
  

  

Abstract— A hybrid multiscale mathematical model of 
tumor growth is used to investigate how tumoral and 
microenvironmental heterogeneity affect treatment outcomes.  
A key component of this model is normal and tumor 
metabolism and its interaction with microenvironmental 
factors.  In early stages of growth, tumors are stratified, with 
the most aggressive cells developing within the interior of the 
tumor. Simulations suggest that in some cases chemotherapy 
may increase the metabolic aggressiveness of a tumor due to 
drug-mediated selection. 

I. HETEROGENEITY: AN IMPORTANT DETERMINANT OF 
TUMOR PROGRESSION 

Tumor heterogeneity at the genetic scale has been known 
for decades and until recently was largely viewed as a whole 
tumor metric. Historically, molecular techniques average 
genomic signals from large numbers of cells from single 
biopsies, thus smoothing and potentially hiding underlying 
variations. However, a potential issue with this approach was 
recently highlighted by Swanton and colleagues [1], who 
showed that multiple biopsies from the same tumor display 
distinct genetic profiles and yet are phenotypically similar. 
This genotypic divergence and phenotypic convergence has 
previously been hinted at theoretically [2] and may be a 
predictable evolutionary consequence of the tumor ecosystem 
[3, 4]. The intricate dialogue between tumor cells and 
environment selects for clones that are best adapted 
phenotypically to survive, regardless of specific mutations 
that may facilitate tumor progression. Furthermore, this 
environment is temporally and spatially heterogeneous 
largely due to variations in blood flow, resulting in local 
fluctuations of nutrients, growth factors and other cellular 
populations (e.g. normal cells, stromal cells and immune 
cells). These dynamics occurring within the cancer ecosystem 
are almost impossible to dissect via experimentation alone.   

A serious effort is being put into quantifying this 
heterogeneity and understanding how it evolves as the tumor 
progresses and how it relates to overall outcome [5-7]. 
However, we are far from understanding how the 
microenvironment modulates this heterogeneity and drives 
the overall phenotypic behavior of the tumor cell population. 
Furthermore, the impact of heterogeneity on treatment 
outcomes remains poorly understood. 
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II. THERAPY RAPIDLY ALTERS THE SELECTION PRESSURES 

Using a two-dimensional hybrid cellular automaton 
model, we have grown tumors in a vascularized tissue and 
applied therapy to them [8].  The heterogeneity was 
investigated on two metabolic axes: glycolytic capacity and 
resistance to extracellular acidosis. Absent treatment, a 
subset of tumor cells evolve under environmental selection 
pressure to become glycolytic and acid resistant.  These 
properties cause increased tumor invasiveness under the 
right environmental conditions.  Figure 1 shows the results 
of applying a chemotherapeutic agent in the model; in panels 
(a-f) the simulated tumor is shown, where the left column is 
the untreated case, the central column is an early application, 
and the right column is a late application.  Panel (g) shows 
the growth curves for the three cases.  The color of the tumor 
cells corresponds to the phenotype, and in all cases a 
heterogeneous mix is observed.  Green  tumor cells are 
metabolically normal, while purple cells are more 
aggressively glycolytic and acid-resistant.  A segregated 
spatial structure is seen in the simulations; the aggressive 
cells develop in the center of the tumor, where hypoxia is 
more likely to occur due to dysfunctional vasculature. 

This spatial heterogeneity has a profound impact on how 
the tumor responds to therapies given only months apart.  
The early application, in the central column, has the effect of 
delaying growth on the order of a year or two, compared to 
controls.  On the other hand, applying the same therapy 
regimen just a few months later results in an acceleration of 
tumor growth, meaning that it would have been better to not 
treat at all.  This occurs because the heterogeneity of the 
tumor at the time of the later treatment is poised for 
invasion, but not yet invasive.  The therapy selects for these 
invasive cells, both spatially and temporally, and thus allows 
them to become actively invasive.  This is compared to the 
early treatment case, where the invasive cells were not fully 
developed; the early treatment regimen has the effect of 
selecting for cells which are more resistant to invasion, due 
to their acid-resistant but low-glycolytic phenotype. In our 
publication [8], we have examined a number of therapies, 
showing how tumor heterogeneity has an impact on how 
therapies either succeed or fail. 
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Figure 1. (a-f) Comparison of untreated and chemotherapy simulations with identical initial conditions at two different time points. The therapy schedule was 5 
pulses, 2 weeks apart. The left column is an untreated simulation; the central column was pulsed with cytotoxic therapy starting at trel=0; the right column starts 
the identical treatment at trel=105. The top panels (a-c) show the state of the three simulations at trel=264, i.e. shortly after the tumor in the right column has 
finished the therapy. The bottom set of panels (d - f) shows the state of the tumors at trel=380. Scale bar is 400 microns. (g) Growth curves for untreated (solid), 
early (dashed), and late (dotted) chemotherapy from (a-f). Tumor size on the vertical axis is the diameter in microns. 

