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Abstract 27	

Water availability is an important driver of the geographic distribution of many plant species, 28	

although its importance relative to other climatic variables varies across climate regimes and 29	

species. A common indirect measure of water-use efficiency (WUE) is the ratio of carbon 30	

isotopes (δ13C) fixed during photosynthesis, especially when analyzed in conjunction with a 31	

measure of leaf-level resource utilization (δ15N). Here, we test two hypotheses about the genetic 32	

architecture of WUE for foxtail pine (Pinus balfouriana Grev. & Balf.) using a novel mixture of 33	

double digest restriction site associated DNA sequencing, species distribution modeling, and 34	

quantitative genetics. First, we test the hypothesis that water availability is an important 35	

determinant of the geographical range of foxtail pine. Second, we test the hypothesis that 36	

variation in δ13C and δ15N is genetically based, differentiated between regional populations, and 37	

has genetic architectures that include loci of large effect. We show that precipitation-related 38	

variables structured the geographical range of foxtail pine, climate-based niches differed 39	

between regional populations, and δ13C and δ15N were heritable with moderate signals of 40	

differentiation between regional populations. A set of large-effect QTLs (n = 11 for δ13C; n = 10 41	

for δ15N) underlying δ13C and δ15N variation, with little to no evidence of pleiotropy, was 42	

discovered using multiple-marker, half-sibling regression models. Our results represent a first 43	

approximation to the genetic architecture of these phenotypic traits, including documentation of 44	

several patterns consistent with δ13C being a fitness-related trait affected by natural selection. 45	
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Introduction 52	

 Descriptions of the genetic components underlying fitness-related phenotypic variation 53	

have been a focus of quantitative genetics for over a century (Shull 1908; Fisher 1918; Mather 54	

1941; Ford 1975; Mackay et al. 1994; Ritland et al. 2011 and references therein). These 55	

descriptions have progressed from identifications of the genetic elements affecting trait variation 56	

(e.g. Jermstad et al. 2001) to analysis of interactions among these elements with one another 57	

and the environment (e.g. Jermstad et al. 2003). Uniting all these descriptions are foundational 58	

questions about the structure, function, and evolution of genotype-phenotype maps in natural 59	

populations. For forest trees, these descriptions historically addressed traits of economic 60	

importance such as specific gravity of wood (e.g. Groover et al. 1994), microfibril angle (e.g. 61	

Sewell et al. 2000), growth (e.g. Wu 1998), and phenology (e.g. Pelgas et al. 2011), with the 62	

ultimate goals of marker-assisted breeding (Neale and Savolainen 2004) and trait prediction 63	

from genotypic data (Grattapaglia and Resende 2011). These traits, while economically 64	

important, often also affect fitness (especially phenology, see Sorensen 1983), so that these 65	

efforts can also be leveraged to understand the genetic basis of ecologically relevant trait 66	

variation. The linkage between traits measured in common gardens and fitness in natural 67	

populations, however, is usually assumed post hoc, which can lead to storytelling (Barrett and 68	

Hoekstra 2011) and oversimplification of the ecological ramifications of quantitative genetic 69	

results. Here, we address this disconnect through simultaneous use of species distribution 70	

modeling and quantitative trait locus (QTL) mapping to dissect the genetic architecture of an 71	

ecologically important phenotypic trait for foxtail pine (Pinus balfouriana Grev. & Balf). 72	

 The spatial and temporal distribution of all viable individuals across the Earth’s 73	

landscape for a given species is defined as its geographical range (Brown et al. 1996). 74	

Evolution of range sizes and structural attributes of these ranges have been studied for a variety 75	

of taxa for many decades (e.g. Mayr 1963; Antonovics 1976; Brown et al. 1996; Gaston 2003; 76	

Eckert et al. 2008; Sheth and Angert 2014). The common thread underlying these interests is 77	
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the assumption that fitness of individuals within species is related to the known geographical 78	

range for each species based on the environments defined by this range, other selective 79	

pressures (i.e. competition) across this range, and the phylogeographic history that resulted in 80	

the current geographical range (Hutchinson 1957; Pulliam 2000; Chuine 2010). For example, 81	

relative fitness values within plant populations tend to be highest in their home environments 82	

and lower in novel environments at the margin or outside of known geographical ranges 83	

(reviewed in Leimu and Fischer 2008). Regardless of the relationship between this pattern and 84	

evolutionary concepts such as local adaptation, it is clear that current geographical ranges are 85	

to some degree projections of ecological niches (i.e. realized versus fundamental niches), or at 86	

least some aspect of these niches, onto geographical space (Pulliam 2000; Ettinger et al. 2011). 87	

Knowledge of the environmental and climatic drivers of geographical ranges can therefore be 88	

informative about links between traits responsive to these drivers and fitness.  89	

Species distribution models (SDMs) are commonly utilized as predictive tools with which 90	

to assess the importance of environmental variables to current geographical ranges of species 91	

(Elith et al. 2006). At a minimum, these models are built from known occurrences of a certain 92	

species and the environmental and ecological attributes of these locations derived from either 93	

field measurements or information stored in geographical information systems (GIS) layers. 94	

Numerous approaches are available with which to build models from these data (Segurado and 95	

Araujo 2004; Elith et al. 2006; Phillips et al. 2006). Once constructed, SDMs are often used 96	

subsequently to study the evolutionary development of ranges (e.g. McCormack et al. 2010), as 97	

well as the effects of continued climate change on current geographical ranges (e.g. Pearson 98	

and Dawson 2003). However, there are limitations to equating SDMs, even those with good 99	

predictive abilities of current geographical ranges, with realized ecological niches and hence 100	

measures of fitness limits (Hampe 2004; Soberon and Peterson 2005; Warren and Seifert 101	

2011). For example, individuals used to create SDMs are considered exchangeable, so that 102	

fitness variation among individuals is ignored (Hampe 2004). Some of these issues, especially 103	
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those related to exchangeability of individuals within species, can be addressed through a 104	

careful matching of modeling units (e.g. genetically differentiated populations within species; 105	

sensu Davis et al. 2005), geographical scale (e.g. the geographical scale relevant to the 106	

genetically differentiated populations), and the research questions of interest. 107	

