
  

  

Abstract— A hybrid multiscale mathematical model of 
tumor growth is used to investigate how tumoral and 
microenvironmental heterogeneity affect the response of the 
immune system. The model includes vascular dynamics and 
evolution of metabolic tumor phenotypes. Cytotoxic T cells are 
simulated, and their effect on tumor growth is shown to be 
dependent on the structure of the microenvironment and the 
distribution of tumor phenotypes. Importantly, no single 
immune strategy is best at all stages of tumor growth. 

I. TUMOR-IMMUNE INTERACTIONS 

Both the innate and adaptive arms of the immune system 
have been shown to induce tumor cell death [1, 2]. Immune 
surveillance is widely thought to eradicate many microscopic 
cancers before they become clinically-apparent. Conversely, 
clinical cancers are assumed to have developed adaptive 
strategies to evade immune attack. We examine a simplified 
tumor-immune model that pits T cells against a small 
growing tumor. In some cases, the immune system is able to 
remove a small tumor before it becomes detectable, but here 
we focus on the case where a tumor does eventually escape, 
and look at the tumor-immune interactions. There are 
multiple mechanisms of immune evasion that tumors use, 
including immunosuppressive surface markers such as PD-
L1 [3], down-regulation of antigen presentation machinery 
[4], recruitment of immunosuppressive immune cells [5], and 
secretion of immunosuppressive factors such as TGF-ß [6] 
and extracellular acid [7]. We focus on the latter here, a 
consequence of the altered glycolytic metabolism seen in 
many tumors. 

II. TUMOR-ENVIRONMENT HETEROGENEITY 

Heterogeneity is increasingly being recognized as an 
important aspect of tumor biology. Recently, Swanton and 
colleagues [8] showed that multiple biopsies from the same 
tumor display distinct genetic profiles and yet are 
phenotypically similar. This phenotypic convergence despite 
genotypic divergence has previously been examined 
theoretically [9] and may be a predictable evolutionary 
consequence of the tumor ecosystem [10, 11]. Quantifying 
this heterogeneity and the dynamics of its evolution remain a 
challenge, as does the understanding of how it relates to 
overall outcome [12-14]. Here we examine an environment 
that is temporally and spatially heterogeneous, largely due to 
variations in blood flow, resulting in local fluctuations of 
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nutrients as well as variable infiltration of immune cells. The 
tumor cells are allowed to evolve, and selection pressures in 
each niche lead to the development of different tumor cell 
phenotypes. This heterogeneity then has implications for the 
immune response, both with respect to the tumor cells’ 
properties and the environments in which they reside. 

III. RESULTS 

Using a two-dimensional hybrid cellular automaton 
model, we simulated growing tumors in a vascularized tissue 
[15].  Heterogeneity was incorporated on two metabolic 
axes: glycolytic capacity and resistance to extracellular 
acidosis. Absent treatment, a subset of tumor cells evolve 
under environmental selection pressure to become glycolytic 
and acid resistant.  These properties cause increased tumor 
invasiveness under the right heterogeneous conditions. 

Within this context, immune pressure in the form of 
migratory cytotoxic T cells was added to the model. Figure 1 
shows the results of tumors growing under three different 
antigenic values, compared to a simulation with no T cells. 
The antigenicity is simply modeled as the rate at which T 
cells enter the domain per unit time, given a particular tumor 
size. The tumor has two growth phases: 1) the initial, slow 
growing phase when the metabolic phenotypes are still 
benign, and 2) the invasive phase, in which acid-mediated 
invasion drives fast growth. Of note is the differential effects 
of the immune response on these two phases, with the switch 
occurring near the ‘elbow’. In the first part of the growth, 
increased antigenicity leads to slower growth rates for the 
tumor, expected since more T cells equates with faster tumor 
cell killing and therefore checked growth. However, near the 
elbow and beyond, it is clear that increases in antigenicity 
have a non-linear effect, in that the highest value leads to 
faster development of an invasive tumor than a moderate 
antigenicity. This can be understood in the context of spatial 
heterogeneity. The poor vasculature near the center of the 
tumor promotes acidosis, as well as limiting the 
intravasation of T cells; this leads to the immune response 
being primarily applied on the edges of the tumor. However, 
the most aggressive metabolic phenotypes develop in the 
center, and this differential killing allows them to escape and 
become invasive sooner. In other words, the immune system, 
if too aggressive, can destroy the spatial heterogeneity that 
was keeping invasive cell phenotypes in a dormant state. 