III. QUICK GUIDE TO THE METHODS 

A. Equations: The concentration of a molecule (C(x)) 
across a tissue is described by  

!"
!"
= 𝐷∇!𝐶 + 𝑓 𝐂,𝐩 ,       (1) 

with diffusion constant D, and f describing the production 
and consumption of the molecule depending on the 
concentrations of extracellular molecules (C(x)) and cellular 
parameters (p(x)) at position x. Cells primarily produce ATP 
from glucose (G), using either an efficient aerobic pathway 
that requires oxygen (O), or using glycolysis, an inefficient 
anaerobic pathway that produces protons (H). The model 
assumes that cells meet a target level of ATP demand by 
preferentially using the aerobic pathway, and making up the 
difference by increasing flux through the glycolytic pathway 
in hypoxic regions. Oxygen consumption (fO) and glucose 
consumption (fG) are determined by the need to meet normal 
ATP demand (A0), given by 
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For tumor cells, if the coefficient pG>1, the tumor will 
consume more glucose than needed to meet normal ATP 
demand, representing constitutively activated glucose 
consumption seen in many tumors. The actual ATP 
production rate for the cell (fA) is determined from nutrient 
consumption rates, given by 

𝑓! = − 2𝑓! +
!"!!
!

.       (4) 
Proton production (fH) is linked to the amount of glycolysis 
that does not feed the aerobic pathway, given by  

𝑓! = 𝑘!
!!!!!!!

!
,        (5) 

where parameter kH accounts for proton buffering.  
This metabolic program is implemented into each cell of 

a hybrid cellular automaton (HCA) model. One cell type is 
permitted per grid point, either a normal cell, tumor cell, 
necrotic cell, or blood vessel. For each time step dt, Eq. (1) is 
solved over the domain of the HCA for the steady state. 
Then, cells in the grid are put through a decision process 
based on the metabolic state of each cell. Cells with enough 

ATP to meet the threshold of proliferation will advance their 
cell cycle. Cells that have completed the cell cycle will 
proliferate if there is adjacent space. The cycle is not 
advanced if the cell is quiescent due to lowered ATP 
production. Cells with production less than a death threshold 
are removed.  

Tumor cells have two heritable traits: excess glucose 
consumption, pG from Eq. 2; and resistance to extracellular 
acidosis. These traits are passed from a parent cell to its 
daughters modified by a small equally-weighted variation, 
variation chosen at random. The model is agnostic with 
respect to specific biological mechanisms that underlie this 
drift, which could include gradual accumulation of mutations, 
regulation of gene transcription by epigenetics or aneuploidy, 
or changes in the number or structure of organelles.  

A point-source vasculature is used to simulate blood 
vessels that spatiotemporally deliver nutrients and remove 
waste products. The field of vessels is seeded using a circle-
packing algorithm based on vessel densities in vivo. This 
initial distribution can be altered by the creation of new 
vessels through angiogenesis, or by vessel degradation. For 
angiogenesis, new vessels are added to regions of hypoxia 
until there is enough oxygen delivery to remove the hypoxic 
state. Vessels are degraded over time due to surrounding 
tumor growth until they are lost from the tissue. These two 
opposing vascular forces impact the gradients of diffusible 
molecules. 

Chemotherapy is pulsed through the vasculature, 
diffusing through the tissue subject to Eq. (1). Cell death 
depends on the concentration of the drug at the cell position. 

B.  Type of settings in which these methods are useful 
HCA models have been used extensively to model cancer 

[9], including applications to angiogenesis [10-13], cell 
motility and invasion [14-18], tumor evolution and 
microenvironment [19-35], tumor-immune interactions [36], 
and metastasis [37, 38].  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2016. ; https://doi.org/10.1101/038273doi: bioRxiv preprint 

https://doi.org/10.1101/038273
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

REFERENCES  
 
 
[1] M. Gerlinger, A. J. Rowan, S. Horswell, J. Larkin, D. 

Endesfelder, E. Gronroos, et al., "Intratumor heterogeneity and 
branched evolution revealed by multiregion sequencing," N Engl 
J Med, vol. 366, pp. 883-92, Mar 8 2012. 

[2] P. Gerlee and A. R. Anderson, "Modelling evolutionary cell 
behaviour using neural networks: application to tumour growth," 
Biosystems, vol. 95, pp. 166-74, Feb 2009. 