 Water is crucial to the survival of many plant species (e.g. Sorenson 1983), although its 108	

importance relative to other environmental factors varies depending upon the environmental 109	

factors that are most limiting within local environments (Dudley 1996). The intrinsic efficiency by 110	

which plants use water (WUE) is defined as the ratio of net assimilation of carbon from CO2 111	

during photosynthesis to the loss of water during transpiration (Bacon 2004). Carbon isotopic 112	

composition (δ13C) is an indirect measure of intrinsic WUE and is based upon the ratio of two 113	

isotopes of carbon (13C and 12C) within plant tissue standardized to a reference. This ratio is 114	

related to WUE because it has been demonstrated that the discrimination by C3 plants of 13CO2 115	

relative to 12CO2 is correlated to the ratio of carbon assimilation during photosynthesis to 116	

stomatal conductance (Farquhar et al. 1982; Farquhar and Richards 1984; e.g. Zhang and 117	

Marshall 1994). The physiological and environmental mechanisms, however, driving the linkage 118	

between δ13C and intrinsic WUE at various levels of biological organization are numerous, so 119	

that the expected linear relationship between δ13C and WUE may not always hold (Seibt et al. 120	

2008). For example, differences in δ13C across individual plants at the leaf level can result from 121	

changes in carbon to nitrogen allocation during carboxylation, variation in leaf structure and 122	

morphology, and/or variation in available CO2 (Seibt et al. 2008).  Within a common 123	

environment, however, it is assumed that variation in available amounts of atmospheric CO2 is 124	

negligible. Variation for δ13C across individual plants in these common environments should 125	

therefore reflect variation for intrinsic WUE. Indeed, previous research in conifers has 126	

established that variation in δ13C across individual plants is heritable (Seiler and Johnson 1988; 127	

Cregg 1993; Brendel et al. 2002; Baltunis et al. 2008; Cumbie et al. 2011), is polygenic, yet 128	
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comprised of a mixture of large and small effect loci (Brendel et al. 2002; Gonzalez-Martinez et 129	

al. 2008; Cumbie et al. 2011; Marguerit et al. 2014), and that it often reflects variation for 130	

intrinsic WUE through leaf level assimilation (Zhang and Marshall 1994; Brendel et al. 2002; 131	

Cumbie et al. 2011; Marguerit et al. 2014).  132	

 Water availability is often an important driver of tree distributions (Stephenson 1990 and 133	

references therein), especially in Mediterranean climates (e.g. Baldocchi and Xu 2007; Lutz et 134	

al. 2010). This importance is evident through increased tree mortality as a function of both direct 135	

and indirect consequences associated with changing water availability (van Mantgem et al. 136	

2009; Allen et al. 2010). Regional and local water availability will likely be altered, either through 137	

changes to annual precipitation totals or the seasonality of precipitation, under most climate 138	

change scenarios, especially in ecosystems dependent on residual summer snow-packs 139	

(Barnett et al. 2005). The ability of natural populations of forest trees to respond to changing 140	

water availability is linked to segregating genetic variation for traits responsive to water 141	

availability (Aitken et al. 2008). Knowledge of the genetic architecture of such traits, therefore, 142	

provides an important resource for assessing forest health, as well as the genetics of adaptation 143	

(Neale and Kremer 2011). Here, we test two hypotheses about the genetic architecture of WUE 144	

for foxtail pine – (i) water availability is an important determinant of the geographical range of 145	

foxtail pine and hence fitness and (ii) variation in δ13C and δ15N is genetically based, 146	

differentiated between regional populations, and has genetic architectures that include loci of 147	

large effect. We subsequently discuss how the integration of results from disparate fields of 148	

research (i.e. genomics, ecology, and quantitative genetics) provides information useful to 149	

foundational tests about the genetic architecture of local adaptation and its evolution (cf. 150	

Friedline et al. 2015). 151	

 152	

 153	

 154	
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Materials and Methods 155	

Focal Species 156	

Foxtail pine is one of three species classified within subsection Balfourianae of section 157	

Parrya within subgenus Strobus. It is generally regarded as the sister taxon to Great Basin 158	

bristlecone pine (P. longaeva D. K. Bailey; see Eckert and Hall 2006). The distribution of this 159	

species is relegated to the high elevation mountains of California, with all known occurrences 160	

being in either the Klamath Mountains of northern California or in the high elevations of the 161	

southern Sierra Nevada (Figure S1). These two regions are separated by approximately 500 km 162	

and differ in climate, soils, and forest composition (Ornduff 1974; Eckert and Sawyer 2002; 163	

Barbour et al. 2007).  164	

Common Garden 165	

 A common garden representing 141 maternal foxtail pine trees was established at the 166	

Institute of Forest Genetics (Placerville, CA) during 2011 and 2012 using a randomized block 167	

design. Cones were collected from 141 maternal trees sampled range-wide, with 72 sampled 168	

from the Klamath Mountains and 69 from the southern Sierra Nevada region. For each maternal 169	

tree, 35 – 100 seeds were germinated and grown in standard conditions as outlined in Eckert et 170	

al. (2015). More information about the common garden can be obtained from Friedline et al. 171	

(2015). Of these 141 maternal trees, offspring, assumed to be half-siblings, from five were 172	

selected for analysis of water-use efficiency (see Phenotype determination, Table 1). The 173	

megagametophyte associated with each germinated seed from these five maternal trees was 174	

rescued and used to construct a high-density linkage map based on four of the five maternal 175	

trees (Friedline et al. 2015). The seedlings from each maternal tree were allowed to grow for a 176	

full year after which needles were sampled (n = 32 to 40/maternal tree) for determination of 177	

phenotypes and genotypes. As done by Friedline et al. (2015), families were named using 178	

colors (i.e. these were the colors of family identifier tags in the common garden), with families 179	
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sampled from the Klamath Mountains being labeled as blue, yellow, and purple and families 180	

sampled from the southern Sierra Nevada being labeled as red and green. 181	

Phenotype Determination 182	

Two phenotypic traits were measured from needle tissue sampled from each growing 183	

seedling – carbon isotope discrimination (δ13C) and foliar nitrogen content (δ15N). These were 184	

chosen because (δ13C) is a proxy for intrinsic WUE (Farquhar et al. 1982; Farquhar and 185	