Non-linear tumor-immune interactions arising from spatial 
metabolic heterogeneity 
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Figure 1. Left: Simulations with no T-cells and three levels of antigenicity (see colors in legend). Increasing antigenicity slows tumor growth in early phase 
(t<1500). Near the ‘elbow’ (dashed pink), the highest antigenicity leads to faster tumor invasion compared to low antigenicities.  Right: Glycolytic phenotypes 
are selected by medium and high antigenicities early on, despite slower tumor growth, leading to faster emergence of invasive cells. 

 

IV. QUICK GUIDE TO THE METHODS 

A. Equations: The concentration of a molecule (C(x)) 
across a tissue is described by  

!"
!"
= 𝐷∇!𝐶 + 𝑓 𝐂,𝐩 ,       (1) 

with diffusion constant D, and f describing the production 
and consumption of the molecule depending on the 
concentrations of extracellular molecules (C(x)) and cellular 
parameters (p(x)) at position x. Cells primarily produce ATP 
from glucose (G), using either an efficient aerobic pathway 
that requires oxygen (O), or using glycolysis, an inefficient 
anaerobic pathway that produces protons (H). The model 
assumes that cells meet a target level of ATP demand by 
preferentially using the aerobic pathway, and making up the 
difference by increasing flux through the glycolytic pathway 
in hypoxic regions. Oxygen consumption (fO) and glucose 
consumption (fG) are determined by the need to meet normal 
ATP demand (A0), given by 
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For tumor cells, if the coefficient pG>1, the tumor will 
consume more glucose than needed to meet normal ATP 
demand, representing constitutively activated glucose 
consumption seen in many tumors. The actual ATP 
production rate for the cell (fA) is determined from nutrient 
consumption rates, given by 

𝑓! = − 2𝑓! +
!"!!
!

.       (4) 
Proton production (fH) is linked to the amount of glycolysis 
that does not feed the aerobic pathway, given by  

𝑓! = 𝑘!
!!!!!!!

!
,        (5) 

where parameter kH accounts for proton buffering.  
This metabolic program is implemented into each cell of 

a hybrid cellular automaton (HCA) model. One cell type is 
permitted per grid point, either a normal cell, tumor cell, 
necrotic cell, or blood vessel. For each time step dt, Eq. (1) is 
solved over the domain of the HCA for the steady state. 
Then, cells in the grid are put through a decision process 
based on the metabolic state of each cell and the nutrient 

concentrations at that point. Cells that have enough ATP 
production to meet the threshold of proliferation (Aq) will 
advance their cell cycle. Cells that have completed the cell 
cycle will proliferate if there is adjacent space. The cycle is 
not advanced if the cell is quiescent due to lowered ATP 
production. Cells with production less than a death threshold 
are removed.  

Tumor cells in the model have two continuously variable, 
heritable traits: excess glucose consumption, pG from Eq. 3; 
and resistance to extracellular acidosis. These traits are 
passed from a parent to its two daughter cells with some 
small variation, chosen at random from an interval equally 
weighted in both directions to avoid biased drift.  

A point-source vasculature is used to simulate blood 
vessels that spatiotemporally deliver nutrients and remove 
waste products. The field of vessels is seeded using a circle-
packing algorithm based on vessel densities in vivo. This 
initial distribution can be altered by the creation of new 
vessels through angiogenesis, or by vessel degradation. For 
angiogenesis, new vessels are added to regions of hypoxia 
until there is enough oxygen delivery to remove the hypoxic 
state. Vessels are degraded over time due to surrounding 
tumor growth until they are lost from the tissue. These two 
opposing vascular forces impact the gradients of diffusible 
molecules. 

T cells are modeled as individual cells on a separate grid, 
added to the layer with a rate (the ‘antigenicity’) that is 
proportional to the tumor size. T cells are added at any vessel 
that is within 100 microns of the tumor; once in the field, 
they migrate randomly. Upon encountering a tumor cell, they 
have a probability of killing it; said probability is lowered in 
acidosis. After a fixed number of kills, the T cell expires and 
is removed from the layer. 

B.  Type of settings in which these methods are useful 
HCA models have been used extensively to model 

cancer, including applications to angiogenesis [16, 17], cell 
motility and invasion [18, 19], tumor-immune interactions 
[20], and metastasis [21, 22].  
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