

1e-2

1e-1

1e+0

A B

TH(TS-D)

TH(TS-N)

T T

T T



Page 97 of 129 
 

 

Figure 14−figure supplement 4.  

The natural logarithm of k
f(T) 

is linearly dependent on the Massieu-Planck activation 

potential for folding. 

(A) The natural logarithm of k
f(T)

 has a complex dependence on the Gibbs barrier to folding 

when explored over a large temperature range. The slope of this curve is given by

2
TS-D( ) TS-D( )T TH S RT  . (B) The natural logarithm of k

f(T)
 decreases linearly with an 

increase in the Massieu-Planck activation potential for folding, with the magnitude of the 

negative slope being given by the reciprocal of the gas constant. The y-intercept at zero 

Massieu-Planck potential yields the value of the prefactor. Naturally, k
f(T)

 is a maximum 

when the magnitude of the Massieu-Planck function for folding is a minimum, and this 

occurs precisely at T
H(TS-D)

.  
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Figure 14−figure supplement 5.  

The natural logarithm of k
u(T) 

is linearly dependent on the Massieu-Planck activation 

potential for unfolding. 

(A) The natural logarithm of k
u(T)

 has a complex dependence on the Gibbs barrier to 

unfolding when explored over a large temperature range. The slope of this curve is given by

2
TS-N( ) TS-N( )T TH S RT  . (B) The natural logarithm of k

u(T)
 decreases linearly with an 

increase in the Massieu-Planck activation potential for unfolding, with the magnitude of the 

negative slope being given by the reciprocal of the gas constant. The y-intercept at zero 

Massieu-Planck potential yields the value of the prefactor. Naturally, k
u(T)

 is a minimum 

when the magnitude of the Massieu-Planck function for unfolding is a maximum, and this 

occurs precisely at T
H(TS-N)

. The reason why the data points for the unfolding rate constants 

extend all the way to the intercept is because the Gibbs barrier to unfolding becomes zero at 

T
S()

 and T
S()

. 
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Figure 15.  

Temperature-dependence of ΔC
pD-TS(T)

 and ΔC
pTS-N(T)

 functions. 

(A) ΔC
pD-TS(T) 

is positive throughout the temperature range and is a minimum at T
S
 (or ΔC

pTS-

D(T) 
is a maximum or the least negative at T

S
). (B) ΔC

pTS-N(T) 
is a maximum at T

S
, positive for 

T
CpTS-N()

 < T < T
CpTS-N()

, negative for T ≤ T < T
CpTS-N()

 and T
CpTS-N()  

< T ≤ T, and as 

described earlier, zero at T
CpTS-N()

 and T
CpTS-N()

. These aspects can be better appreciated 

from the appropriately scaled views shown in the figure supplement. Note that the algebraic 

sum of ΔC
pD-TS(T)

 and ΔC
pTS-N(T)

 must equal ΔC
pD-N

 throughout the temperature-regime.  
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Figure 15−figure supplement 1.  

Appropriately scaled ΔC
pD-TS(T)

 and ΔC
pTS-N(T)

 functions to showcase their features. 

(A) ΔC
pTS-N(T)

 which is a maximum and positive at T
S
, decreases with any deviation in 

temperature from T
S
, is zero at T

CpTS-N()
 and T

CpTS-N()
, and negative for T ≤ T < T

CpTS-N()
 

and T
CpTS-N() 

< T  ≤ T. (B) At the temperatures where the ΔC
pD-TS(T)

 and ΔC
pTS-N(T)

 functions 

intersect (214.1K and 345.9 K), the absolute heat capacity of the TSE is exactly half the sum 

of the absolute heat capacities of the DSE and the NSE. The black pointers indicate that the 

extrema of ΔC
pD-TS(T)

 and ΔC
pTS-N(T) 

functions, while the green pointers indicate their 

intersection. Inspection shows that ΔC
pTS-N(T) 

> ΔC
pD-TS(T)

 for 240 K < T < 320 K (shaded 

region), and is approximately five fold greater than ΔC
pTS-N(T)

 at T
S
 (343.7/73.3 = ~ 4.7) 

despite ~30% and ~70% of the total change in SASA for the unfolding reaction N D  

occurring in the partial unfolding reactions [ ]N TS  and [ ]TS D , respectively (Figure 

2−figure supplement 1).  
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Figure 15−figure supplement 2.  