Richards 1984), while δ15N is a proxy for plant growth and resource utilization during 186	

photosynthesis (Prasolova et al. 2000). Tissue was sampled in year 1 of growth, which was also 187	

prior to formation of randomized blocks in the common garden. Given the age of the seedlings, 188	

sampling of enough needle tissue for determination of phenotypes and genotypes was 189	

destructive. Thus, only a subset of the seedlings per maternal tree was used. For these 190	

seedlings, all available needles were sampled, cleaned and separated into those used for 191	

genotype determination and those used for phenotype determination. For phenotype 192	

determination, needles were placed into a mortar with liquid nitrogen and coarsely ground by 193	

hand using a pestle. The resulting needle tissue was then transferred into 20 ml glass vials and 194	

oven-dried at 60°C for 96 hrs. Approximately, 2 to 3 mg of ground and dried needle tissue from 195	

each seedling was subsequently placed into individual wells comprising a 96 well microtiter 196	

plate. Samples were analyzed for δ13C and δ15N at the Stable Isotope Facility at UC Davis 197	

(http://stableisotopefacility.ucdavis.edu/). Data are presented as carbon isotope ratios for δ13C 198	

(‰) and weight for δ15N (µg). 199	

Sequence Analysis and Genotype Determination 200	

 Total genomic DNA was extracted from the remaining needles from each sampled 201	

seedling using Qiagen DNeasy 96 Plant Kits following the manufacturer’s protocol. The resulting 202	

total genomic DNA for each seedling was quantified using spectrophotometry as implemented 203	

with a Thermo Scientific NanoDrop 8000. Following quantification, samples were prepared for 204	
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double digest restriction site associated DNA sequencing (ddRADseq) following the protocols of 205	

Parchman et al. (2012) as implemented for foxtail pine by Friedline et al. (2015). All samples 206	

had concentrations of total genomic DNA in the range of 15 to 60 ng/ul. In brief, this protocol 207	

proceeds via restriction digests of total genomic DNA for each sample using EcoR1 and Mse1, 208	

ligation of adapters that include the Illumina primer, universal M13 primers, and 8 – 10 bp 209	

barcodes, PCR amplification, and size selection of the PCR amplified and ligated restriction 210	

digests. In our protocol, multiplexing (i.e. pooling) occurred post PCR and size selection was 211	

carried out using 1.0% agarose gels run for 1 hour at 110 volts in 1X TAE buffer. All data are 212	

based on sequencing fragments in the size range of 300 to 500 bp on the Illumina HiSeq 2500. 213	

DNA sequencing was performed at the VCU Nucleic Acid Research Facility 214	

(http://www.narf.vcu.edu/index.html).  215	

Raw FASTQ sequences were quality-checked and filtered as in Friedline et al. (2015).  216	

Briefly, reads must pass a three-stage filtering procedure to be retained for downstream 217	

analysis.  First, if the average quality for all bases in the read was below 30, the read was 218	

discarded.  Second, a five-base pair sliding window was evaluated along each raw sequence.  219	

Consecutive windows were retained if their mean quality was greater-than or equal-to 30.  If the 220	

mean score of a window fell below this threshold, the read was trimmed at this point. If the 221	

length after trimming was at least 50% of the original read length, the read was kept, otherwise 222	

it was discarded.  Finally, if 20% of the bases in the original read had quality scores below 30, 223	

the entire read was discarded, even if its average quality met the inclusion threshold.  The reads 224	

that passed quality filtering were demultiplexed and assigned to individual trees in one of five 225	

families: Blue, Green, Purple, Red, or Yellow. 226	

 Sequences were aligned to the linkage map assembly (Friedline et al. 2015) and read 227	

groups were added using Bowtie2 version 2.2.4 (Langmead and Salzberg 2012) using the –228	

very-sensitive-local set of options. Each alignment was checked and marked for PCR 229	

artifacts using Picard (http://picard.sourceforge.net, svn 03a1d72).  Variants were called using 230	
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the mulitallelic caller from samtools version 1.1 (Li et al. 2009), specifying diploidy for all 231	

individuals.  The resulting VCF file was processed using VCFtools version 0.1.12.b (Danecek et 232	

al. 2011) , retaining only bialleleic SNPs that mapped to positions on the linkage map defined in 233	

Friedline et. al (2015) with quality (--minQ) of at least 20.  All read processing and variant 234	

calling pipeline code, Python 3.4.3 and R version 3.2.0 (R Core Team 2015),  can be found as 235	

IPython (Pérez and Granger 2007) notebooks and associated files at 236	

http://www.github.com/cfriedline/foxtail_wue. 237	

Once genotypes were called for all loci on the linkage map of Friedline et al. (2015), we 238	

selected one SNP per position on the linkage map based on minimizing the amount of missing 239	

data and being polymorphic in the most families. Missing genotype data were subsequently 240	

imputed for each linkage group using the default settings of the program fastPHASE ver. 1.2 241	

(Scheet and Stephens 2006), with families used as populations. To account for uncertainty in 242	

genotype imputation, we estimated posterior probabilities of each possible genotype (i.e. 0, 1, or 243	

2) at each locus using 1,000 haplotype reconstructions provided by fastPHASE, which were 244	

used subsequently used as weights in a weighted average of the minor allele count. These 245	

weighted averages were then rounded to the closest value (0, 1, or 2) following normal rounding 246	

rules (i.e. round downward if the tenths position is less than five, otherwise round up). 247	

Species Distribution Modeling  248	

We used species distribution models (SDMs) to justify water-use efficiency as a fitness-249	

related trait and to quantify niches of each regional population relative to one another. The 250	

former provides an a priori justification for the measured traits as ecologically relevant, while the 251	

latter provides an estimate of niche differentiation between regional populations comparable to 252	

the effect of region on trait differentiation (see Quantitative Genetic Analysis). 253	

Species distribution models were used to assess the relative importance of precipitation-254	

related and temperature-related variables to the distribution of foxtail pine. We utilized the 255	

approach of maximum entropy (MaxEnt; Phillips et al. 2006) to construct SDMs. Known 256	
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locations of foxtail pine within each regional population (n = 93 Klamath Mountains, n = 207 257	

southern Sierra Nevada) were gathered from digitized herbarium records available through the 258	

Jepson Herbarium located at the University of California, Berkeley (http://ucjeps.berkeley.edu/). 259	