[3] K. J. Pienta, N. McGregor, R. Axelrod, and D. E. Axelrod, 
"Ecological therapy for cancer: defining tumors using an 
ecosystem paradigm suggests new opportunities for novel cancer 
treatments," Transl Oncol, vol. 1, pp. 158-64, Dec 2008. 

[4] D. Basanta and A. R. Anderson, "Exploiting ecological 
principles to better understand cancer progression and 
treatment," Interface Focus, vol. 3, p. 20130020, Aug 6 2013. 

[5] M. Greaves and C. C. Maley, "Clonal evolution in cancer," 
Nature, vol. 481, pp. 306-13, Jan 19 2012. 

[6] M. S. Lawrence, P. Stojanov, P. Polak, G. V. Kryukov, K. 
Cibulskis, A. Sivachenko, et al., "Mutational heterogeneity in 
cancer and the search for new cancer-associated genes," Nature, 
vol. 499, pp. 214-8, Jul 11 2013. 

[7] A. Sottoriva, I. Spiteri, S. G. Piccirillo, A. Touloumis, V. P. 
Collins, J. C. Marioni, et al., "Intratumor heterogeneity in human 
glioblastoma reflects cancer evolutionary dynamics," Proc Natl 
Acad Sci U S A, vol. 110, pp. 4009-14, Mar 5 2013. 

[8] M. Robertson-Tessi, R. J. Gillies, R. A. Gatenby, and A. R. 
Anderson, "Impact of metabolic heterogeneity on tumor growth, 
invasion, and treatment outcomes," Cancer Res, vol. 75, pp. 
1567-79, Apr 15 2015. 

[9] K. A. Rejniak and A. R. Anderson, "Hybrid models of tumor 
growth," Wiley Interdiscip Rev Syst Biol Med, vol. 3, pp. 115-25, 
Jan-Feb 2011. 

[10] A. R. Anderson and M. A. Chaplain, "Continuous and discrete 
mathematical models of tumor-induced angiogenesis," Bull Math 
Biol, vol. 60, pp. 857-99, Sep 1998. 

[11] J. L. Gevertz and S. Torquato, "Modeling the effects of 
vasculature evolution on early brain tumor growth," J Theor 
Biol, vol. 243, pp. 517-31, Dec 21 2006. 

[12] A. L. Bauer, T. L. Jackson, and Y. Jiang, "A cell-based model 
exhibiting branching and anastomosis during tumor-induced 
angiogenesis," Biophys J, vol. 92, pp. 3105-21, May 1 2007. 

[13] M. R. Owen, T. Alarcon, P. K. Maini, and H. M. Byrne, 
"Angiogenesis and vascular remodelling in normal and 
cancerous tissues," J Math Biol, vol. 58, pp. 689-721, Apr 2009. 

[14] A. R. Anderson, "A hybrid mathematical model of solid tumour 
invasion: the importance of cell adhesion," Math Med Biol, vol. 
22, pp. 163-86, Jun 2005. 

[15] H. B. Frieboes, X. Zheng, C. H. Sun, B. Tromberg, R. Gatenby, 
and V. Cristini, "An integrated computational/experimental 
model of tumor invasion," Cancer Res, vol. 66, pp. 1597-604, 
Feb 1 2006. 

[16] M. Aubert, M. Badoual, and B. Grammaticos, "A model for 
short- and long-range interactions of migrating tumour cell," 
Acta Biotheor, vol. 56, pp. 297-314, Dec 2008. 

[17] P. Gerlee and A. R. Anderson, "Evolution of cell motility in an 
individual-based model of tumour growth," J Theor Biol, vol. 
259, pp. 67-83, Jul 7 2009. 

[18] H. Hatzikirou, D. Basanta, M. Simon, K. Schaller, and A. 
Deutsch, "'Go or grow': the key to the emergence of invasion in 
tumour progression?," Math Med Biol, vol. 29, pp. 49-65, Mar 
2012. 

[19] A. R. Kansal, S. Torquato, E. A. Chiocca, and T. S. Deisboeck, 
"Emergence of a subpopulation in a computational model of 
tumor growth," J Theor Biol, vol. 207, pp. 431-41, Dec 7 2000. 

[20] S. L. Spencer, R. A. Gerety, K. J. Pienta, and S. Forrest, 
"Modeling somatic evolution in tumorigenesis," PLoS Comput 
Biol, vol. 2, p. e108, Aug 18 2006. 

[21] A. R. Anderson, A. M. Weaver, P. T. Cummings, and V. 
Quaranta, "Tumor morphology and phenotypic evolution driven 
by selective pressure from the microenvironment," Cell, vol. 
127, pp. 905-15, Dec 1 2006. 