The second derivatives of m
TS-D(T)

 and m
TS-N(T)

 with respect to temperature. 

(A) The second derivative of m
TS-D(T)

 according to Eq. (A9).  (B) The second derivative of 

m
TS-N(T)

 according to Eq. (A10). The sole intent of these figures is to demonstrate that the 

gross features of the temperature-dependence of the heat capacity functions arise primarily 

from the second derivatives of the temperature-dependent shift in the position of the TSE 

relative to the vertices of the DSE or the NSE Gibbs parabolas along the RC. See Figure 

15−figure supplement 3 for the location of the extrema of these two functions.  
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Figure 15−figure supplement 3.  

The extrema of the second derivatives of m
TS-D(T)

 and m
TS-N(T)

 with respect to 

temperature are not at T
S
. 

The sole intent of these appropriately scaled figures is to demonstrate that although the gross 

features of the temperature-dependence of the heat capacity functions arise predominantly 

from the second derivatives of the temperature-dependent shift in the position of the TSE 

along the RC, the minimum of TS-D )
2 2

(Tm T   and the maximum of TS-N )
2 2

(Tm T  do not 

occur at T
S
 (green circles), and is apparent from comparison of Eqs. (12), (13), (A9) and 

(A10). 
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Figure 16.  

Comparison of the position of the TSE along the heat capacity RC and the SASA-RC. 

(A) Although the temperature-dependences of 
H(fold)(T)

 is consistent with 
T(fold)(T)

, and both 

are a minimum at T
S
, their magnitudes are not even remotely similar across a large 

temperature regime (240 K < T < 320 K, shaded area); and when T = T
S
, 

T(fold)(T)
 is four fold 

greater than 
H(fold)(T)

 (0.7063/0.1759 = 4.0). Note that the position of the TSE relative to the 

DSE along the heat capacity and SASA-RCs are identical at the points of intersection (203.6 

K and 358.3 K). (B) Although the temperature-dependence of 
H(unfold)(T)

 is consistent with 


T(unfold)(T)

, and both are a maximum at T
S
, 

H(unfold)(T)
 > 

T(unfold)(T) 
for 240 K < T < 320 K; and 

when T = T
S
, 

H(unfold)(T)
 is ~2.8 fold greater than 

T(unfold)(T)
 (0.8241/0.2937 = 2.81). The 

position of the TSE relative to the NSE along the heat capacity and SASA-RCs are identical 

at the points of intersection (203.6 K and 358.3 K). See Figure 16−figure supplement 1 for 

unscaled plots of 
H(fold)(T)  

and 
H(unfold)(T)

. 
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Figure 16−figure supplement 1. 

Temperature-dependence of 
H(fold)(T)  

and 
H(unfold)(T)

. 

(A) Variation in 
H(fold)(T)

 with temperature according to Eq. (26). (B) Variation in 
H(unfold)(T)

 

with temperature according to Eq. (27). The location of the extrema is not apparent in these 

figures. Note that although the algebraic sum of 
H(fold)(T)  

and 
H(unfold)(T)

 must always be unity 

for a two-state system, they need not be individually restricted to a canonical range of 0 to 1. 
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Figure 17.  

Comparison of the position of the TSE along the heat capacity and the entropic RCs. 

(A) The position of the TSE with respect to the DSE along the heat capacity and the entropic 

RCs are identical at T
S
, and non-identical for T ≠ T

S
. (B) The position of the TSE with respect 

to the NSE along the heat capacity and the entropic RCs are identical at T
S
, and non-identical 

for T ≠ T
S
. See Figure 17−figure supplement 1 for unscaled plots of 

G(fold)(T)  
and 


G(unfold)(T)

. 
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Figure 17−figure supplement 1. 

Temperature-dependence of 
G(fold)(T)  

and 
G(unfold)(T)

. 

(A) Variation in 
G(fold)(T)

 with temperature according to Eq. (33). (B) Variation in 
G(unfold)(T)

 

with temperature according to Eq. (35). The location of the extrema is not apparent in these 

figures. Note that although the algebraic sum of 
G(fold)(T)  

and 
G(unfold)(T)

 must always be unity 

for a two-state system, they need not be individually restricted to a canonical range of 0 to 1. 
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Figure 18.  

Comparison of the position of the TSE along the heat capacity and the entropic RCs. 