When the latitude and longitude of locations associated with these herbarium records were 260	

missing, visual inspections of maps from Google Earth were used to find the best approximation 261	

to the locality described on the herbarium sample. Climate data for each regional population 262	

were obtained from WordClim (http://www.worldclim.org/) and are represented as 19 bioclimatic 263	

variables, which are functions of temperature and precipitation variables (Table S1), given at a 264	

resolution of 30 arc-seconds (~1 km). The generic grid files available from the WorldClim 265	

website were trimmed for each climate variable using the raster library in R and the following 266	

geographical extent: minimum longitude: -124.0°, maximum longitude: -117.5°, minimum 267	

latitude: 35.0°, maximum latitude: 42.5°. Using these trimmed grid files and the location 268	

information pruned of duplicate observations (npruned = 65 Klamath Mountains, npruned = 144 269	

southern Sierra Nevada), the MaxEnt software version 3.3.3k 270	

(https://www.cs.princeton.edu/~schapire/maxent/) was used to build a SDM for each regional 271	

population. MaxEnt was run using the cross-validation option for model assessment, 10 272	

replicates, a maximum number of background points of 10,000, and jackknife analysis to 273	

evaluate variable importance. Measures of variable importance (i.e. variable contribution and 274	

permutation importance scores) and the results of the jackknife analyses were used to assess 275	

the relative roles of temperature-related and precipitation-related variables to each SDM. 276	

  We used also used SDMs to quantify niche differentiation between regional populations 277	

of foxtail pine (Warren et al. 2008). We tested two null hypotheses. First, we tested the null 278	

hypothesis that the two SDMs were based on a single, underlying SDM common to each 279	

regional population. Second, we tested the null hypothesis that the two SDMs are no more 280	

differentiated than those randomly drawn from a common SDM with non-overlapping 281	

geographical distributions for each regional population. Both tests are based on the D and I 282	
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statistics given by Warren et al. (2008). The former null hypothesis was tested using the 283	

niche.equivalency.test function in the phyloclim library in R, while the latter null hypothesis was 284	

tested using the bg.similarity.test function in the same R library. Both tests were based on n = 285	

100 permutations to derive null distributions of test statistics.  286	

Quantitative Genetic Analysis 287	

 We performed two sets of analyses to dissect the genetic basis of water-use efficiency 288	

for foxtail pine. First, we demonstrated that variation for the measured traits was genetically 289	

based using standard methods to decompose trait variance into effects of families, regions, and 290	

environment (Lynch and Walsh 1998). Second, we fit single and multiple QTL models to dissect 291	

the genetic basis of each trait into their genetic components using the regression methods of 292	

Knott et al. (1996).  293	

The genetic basis for each measured trait was assessed using linear models. We fit 294	

three different linear models to the observed data for each trait: (1) a fixed effect model 295	

containing only a grand mean (i.e. intercept), (2) a linear mixed model with a grand mean as a 296	

fixed effect plus a random effect of family, and (3) a linear mixed model of a grand mean as a 297	

fixed effect plus a random effect of region plus a random effect of family nested within region. 298	

Uncertainty in parameter estimates from each model was assessed using parametric 299	

bootstrapping (n = 1,000 replicated simulations) as carried out with the simulate function in R. 300	

Models were compared using the Akaike Information Criterion (AIC), with Akaike weights used 301	

to assess the conditional probabilities for each model (Burnham and Anderson 2002). If models 302	

containing random effects for families or models containing random effects for regions and 303	

families nested within regions fit the data better than a model with only a grand mean, then we 304	

concluded that there were non-zero heritabilities for these traits. If we assume that all offspring 305	

within each family were half-siblings, we could estimate narrow-sense heritability as h2 = 306	

4σ2
fam/(σ2

fam + σ2
res), where σ2

fam is the variance due to family nested within region and σ2
res is the 307	

residual variance. Given the small number of families, however, we avoided this estimation, as 308	
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we were interested only in detecting non-zero heritability and not precise estimation of its 309	

magnitude. Linear models with fixed effects were fit using the lm function, while linear mixed 310	

models were fit using maximum likelihood as employed in the lmer function of the lme4 library of 311	

R. Log-likelihood and AIC values were extracted for each fitted model using the logLik and AIC 312	

functions in R, respectively. 313	

The genetic basis of each trait was dissected using the least squares regression 314	

approach of Knott et al. (1996) for outbred, half-sibling families, where probabilities of allelic 315	

inheritance due to the common parent were used as predictors for each trait. Significance of the 316	

regression model was determined using a F-test calculated at 1-cM intervals, with the 317	

distribution of this statistic under a null model of no QTLs generated via a permutation scheme 318	

(Churchill and Doerge 1994). The common parent in our analyses was the maternal tree, we 319	

assumed that all offspring per maternal tree were half-siblings, and we used 1,000 permutations 320	

to generate null distributions of F-statistics. Permutations were used to create null distributions 321	

for F-statistics at the level of the entire genome (i.e. all linkage groups) and for each 322	

chromosome (i.e. linkage group) separately. We initially fit models of one QTL per linkage group 323	

using three significance thresholds: (1) α = 0.05 at the level of the entire genome (major QTL), 324	

(2) α = 0.01 at the level of a particular chromosome (minor QTL), and (3) α = 0.05 at the level of 325	

a particular chromosome (suggestive QTL). For each QTL, we estimated the percent variance 326	

explained (PVE) as PVE = 4[1 – (MSEfull/MSEreduced)], where MSEfull and MSEreduced are the 327	

mean square errors of the full and reduced models, respectively (cf. Everett and Seeb 2014). 328	

Following Knott et al. (1996), estimates of PVE were scaled by (1 – 2r)2, where r is the 329	

recombination frequency between the marker and QTL (i.e. r = 0.01 for a 1-cM scan of each 330	

linkage group). Uncertainty in the position of the QTL was assessed using bootstrapping (n = 331	

1,000 replicates). For each linkage group with a statistically significant QTL, we subsequently fit 332	

a model of two QTLs using the same approach, with the only differences being the use of 333	

asymptotic null distributions to test the statistical significance of the observed F-statistics and 334	
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the lack of adjustments to estimates of the PVE for multiple QTL models. All analyses were 335	

conducted with the HSportlets module on GridQTL ver. 3.3.0 (Seaton et al. 2006; Allen et al. 336	

2012) using the linkage map for foxtail pine reported by Friedline et al. (2015).  337	

Results 338	

Sequence Analysis and Genotype Determination 339	

From two lanes of HiSeq sequencing, we obtained 148,685,598 and 160,770,417 reads 340	

from lane 1 (length = 101 bp, %GC = 40) and lane 2 (length = 101 bp, %GC = 41), respectively.  341	