[22] K. Smallbone, R. A. Gatenby, R. J. Gillies, P. K. Maini, and D. 
J. Gavaghan, "Metabolic changes during carcinogenesis: 
potential impact on invasiveness," J Theor Biol, vol. 244, pp. 
703-13, Feb 21 2007. 

[23] A. Bankhead, 3rd, N. S. Magnuson, and R. B. Heckendorn, 
"Cellular automaton simulation examining progenitor hierarchy 
structure effects on mammary ductal carcinoma in situ," J Theor 
Biol, vol. 246, pp. 491-8, Jun 7 2007. 

[24] P. Gerlee and A. R. Anderson, "A hybrid cellular automaton 
model of clonal evolution in cancer: the emergence of the 
glycolytic phenotype," J Theor Biol, vol. 250, pp. 705-22, Feb 
21 2008. 

[25] J. A. Engelberg, G. E. Ropella, and C. A. Hunt, "Essential 
operating principles for tumor spheroid growth," BMC Syst Biol, 
vol. 2, p. 110, 2008. 

[26] D. Basanta, D. W. Strand, R. B. Lukner, O. E. Franco, D. E. 
Cliffel, G. E. Ayala, et al., "The role of transforming growth 
factor-beta-mediated tumor-stroma interactions in prostate 
cancer progression: an integrative approach," Cancer Res, vol. 
69, pp. 7111-20, Sep 1 2009. 

[27] S. H. Kim, J. Debnath, K. Mostov, S. Park, and C. A. Hunt, "A 
computational approach to resolve cell level contributions to 
early glandular epithelial cancer progression," BMC Syst Biol, 
vol. 3, p. 122, 2009. 

[28] P. Gerlee and A. R. Anderson, "Diffusion-limited tumour 
growth: simulations and analysis," Math Biosci Eng, vol. 7, pp. 
385-400, Apr 2010. 

[29] A. S. Silva, R. A. Gatenby, R. J. Gillies, and J. A. Yunes, "A 
quantitative theoretical model for the development of 
malignancy in ductal carcinoma in situ," J Theor Biol, vol. 262, 
pp. 601-13, Feb 21 2010. 

[30] D. Basanta, B. Ribba, E. Watkin, B. You, and A. Deutsch, 
"Computational analysis of the influence of the 
microenvironment on carcinogenesis," Math Biosci, vol. 229, pp. 
22-9, Jan 2011. 

[31] G. G. Powathil, K. E. Gordon, L. A. Hill, and M. A. Chaplain, 
"Modelling the effects of cell-cycle heterogeneity on the 
response of a solid tumour to chemotherapy: biological insights 
from a hybrid multiscale cellular automaton model," J Theor 
Biol, vol. 308, pp. 1-19, Sep 7 2012. 

[32] E. Kim, V. Rebecca, I. V. Fedorenko, J. L. Messina, R. Mathew, 
S. S. Maria-Engler, et al., "Senescent fibroblasts in melanoma 
initiation and progression: an integrated theoretical, 
experimental, and clinical approach," Cancer Res, vol. 73, pp. 
6874-85, Dec 1 2013. 

[33] C. DuBois, J. Farnham, E. Aaron, and A. Radunskaya, "A 
multiple time-scale computational model of a tumor and its 
micro environment," Math Biosci Eng, vol. 10, pp. 121-50, Feb 
2013. 

[34] J. G. Scott, A. B. Hjelmeland, P. Chinnaiyan, A. R. Anderson, 
and D. Basanta, "Microenvironmental variables must influence 
intrinsic phenotypic parameters of cancer stem cells to affect 
tumourigenicity," PLoS Comput Biol, vol. 10, p. e1003433, Jan 
2014. 

[35] D. Chen, Y. Jiao, and S. Torquato, "A cellular automaton model 
for tumor dormancy: emergence of a proliferative switch," PLoS 
One, vol. 9, p. e109934, 2014. 

[36] D. G. Mallet and L. G. De Pillis, "A cellular automata model of 
tumor-immune system interactions," J Theor Biol, vol. 239, pp. 
334-50, Apr 7 2006. 

[37] H. Enderling, L. Hlatky, and P. Hahnfeldt, "Migration rules: 
tumours are conglomerates of self-metastases," Br J Cancer, vol. 
100, pp. 1917-25, Jun 16 2009. 

[38] A. Araujo, L. M. Cook, C. C. Lynch, and D. Basanta, "An 
integrated computational model of the bone microenvironment 
in bone-metastatic prostate cancer," Cancer Res, vol. 74, pp. 
2391-401, May 1 2014. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2016. ; https://doi.org/10.1101/038273doi: bioRxiv preprint 

https://doi.org/10.1101/038273
http://creativecommons.org/licenses/by-nc-nd/4.0/