(A) The position of the TSE with respect to the DSE along the SASA and the entropic RCs 

are identical at T
S()

 and T
S()

, and dissimilar for T ≠ T
S()

 and T
S()

. (B) The position of the 

TSE with respect to the NSE along the SASA and the entropic RCs are identical at T
S()

 and 

T
S()

, and dissimilar for T ≠ T
S()

 and T
S()

. The green pointers indicate T
S()

 and T
S()

. 
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Figure 19.  

The intersection of 
G(T) 

and 
T(T)

 functions. 

(A) At the midpoint of cold or heat denaturation, the position of the TSE relative to the DSE 

along the entropic RC is identical to the position of the TSE relative to the NSE along the 

SASA-RC. (B) The position of the TSE relative to the NSE along the entropic RC is identical 

to the position of the TSE relative to the DSE along the SASA-RC at the midpoint of cold or 

heat denaturation. 
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Figure 19−figure supplement 1. 

The correspondence between Gibbs parabolas and Gaussian PDFs. 

(A) Parabolic Gibbs energy curves with  = 7.594 M2.mol.kcal-1 and  = 85.595 

M2.mol.kcal-1, m
D-N

 = 0.82 kcal.mol-1.M-1 and ΔG
D-N(T)

 = 2.138 kcal.mol-1. The separation 

between curve-crossing and the vertices of the DSE and the NSE-parabolas along the 

abscissa are 0.5848 kcal.mol-1.M-1 and 0.2352 kcal.mol-1.M-1, respectively. The absolute 

values of ΔG
TS-D(T)

 and ΔG
TS-N(T)

 are 2.597 kcal.mol-1 and 4.735 kcal.mol-1, respectively. The 

parabolas have been generated as described in the legend for Figure 3. (B) Gaussian PDFs 

for the DSE and NSE generated using
 2 2

2

1
( )  = exp ( μ) 2σ

2πσ
p r r    , where r is any 

point on the abscissa,  = 0 kcal.mol-1.M-1 and 2σ 2RT   for the DSE-Gaussian, and  = 

0.82 kcal.mol-1.M-1 and 2σ 2RT for the NSE-Gaussian. The units for the Gaussian 

variances are in kcal2.mol-2.M-2. The relationship between equilibrium stability and the areas 

enclosed by the DSE and the NSE Gaussians has been addressed in Paper -I. 
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Figure 20. 

Comparison of the position of the TSE along the various reaction coordinates. 

The position of the TSE relative to the ground states depends on the choice of the RC and 

changes in a complex manner with temperature. (A) For 210 K~ < T < ~350 K (shaded 

region), the position of the TSE relative to the DSE is the most advanced along the solvent 

RC as compared to the heat capacity and entropic RCs; and for T ≠ T
S
, is the most advanced 

along the heat capacity RC as compared to the entropic RC (B) In contrast, for 210 K~ < T < 

~350 K and T ≠ T
S
, the position of the TSE relative to the NSE is the most advanced along 

the entropic RC as compared to the heat capacity RC, and is the least advanced along the 

SASA-RC.. 
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Figure 21.  

Temperature-dependence of Φ values when the protein at T
S
 is defined as the wild type. 

(A) Temperature-dependence of 
F(internal)(T)

. (B) Temperature-dependence of 
U(internal)(T)

. 

The red pointers indicate the extrema of the functions. The discontinuities in the curves 

which must occur at T
S
 have been removed by mathematically manipulating Eqs. (44) and 

(45) (manipulated equations not shown). Nevertheless, 
F(internal)(T)

 and 
U(internal)(T)

 are 

undefined at T
S
 (i.e., the curves have holes at T

S
 which is not obvious). Note that the 

mathematical stipulation that 
F(internal)(T)

 + 
U(internal)(T)

 = 1 for a two-state system is satisfied 

for all temperatures. 
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Figure 21−figure supplement 1. 

The magnitude of 
(internal)(T)

 is dependent on the definition of the wild type. 

(A) 
F(internal)(T) 

calculated using the protein at T
S
 as the wild type must always be lower than 


F(internal)(T)

  calculated using protein at T ≠ T
S
 as the wild type. (B) 

U(internal)(T) 
calculated 

using the protein at T
S
 as the wild type must always be greater than 

U(internal)(T)
  calculated 

using protein at T ≠ T
S
 as the wild type. For the blue curves we have ΔG

(wt)
 ≡ ΔG

(TS)
, and for 

the red curves, we have ΔG
(wt)

 ≡ ΔG
(Tm)

. This notation applies to both equilibrium and 

activation energies. The blue curves are undefined (0/0) at T
S
, and the red curves are 

undefined at T
c
 and T

m
. Note that the mathematical stipulation that 

F(internal)(T)
 + 

U(internal)(T)
 

= 1 for a two-state system is satisfied for both the blue and the red curves for all 

temperatures. 