Following read filtering, we retained 77,568,370 (length = 49 - 101 bp, %GC = 40) reads from 342	

lane 1 and 107,372,313 (length = 49 - 101, %GC = 40) reads from lane 2. A summary of the 343	

sequencing output and quality can be found in Table 2. The highest quality and most reads 344	

came from the Blue and Red families, while the Green family produced the smallest number of 345	

reads. Similarly, the Blue and Red families had the highest percentages of reads mapping to the 346	

assembly. The quality of reads across all families was sufficiently high, with average quality of 347	

any base of approximately 38. Graphical summaries of missing data and quality metrics are 348	

available in Figures S2 and S3. We filtered SNPs at the same position on the linkage map down 349	

to a set of 843 loci with the least amount of missing data and polymorphism in the most families. 350	

At these 843 SNPs, missing data averaged 58.0% (0% - 95.6%). Missing data were 351	

subsequently imputed using the marker ordering from Friedline et al. (2015) and fastPHASE.    352	

Species Distribution Modeling 353	

Species distribution models were good predictors of the current geographical ranges for 354	

each regional population of foxtail pine (Figures 1, S1). Estimates of the area under the receiver 355	

operating characteristic curves (ROC curves) were near 1.0 for each model for both the training 356	

and test set of samples (Figure S4). Exceptions to this pattern included low to moderate 357	

probabilities of occurrence outside the current geographical distribution for the Klamath 358	

Mountains, which were centered on the northern Sierra Nevada, and a slightly expanded range 359	

north and south of the known range limits in the southern Sierra Nevada. Foxtail pine is known 360	
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to be absent from these regions. In both cases, the probabilities of occurrence were less, often 361	

much less, than 0.40. The SDM based on the Klamath Mountains predicted a near zero 362	

probability for cells within the range of the southern Sierra Nevada and vice versa.  363	

Foxtail pine inhabits the cooler portions of each region in which it is currently located 364	

(Figures S5 – S6). For precipitation-related variables, however, foxtail pine in the Klamath 365	

Mountains inhabits slightly wetter localities relative to background localities, while in the 366	

southern Sierra Nevada foxtail pine inhabits drier localities relative to background localities. The 367	

climates inhabited by foxtail pine in each region also differ. In general, differences between the 368	

climates inhabited by each regional population were consistent with the Klamath Mountains 369	

being warmer, yet less variable in temperature throughout the year, and wetter, yet slightly more 370	

variable in precipitation throughout the year, relative to the southern Sierra Nevada. For 371	

example, mean annual precipitation was almost twice as high in the Klamath Mountains as in 372	

the southern Sierra Nevada (1179.66 mm versus 650.03 mm, respectively), yet the distribution 373	

of precipitation was slightly more variable throughout the year (e.g. precipitation of the driest 374	

month: 11.78 mm versus 12.41 mm, respectively; coefficient of variation across months: 65.86 375	

versus 65.02, respectively). 376	

Bioclimatic variables used to predict occurrences of foxtail pine within each regional 377	

population were highly correlated with one another (Figure S7). Sets of correlated variables are 378	

difficult to evaluate as contributing to SDMs (Warren and Seifert 2011). We, therefore, used 379	

several different measures of variable importance. Inspection of variable contribution scores 380	

revealed that temperature-related and precipitation-related variables were differentially 381	

important across SDMs for each region (Figure 1; Table S2). Temperature-related variables, 382	

specifically mean diurnal range (Bio2), isothermality (Bio3), and maximum temperature of the 383	

warmest month (Bio5), were most important for the southern Sierra Nevada population, 384	

whereas precipitation-related variables, specifically precipitation of the driest quarter (Bio17) 385	

and precipitation of the wettest quarter (Bio16), were most important for the Klamath Mountains 386	
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population. This pattern, however, was reversed when using permutation importance scores, 387	

despite a moderate correlation between rankings of importance based on variable contribution 388	

and permutation importance scores (Figures 2, S8; Table S4). Temperature-related variables 389	

became more important for the Klamath Mountains, specifically annual temperature (Bio1), 390	

while precipitation-related variables became more important for the southern Sierra Nevada 391	

population, specifically precipitation seasonality (Bio15) and mean temperature of the wettest 392	

quarter (Bio8). Jackknife analysis of variable importance based on AUC, test gain, and 393	

regularized test gain, however, were consistent with both temperature-related and precipitation-394	

related variables as being important for the Klamath Mountains population (Figures S9 – S11). 395	

For example, mean annual temperature (Bio1), maximum temperature of the warmest quarter 396	

(Bio5), mean temperature of the driest quarter (Bio9), mean temperature of the warmest quarter 397	

(Bio10), precipitation of the driest quarter (Bio17), and precipitation of the warmest quarter 398	

(Bio18) all contributed significantly to the SDM for the Klamath Mountains population (Figure 399	

S11), although no one variable contained much information that was not present in at least one 400	

of the others. In contrast, jackknife analysis of variable importance based on AUC, test gain, 401	

and regularized test gain were consistent with primarily temperature-related variables, 402	

specifically mean annual temperature (Bio1), mean diurnal range (Bio2), maximum temperature 403	

of the warmest month (Bio5), and the mean temperature of the warmest quarter (Bio10), driving 404	

the SDM for the southern Sierra Nevada population (Figures S12 – S14). As with the SDM for 405	

the Klamath Mountains population, however, no one variable contained information that was not 406	

present in at least one of the others (Figure S14).  407	

Predicted niches based on SDMs for each regional population were dissimilar, with 408	

estimates of D (0.072) and I (0.258) being much closer to zero (dissimilar) than to 1 (similar) 409	

(Figure S15). These differences were significant enough to reject a null model of a single shared 410	

SDM common to both regional populations (P < 0.01 for D and I). Even if differences were 411	

accounted for in the background environments of each regional population (Figure S5), the 412	
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predicted niches were statistically different (P < 0.05 for both D and I).  Replicating the analyses 413	

for climate variables related only to temperature or only to precipitation revealed that niche 414	

divergence was stronger for precipitation-related variables (Dprecip = 0.074; Iprecip = 0.271) relative 415	

to temperature-related variables (Dtemp = 0.124, Itemp = 0.376). Therefore, regional populations of 416	

foxtail pine have divergent climatic niches, with precipitation-related variables more 417	

differentiated than temperature-related variables.  418	

Quantitative Genetic Analysis 419	

 Variation across siblings measured within the common garden was genetically based for 420	

each trait (Table 3). Family identifiers nested within regional populations accounted for sizeable 421	

portions of the total variance for δ13C (σ2
fam/[σ2

reg+ σ2
fam+ σ2

res] = 24.76%) and δ15N (σ2
fam/[σ2

reg+ 422	

σ2
fam+ σ2

res] = 24.45%). This was consistent with the differences among predicted family means 423	

for both traits (Figure 2), which were positively correlated (Figure 3), but not significantly so 424	

(Pearson’s r = 0.415; P = 0.487). Regional identifiers, however, were differentially important 425	

across traits, with these identifiers accounting for marginally more variance than family 426	

identifiers for δ13C (26.01%) but less than 10% of the total variance for δ15N (Figure 2). The joint 427	

effect of family and regional identifiers (i.e. the total genetic effect = [σ2
reg + σ2

fam]/[σ2
reg+ σ2

fam+ 428	

σ2
res]), however, was large for each trait (δ13C: 50.78%; δ15N: 29.75%). Comparisons of linear 429	

models progressing from intercept only to an intercept plus families nested within regions using 430	

AIC, revealed that a linear mixed model with an intercept and families was the best fit (AIC = 431	

310.29 for δ13C; AIC = 1031.26 for δ15N; Table 4). Comparison to other models using AIC 432	

weights, however, revealed that the most complex model of an intercept plus region plus 433	

families nested within regions had a reasonably high conditional probability  (AIC weight = 0.36 434	

δ13C; AIC weight = 0.28 for δ15N; Table 4) relative to those for the best model (δ13C = 0.64; δ15N 435	

= 0.72) for each phenotypic trait.  436	
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 We dissected the genetic basis of the heritable variation evident for each trait from the 437	

linear mixed model analysis using the regression-based approach to QTL mapping of Knott et 438	

al. (1996). Application of one-locus models (i.e. a maximum of one-locus per linkage group) 439	

resulted in a set of 11 QTLs across all linkage groups and both traits (Table 5; Figure 4). For 440	

δ13C, six QTLs were discovered, with two discovered at the most stringent significance level 441	

(genome-wide permutation-based α = 0.05) and four at the least stringent significance level 442	

(linkage group specific permutation-based α = 0.05). Effect sizes for these QTLs were large to 443	

moderate, with the percent variation explained (PVE) ranging from 47.807% to 24.066%. For 444	

δ15N, five QTLs were discovered, with one QTL at the most stringent significance level, two at 445	

the intermediate significance level (linkage group specific permutation-based α = 0.01), and two 446	

at the least stringent significance level. Effect sizes for these QTLs were also large to moderate, 447	

with PVE varying from 39.773% to 25.058%. There was moderate autocorrelation for the F-448	

statistic at a resolution of 6 cM or less for δ13C and 3 cM or less δ15N (Figure S16), but there was 449	

no correlation between F-statistics for each trait (Pearson’s r: -0.014, P = 0.734; Figure S17). In 450	

general, 95% confidence levels of positions for each QTL were large (Table 5). 451	

 For the 11 QTLs detected using one-locus models, 10 were consistent with multiple 452	

QTLs using two-locus models (Table 6). In general, the QTLs from the one-locus models were 453	

one of the pair of QTLs detected in the two-locus models. There were four exceptions to this 454	

pattern, with two of these exceptions being a minor modification in position of the original QTL 455	

equal to 1.0 cM. The other two exceptions included significant changes to the position of the 456	

original QTL, with the QTL on linkage group 3 for δ15N changing from 93.0 cM to 52.0 cM and 457	

35.0 cM and the QTL on linkage group 6 for δ13C changing from 0.0 cM to 46.0 cM and 56.0 cM 458	

(Tables 5 and 6). The average spacing between QTLs on the same linkage group was 29.4 cM, 459	

with a minimum of 3 cM to a maximum of 85 cM. The multi-QTL PVE for each trait ranged from 460	

a minimum of 42.685% to a maximum of 71.315%, with only one instance of positional overlap 461	
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in QTLs for each trait (linkage group 3 at 34.0 cM for δ13C and 35.0 cM for δ15N). On average, 462	

there was a negative relationship between distance (cM) and the correlation of family effects 463	

(Pearson’s r) between QTLs on the same linkage group (Figure S18), so that strong positive 464	

correlations of family effects were observed when QTLs were close together (<15 cM) and 465	

strong negative correlations when QTLs were farther apart (>20 cM). 466	

QTL effects from the one-locus QTL models were consistent with differentiation between 467	

regional populations, with family effects opposite in sign more often than expected by chance for 468	

δ13C (Fisher’s exact test: odds ratio = 0.113, P = 0.009), but not for δ15N (Fisher’s exact test: 469	

odds ratio = 1.319, P = 1.0). Trait differentiation was similarly structured (Tables 3 and 4), with 470	

the clearest signal of differentiation for δ13C. The same patterns were observed for family effects 471	

in the two-locus models for the original QTL from Table 5, but not for the second QTL (P > 0.05 472	

for both δ13C and δ15N).  473	

Discussion 474	

Climate is one of the main drivers for the distribution and diversification of forest tree 475	

species (MacArthur 1972; Royce and Barbour 2000; Ettinger et al. 2011; Alberto et al. 2013). 476	

The relative importance of specific climate variables as drivers of natural selection, however, is 477	

often assumed. For example, if a phenotypic trait is correlated to water availability in one 478	

species, the same trait is often studied in a different focal species without documenting water 479	

availability as having a large impact on fitness variation in the latter. The problem lies in the 480	

assumption that this correlation is also indicative of similar fitness consequences across 481	

species. Here, we address this issue for foxtail pine using a novel combination of species 482	

distribution modeling and quantitative genetics. We illustrate the importance of water availability 483	

to the distribution of foxtail pine and hence fitness, as well as describe the genetic architecture 484	

of WUE, a phenotypic trait responsive to water availability, so that this trait and the markers 485	
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correlated to it can be used to test hypotheses about local adaptation and its genetic 486	

architecture.  487	

Climate drivers of the current geographical distribution and WUE  488	

 In many situations, drivers of geographical distributions for tree species are obvious. For 489	

example, links between light availability, temperature, precipitation, and phenological traits are 490	

commonly noted for forest trees (Howe et al. 2003; Chuine 2010). In other situations, however, 491	

climate drivers are less clear, so that quantification of the relative importance for a suite of 492	

climate variables is needed. For foxtail pine, the drivers of its current geographical distribution 493	

appear to be a mixture of temperature-related and precipitation-related variables, with a clear 494	

pattern that precipitation-related variables are necessary to explain the current geographical 495	

range. This implies that phenotypic traits correlated to precipitation-related variables likely have 496	