 

 

 

 

 

A B

Temperature (K)

180 210 240 270 300 330 360 390


U

(in
te

rn
al

)(
T

) 

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

U(Ref = TS)(T)

U(Ref = Tm)(T)

Temperature (K)

180 210 240 270 300 330 360 390


F

(in
te

rn
al

)(
T

) 

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

F(Ref = TS)(T)

F(Ref = Tm)(T)



Page 113 of 129 
 

 

Figure 21−figure supplement 2. 

Φ values can be greater than unity, negative or zero depending on the definition of the 

reference state. 

(A) 
F(internal)(T) 

calculated by defining the protein at T
ω
 as the wild type. (B) 

U(internal)(T) 

calculated by defining the protein at T
ω
 as the wild type. Although the mathematical 

stipulation that 
F(internal)(T)

 + 
U(internal)(T)

 = 1 for a two-state system is satisfied for all 

temperatures, Φ values for folding and unfolding are not restricted to the canonical range of 0 

≤  ≤ 1 when the protein at T
ω
 is defined as the reference or the wild type. Note that the 

curves are undefined at T
ω
. 
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Figure 21−figure supplement 3. 

Comparison of Leffler 
G(T)

 and Fersht 
(internal)(T)

 when the protein at T
S
 is defined as 

the wild type. 

(A) 
G(fold)(T)

 is almost identical to 
F(internal)(T)

 around the temperature of maximum stability, 

but as the temperature deviates from T
S
, 

G(fold)(T)
 increases far more steeply than 

F(internal)(T)
, 

such that for T ≠T
S
 we have 

G(fold)(T)
 > 

F(internal)(T)
. (B) 

G(unfold)(T)
 is almost identical to 


U(internal)(T)

 around the temperature of maximum stability, but as the temperature deviates 

from T
S
, 

G(unfold)(T)
 decreases far more steeply than 

U(internal)(T)
, such that for T ≠T

S
 we have 


G(unfold)(T)

 < 
U(internal)(T)

.  
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Figure 21−figure supplement 4. 

Comparison of the Leffler 
G(T)

 and Fersht 
(internal)(T)

 when the protein at T
m

 is defined 

as the wild type. 

(A) 
G(fold)(T)

 < 
F(internal)(T)

 for T
c
 < T < T

m
 and 

G(fold)(T)
 > 

F(internal)(T)
 for T < T

c
 and T > T

m
.  

(B) 
G(unfold)(T)

 > 
U(internal)(T)

 for T
c
 < T < T

m
 and 

G(unfold)(T)
 < 

U(internal)(T)
 for T < T

c
 and T > 

T
m
. Note that 

F(internal)(T)
 and 

U(internal)(T) 
are undefined for T

c
 and T

m
 (green pointers).  
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Figure 21−figure supplement 5. 

Transformation of ΔG
TS-D(T) 

and ΔG
N-D(T) 

to generate 
F(internal)(T) 

when the protein at T
S
 

is defined as the wild type. 

(A) The transformation ΔG
TS-D(T)

 − ΔG
TS-D(TS)

 (the numerator in Eq. (44)) lowers the ΔG
TS-

D(T)
 function such that the value of ΔΔG

TS-D(T-TS)
 is zero at the reference temperature.  (B) The 

transformation ΔG
N-D(T)

 – ΔG
N-D(TS)

 (the denominator in Eq. (44)) raises the ΔG
N-D(T)

 function 

such that the value of ΔΔG
N-D(T-TS)

 is zero at the reference temperature. The unmodified and 

the transformed curves are shown in black and red, respectively. 
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Figure 21−figure supplement 6. 

Transformation of ΔG
TS-N(T) 

and ΔG
D-N(T) 

to generate 
U(internal)(T) 

when the protein at T
S
 

is defined as the wild type. 