fitness consequences for foxtail pine, as precipitation-related variables appear to structure its 497	

current range. Additionally, the importance of these drivers is differentiated between regional 498	

populations, with precipitation-related variables more differentiated than temperature-related 499	

variables, which mimicked differentiation of phenotypic trait values. Thus, if we leverage the 500	

correlations between δ13C and water availability, a crucial component of survival and hence 501	

fitness, observed in other plant species (Ehleringer et al. 1993) and the conclusion that 502	

precipitation-related variables are important for the distribution of foxtail pine, it is likely that δ13C 503	

variation in foxtail pine is linked with fitness.   504	

 In general, increases in δ13C reflect higher WUE (Farquhar et al. 1982). Inspection of 505	

mean values for δ13C for each region (see Figure 3), in light of the documented precipitation 506	

patterns, however, appears contradictory. On average, maternal trees in the Klamath Mountains 507	

had higher δ13C values, which suggests higher WUE, yet precipitation is much higher in the 508	

Klamath Mountains than in the southern Sierra Nevada. It is well known, however, that soil 509	

properties, such as coarseness and depth to bedrock, affect available soil moisture. For 510	
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example, small differences in soil texture observed across the Southern Sierra Nevada Critical 511	

Zone Observatory, a site not far removed from the regional population of foxtail pine in the 512	

southern Sierra Nevada, result in large differences in the available soil moisture (Bales et al. 513	

2011). Soil texture also varied by elevation, with soils at the highest elevations being coarser 514	

and less developed. As such, water availability in these soils was more limited even though 515	

snowfall was typically higher. Soils between regional populations of foxtail pine are 516	

fundamentally different, and so is the local distribution of foxtail pine. In the Klamath Mountains, 517	

soils are primarily ultramafic, while in the southern Sierra Nevada they are largely granitic. 518	

Foxtail pine grows near tops of local peaks in the Klamath Mountains, whereas in the southern 519	

Sierra Nevada it is distributed broadly across large swathes of high elevation sites. Thus, one 520	

explanation for the apparent contradiction is that soil properties are different, so as to create 521	

patterns of soil moisture not reflective of regional mean precipitation patterns. Foxtail pine in the 522	

Klamath Mountains often inhabits areas with high levels of boulder cover (Eckert and Sawyer 523	

2002; Eckert 2006), which are expected to house soils with less capacity to hold water over long 524	

periods of time. When coupled with the higher average temperatures in the Klamath Mountains, 525	

this suggests that water may be more limited throughout the year (e.g. summer drought) than 526	

expected based on annual precipitation totals. Additional work, however, would be needed to 527	

quantify trait variation within each regional population and correlate it to both climate and soil 528	

characteristics.  529	

Genetic architecture of water-use efficiency 530	

 Both δ13C and δ15N were consistent with non-zero heritabilities. Families and regions 531	

accounted for approximately 50% of the total phenotypic variance for δ13C and 30% for δ15N. 532	

Models with effects due to families or families nested within regions were also strongly preferred 533	

over models without these effects (Table 4). The effect of region, however, was highest in 534	

magnitude for δ13C, with the variance component for region larger than that for family. This is 535	
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consistent with previous estimates of quantitative genetic parameters for these phenotypic traits 536	

in other conifers. For example, δ13C and δ15N are both heritable in a variety of pine species 537	

(Brendel et al. 2002; Baltunis et al. 2008; Gonzalez-Martinez et al. 2008; Cumbie et al. 2011; 538	

Joao Gaspar et al. 2013; Marguerit et al. 2014; Eckert et al. 2015). Populations within many 539	

species are also often differentiated for δ13C, but not for δ15N (e.g. Eckert et al. 2015; Maloney et 540	

al. unpublished). Further work, however, would be needed to precisely estimate the level of 541	

differentiation for these traits, as well as to test whether this level of differentiation is larger than 542	

that expected for neutral loci (i.e. this pattern is consistent with local adaptation).  543	

Estimates of narrow-sense heritabilities (h2) resulted in values greater than 1.0 for each 544	

phenotypic trait no matter which model with a family effect was used (i.e. families or regions 545	

plus families nested within regions). This could be due to tissue sampling occurring prior to 546	

formation of randomized blocks in the common garden, as family groups would be confounded 547	

with micro-environmental variation. Use of data from Eckert et al. (2015) and Maloney et al. 548	

(unpublished data) for sugar pine (P. lambertiana Dougl.), western white pine (P. monticola 549	

Dougl.), and whitebark pine (P. albicaulis Engelm.) grown at the same facility in the same 550	

experimental conditions, however, reveals that block effects for δ13C were present only for the 551	

relatively fast growing western white pine (Type III Wald F-tests with Kenward-Rogers degrees 552	

of freedom; sugar pine: F1,416.49 = 3.5166, P = 0.06146; western white pine: F1,630.24, P = 553	

0.00068; whitebark pine: F1,452.75 = 0.0147; P = 0.9037). In contrast, block had a statistically 554	

significant effect on δ15N for sugar pine and western white pine (P < 0.001), but not whitebark 555	

pine (F1,429.22 = 1.6252, P = 0.20305). Thus, our results should be taken with caution, but family 556	

effects estimated here were similar in magnitude to those from Eckert et al. (2015) and 557	

randomized blocks tended to have no effect on the same phenotypic traits measured in 558	

whitebark pine at the same facility, a species with a similar pattern of early slow growth 559	

(McCune 1988).  560	
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If our results are indicative of true signal, effect sizes could be over-estimated on 561	

average due to the small number of sampled families (Beavis 1994). To illustrate this effect, we 562	

re-analyzed the data from Eckert et al. (2015) for sugar pine, which was grown in a common 563	

garden at the same facility and measured for δ13C using the same methodology, by resampling 564	

smaller numbers of families (n = 108 families resampled in decreasing numbers from 108 to 565	

three families) and estimating h2. As the number of sampled families decreased, estimates of 566	

mean h2 became larger (Figure S19), with a 1.5-fold increase in the mean h2 as the number of 567	

sampled families dropped from 108 to three. This is likely also the case for foxtail pine and for 568	

δ15N. Regardless of the precise value of h2, it is clear that at least a moderate amount of 569	

segregating genetic variation exists for this trait in natural populations of foxtail pine.  570	

 There was also a moderate, but statistically insignificant, positive correlation between 571	