(A) The transformation ΔG
TS-N(TS)

 − ΔG
TS-N(T)

 (the numerator in Eq. (45)) flips the ΔG
TS-N(T)

 

function vertically and concomitantly shifts it along the ordinate such that the value of 

ΔΔG
TS-N(TS-T)

 at the reference temperature is zero. (B) The transformation ΔG
D-N(TS)

 – ΔG
D-

N(T)
 (the denominator in Eq. (45)) flips the ΔG

D-N(T)
 function vertically and concomitantly 

shifts it along the ordinate such that the value of ΔΔG
D-N(TS-T)

 at the reference temperature is 

zero. The unmodified and the transformed curves are shown in black and red, respectively. 
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Figure 21−figure supplement 7. 

An overlay of transformed curves and 
(internal)(T)

 when the protein at T
S
 is defined as 

the wild type. 

(A) Dividing ΔΔG
TS-D(T-TS)

 by ΔΔG
N-D(T-TS)

 generates 
F(internal)(T)

 with its minimum at T
S
. (B) 

Dividing ΔΔG
TS-N(TS-T) 

by ΔΔG
D-N(TS-T)

 generates 
U(internal)(T)

 with its maximum at T
S
.  Note 

that the dimensions of the ordinate apply only to the red and the blue curves since 
(internal)(T)

 

is dimensionless. 
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Figure 21−figure supplement 8. 

Temperature-dependence of the ratio of the Gibbs activation energies to stability. 

(A) The ratio TS-D( ) N-D( )T TG G  is negative for T
c
 < T < T

m
 and positive for T < T

c
 and T > 

T
m
. (B) The ratio TS-N( ) D-N( )T TG G  is positive for T

c
 < T < T

m
 and negative for T < T

c
 and T 

> T
m
. The vertical asymptotes are a consequence of ΔG

D-N(T)
 = −ΔG

N-D(T)
 approaching zero as 

the temperature approaches T
c
 and T

m
. Note that the ordinate is dimensionless, and that 

   TS-D( ) N-D( ) TS-N( ) D-N( ) 1T T T TG G G G      for a two-state system. 
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Figure 21−figure supplement 9. 

The complex non-linear relationship between the rate constants and the difference in 

Gibbs energies between the ground states. 

(A) k
f(T) 

vs the Gibbs energy of folding at equilibrium. The slope of this plot equals 

2
( ) TS-D( ) N-D( )f T T Tk H S RT   . (B) k

u(T) 
vs the Gibbs energy of unfolding at equilibrium. The 

Marcus-inverted-regimes which occur at very low and high temperatures are towards the 

extreme left. The slope of this plot is given by 
2

( ) TS-N( ) D-N( )u T T Tk H S RT   . (C) Natural 

logarithm of k
f(T) 

vs the Gibbs energy of folding at equilibrium (slope = 

2
TS-D( ) N-D( )T TH S RT  ). (D) Natural logarithm of k

u(T) 
vs the Gibbs energy of unfolding at 

equilibrium (slope = 
2

TS-N( ) D-N( )T TH S RT  ). The abscissae for plots A and C, and plots B 

and D are identical. The colour-code is identical for all the four plots. 
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Figure 22. 

Temperature-dependence of 
H(internal)(T)

 when the protein at T
S
 is defined as the wild 

type. 

(A) Temperature-dependence of 
HF(internal)(T)

. (B) Temperature-dependence of 
HU(internal)(T)

. 

Note that both these curves are undefined at T
S
. Although the algebraic sum of 

HF(internal)(T) 

and 
HU(internal)(T)

 is unity for all temperatures, they need not necessarily be are not restricted 

to a canonical range of 0 ≤  ≤ 1. The parameters 
HF(internal)(T)

 and 
HU(internal)(T)

 are the 

“enthalpic analogues” of 
F(internal)(T)

 and 
U(internal)(T)

, respectively (the subscript “H” 

indicates we are using enthalpy instead of Gibbs energy). Consequently, this figure is the 

enthalpic equivalent of Figure 21. 
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Figure 22−figure supplement 1. 

The magnitude of 
H(internal)(T)

 is dependent on the definition of the wild type. 

(A) A comparison of 
HF(internal)(T) 

calculated using proteins at T
S
 and T

m
 as the wild types. (B) 

A comparison of 
HU(internal)(T) 

calculated using proteins at T
S
 and T

m
 as the wild types. For the 

blue curves we have ΔH
(wt)

 ≡ ΔH
(TS)

, and for the red curves, we have ΔH
(wt)

 ≡ ΔH
(Tm)

. This 

notation applies to both equilibrium and activation enthalpies. The blue curves are undefined 

(0/0) at T
S
, and the red curves are undefined at T

c
 and T

m
. This figure is the enthalpic 

equivalent of Figure 21−figure supplement 1. 
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Figure 22−figure supplement 2. 

Comparison of the Leffler 
H(T)

 and 
H(internal)(T)

 when the protein at T
S
 is defined as the 

wild type. 

(A) 
H(fold)(T)

 is almost identical to 
HF(internal)(T)

 around the temperature of maximum stability, 

but as the temperature deviates from T
S
, 

H(fold)(T)
 increases far more steeply than 


HF(internal)(T)

, such that for T ≠T
S
 we have 

H(fold)(T)
 > 

HF(internal)(T)
. (B) 

H(unfold)(T)
 is almost 

identical to 
HU(internal)(T)

 around the temperature of maximum stability, but as the temperature 

deviates from T
S
, 

H(unfold)(T)
 decreases far more steeply than 

HU(internal)(T)
, such that for T ≠T

S
 

we have 
H(unfold)(T)

 < 
HU(internal)(T)

. Note that the parameters 
HF(internal)(T)

 and 
HU(internal)(T)

 are 

the Fersht-analogues of the Leffler 
H(fold)(T)

 and 
H(unfold)(T)

, respectively (see heat capacity 

RC). Consequently, this figure is analogous to a comparison of Leffler 
G(fold)(T)

 and Fersht 


F(internal)(T)

, and Leffler 
G(unfold)(T)

 and Fersht 
U(internal)(T)

 (see Figure 21−figure supplement 

3). 
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Figure 22−figure supplement 3. 

Comparison of the Leffler 
H(T)

 and 
H(internal)(T)

 when the protein at T
m

 is defined as the 

wild type. 

Changing the definition of the wild type from T
S
 (see previous figure) to T

m
 has a dramatic 

effect on the relationship between the Leffler-
H(T)

 and the Fersht-
H(internal)(T)

. (A) 
H(fold)(T)

 < 


HF(internal)(T)

 for ~248 K < T < T
m
, 

H(fold)(T)
 > 

HF(internal)(T)
 for T < ~248 K and T > T

m
, and 

identical when T = ~248 K. (B) 
H(unfold)(T)

 > 
HU(internal)(T)

 for ~248 K < T < T
m
, 

H(unfold)(T)
 < 


HU(internal)(T)

 for T < ~248 K and T > T
m
, and identical when T = ~248 K. Note that 


HF(internal)(T)

 and 
HU(internal)(T) 

are undefined at T
m
 and the discontinuity in the functions is 

apparent upon close inspection. This figure is the enthalpic equivalent of Figure 21−figure 

supplement 4. 
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Figure 22−figure supplement 4. 

Comparison of 
(internal)(T)

 and 
H(internal)(T)

 when the protein at T
S
 is defined as the wild 

type. 

(A) The normalized Gibbs parameter 
F(internal)(T)

 is almost identical to the normalized 

enthalpic parameter 
HF(internal)(T)

 around the temperature of maximum stability, but as the 

temperature deviates from T
S
, 

HF(internal)(T)
 increases far more steeply than 

F(internal)(T)
, such 

that for T ≠T
S
 we have 

HF(internal)(T)
 > 

F(internal)(T)
. (B) The normalized Gibbs parameter 


U(internal)(T)

 is almost identical to the normalized enthalpic parameter 
HU(internal)(T)

 around the 

temperature of maximum stability, but as the temperature deviates from T
S
, 

HU(internal)(T)
 

decreases far more steeply than 
U(internal)(T)

, such that for T ≠T
S
 we have 

HF(internal)(T)
 < 


U(internal)(T)

. Since 
(internal)(T)

 and 
H(internal)(T)

 are the Fersht-analogues of Leffler 
G(T)

 and 


H(T)

, respectively, this figure is analogous to comparing the temperature-dependent position 

of the TSE along the entropic and heat capacity RCs (i.e., a comparison of the temperature-

dependence of 
G(T)

 and 
H(T)

; see Figure 17). 
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Figure 22−figure supplement 5. 

Temperature-dependence of the ratio of the activation enthalpies to equilibrium 

enthalpies. 

(A) The ratio TS-D( ) N-D( )T TH H  is positive for T ≤ T < T
H
 and T

H(TS-D)
 < T ≤ T, negative 

for T
H 

 < T < T
H(TS-D)

 and zero at T
H(TS-D)

. (B) The ratio TS-N( ) D-N( )T TH H  is positive for T
S()

 

< T < T
H(TS-N)

 and T
H 

 < T < T
S()

, negative for T ≤ T < T
S()

, T
H(TS-N) 

 < T < T
H
, and T

S()
 < T 

≤ T, and zero at T
S()

, T
H(TS-N)

, and T
S()

. The vertical asymptotes are a consequence of ΔH
D-

N(T)
 = −ΔH

N-D(T)
 approaching zero as T→T

H
. Note that the ordinate is dimensionless, and that 

   TS-D( ) N-D( ) TS-N( ) D-N( ) 1T T T TH H H H      for a two-state system. 
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Figure 23. 

Comparison of the theoretical and experimental 
F(T)

 values (structural perturbation). 

(A) Theoretical limits of 
F(T)

 values according to parabolic approximation where all the 

1463 theoretical mutants have the following common parameters:  = 1 M2.mol.kcal-1 (DSE-

parabola);  = 30 M2.mol.kcal-1 (NSE-parabola). The wild type was arbitrarily chosen to be 

the one with parameters ΔG
D-N(T) 

= 6 kcal.mol-1 and m
D-N

 = 2 kcal.mol-1.M-1. The legend 

indicates the variation in m
D-N

 values in kcal.mol-1.M-1. The quadrants labelled x1 and x2 are 

for mutants whose m
D-N

 < m
D-N(wt)

 (i.e., a contraction of the RC) and the quadrants labelled y1 

and y2 are for those mutants whose m
D-N

 > m
D-N(wt)

 (i.e., an expansion of the RC).  Close 

inspection shows that for those mutants whose stabilities have changed but not their m
D-N

 

values, the 
F(T)

 values are positive but very close to zero (shown in cyan). Theoretical 
F
 

values corresponding to ΔΔG
D-N(wt-mut)(T)

 = 0.0 ± 0.4 kcal.mol-1 have been excluded for 

clarity. This corresponds to about 6.7% error on the wild type ΔG
D-N(wt)(T)

. (B) An overlay of 

theoretical 
F(T) 

and experimental 
F(T)

 values in water for 1035 mutants from 31 two-state 

systems. Data used to calculate the experimental 
F(T)

 values were taken from published 

literature (detailed information is given elsewhere). The vertical asymptotes are a 

consequence of ΔΔG
D-N(wt-mut)(T)

 approaching zero. 
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Figure 23−figure supplement 1. 

Parabolic Gibbs energy curves to illustrate the effect of concomitant changes in ΔG
D-N(T)

 

and m
D-N

 on the position of the TSE along the abscissa and ordinate. 

The parabolas corresponding to the DSE and NSE of the wild type are shown in black in all 

the four plots. The mutant DSE-parabolas are shown in blue and red while the mutant NSE- 

parabolas are shown in magenta. (A) The introduced mutation causes a concomitant decrease 

in ΔG
D-N(T)

 and the mean-length of the RC. (B) The introduced mutation causes a decrease in 

ΔG
D-N(T)

 but an increase in the mean-length of the RC. (C) The introduced mutation stabilizes 

the mutant but causes a concomitant decrease in the mean-length of the RC. (D) The 

introduced mutation stabilizes the protein but concomitantly causes an increase in the mean-

length of the RC. The curvatures of all the DSE-parabolas ( = 1 M2.mol.kcal-1) and all the 

NSE-parabolas ( = 30 M2.mol.kcal-1) are identical. 
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Figure 23−figure supplement 2. 

Parabolic Gibbs energy curves to illustrate the effect of a change in ΔG
D-N(T)

 on the 

position of the TSE along the abscissa and ordinate. 

The wild type DSE and NSE-parabolas are shown in black, the destabilized mutants are 

shown in red and blue, and the stabilized mutants are shown in green and magenta. As the 

protein is increasingly destabilized the curve-crossing along the RC shifts closer to the vertex 

of the NSE-parabola, and can be due to a stabilized DSE or a destabilized NSE, or both. 

Conversely, as the protein is increasingly stabilized, the curve-crossing along the RC shifts 

away from the vertex of NSE-parabola and this can be due to a destabilized DSE or a 

stabilized NSE, or both. The force constant for the DSE-parabola is  = 1 M2.mol.kcal-1. The 

curvatures of all the NSE-parabolas are identical ( = 30 M2.mol.kcal-1).  
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