δ13C and δ15N (Figure 4). This has been noted in other species, such as loblolly pine (Cumbie et 572	

al. 2011), although general patterns in the sign of the correlation are lacking. In this context, 573	

positive correlations could indicate that WUE is determined primarily through leaf-level 574	

assimilation (e.g. Johnson et al. 1999; Prasolova et al. 2005), while a negative correlation could 575	

indicate that WUE is determined primarily through stomatal conductance. Despite the observed 576	

positive correlation, little evidence of pleiotropy was detected, with only a single QTL on linkage 577	

group 3 shared between traits. The lack of pleiotropy for these traits has been noted in several 578	

other conifer species (e.g. Marguerit et al. 2014). Correlations between δ13C and δ15N, or growth 579	

traits more generally, can also be driven environmentally and can change depending on water 580	

availability. For example, Joao Gaspar et al. (2013) have shown that in water limiting 581	

environments δ13C correlates with survival, but in less water limited environments δ13C 582	

correlates with height growth for maritime pine (P. pinaster Ait.). A similar case might be 583	

occurring for foxtail pine, where in the wetter Klamath Mountains δ13C variation is correlated with 584	

overall growth and in the more xeric southern Sierra Nevada it is correlated with survival. In this 585	
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context, WUE would be realized through leaf-level assimilation in the Klamath region (as in 586	

Weih et al. 2011 for Salix), and through stomatal conductance in the southern Sierra Nevada. 587	

Sampling more families, measurement of other traits (e.g. growth), and experimentation in 588	

multiple environments, however, would be needed to test these ideas. Importantly, δ13C should 589	

be measured within natural populations to assess correspondence between inferences from 590	

common gardens and natural populations.  591	

 Using one-locus QTL models, the observed segregating genetic variance for δ13C was 592	

dissected into two major QTLs and four suggestive QTLs (Table 5). Each QTL explained a large 593	

fraction of total phenotypic variance (23.113% to 47.807%), which suggests that the genetic 594	

architecture of this fitness-related trait includes loci of large effect. Under many models of 595	

adaptation, however, is difficult to separate QTLs composed of a single, large-effect locus from 596	

those composed of several small-effect loci (Yeaman and Whitlock 2011). The observed large 597	

values of PVE may also be over-estimated (Beavis 1994), although there is precedence for 598	

large effect QTLs for δ13C in other species of Pinus, especially those distributed in water-limited 599	

regions displaying moderate levels of genetic differentiation among populations. For example, 600	

Marguerit et al. (2014) identified a QTL explaining 67% of phenotypic variance for δ13C in 601	

maritime pine, which is distributed across the Mediterranean regions of Europe and has 602	

moderate levels of genetic structure across this range (Eveno et al. 2008). For foxtail pine, 603	

water availability is an important driver of its current geographical distribution and genetic 604	

structure is moderate to high between regional populations and among stands within regional 605	

populations (Eckert et al. 2008, but see Oline et al. 2000). Furthermore, family effects for these 606	

QTLs were consistent with differentiation among regions, so it is plausible that the architecture 607	

discovered here for δ13C largely represents genomic regions underlying trait divergence 608	

between the regional populations. If this is the case, this architecture has evolved since the 609	
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divergence of the regional populations from their common ancestor on the order of one million 610	

years ago (Eckert et al. 2008). 611	

 Summaries of the results from two-locus QTL models were largely consistent with those 612	

from the one-locus models. For the 11 QTLs reported in Table 5, 10 were consistent with at 613	

least two segregating QTLs. This brings the total number of QTLs to four major and seven 614	

suggestive QTLs for δ13C and two major, four minor, and four suggestive QTLs for δ15N. 615	

Interestingly, the correlation of family-level effects for the two QTLs on the same linkage group 616	

was negatively related to the distance between these QTLs, so that QTLs close together tended 617	

to have similar patterns of family-level effects, whereas QTLs at larger distances tended to have 618	

opposite family-level effects (Figure S14). This trend was uncorrelated with the difference in 619	

effect sizes between QTLs. When added to the observation that family effects were often 620	

consistent within regions and differentiated between regions, a likely explanation for this pattern 621	

is some form of natural selection driving clustering of loci dependent on consistency of their 622	

effects on a fitness-related trait. The fitness benefit of clustering, however, is related to the level 623	

of gene flow (Yeaman and Whitlock 2011), so that clustering of adaptive alleles is expected 624	

under high levels of gene flow, reduced recombination, and strong magnitudes of selection. This 625	

is especially pronounced when genomic rearrangements are common. Inspection of the family-626	

level linkage maps from Friedline et al. (2015), however, reveled little evidence for clustered 627	

QTLs displaying differing marker orders across families more so than random positions on the 628	

linkage map. This explanation, however, is complicated given that gene flow is approximately 629	

zero between these regions (Eckert et al. 2008) and populations of foxtail pine are unlikely to be 630	

at selection – migration equilibrium due to large effective population sizes and long generation 631	

times. For example, patterns of segregating ancestral variation after divergence are similar to 632	

those predicted by gene flow (Pamilo and Nei 1988), so that it becomes difficult to separate 633	

pattern from process with regard to the effects of gene flow on adaptive genetic architectures. 634	
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Additional work within natural populations, including fine mapping of trait values in the linkage 635	

bins defined by Friedline et al. (2015), would be needed to test these ideas further. 636	

 We leveraged the annotations of contigs at or near (± 3 cM) the estimated QTL positions 637	

to search for putatively functional genes as the drivers of the genotype-phenotype correlations 638	

for each QTL (Table S3). Annotations for foxtail pine contigs were derived through similarity 639	

searches against the loblolly pine genome. Annotations were obtained from any locus on a 640	

loblolly pine scaffold containing a significant hit to a RADtag from foxtail pine, with significance 641	

justified by the estimated substitution rate and divergence time between these species (Friedline 642	

et al. 2015). Several statistically significant QTLs had no annotation information available. For 643	

example, the QTL on linkage group 1 for δ13C had no annotations available within a 6-cM 644	

window encapsulating the QTL, despite 24 of 76 RADtags having significant similarity to 645	

scaffolds in loblolly pine. This is consistent with reports of gene densities reported for conifers 646	

(Nystedt et al. 2013; Neale et al. 2014). For the QTL related to δ13C on linkage group 2 (Table 647	

5), however, two of the 18 RADtags for foxtail pine had sequence similarity to loblolly pine 648	

scaffolds, with annotated InterPro domains suggestive of loci encoding stress responsive 649	

proteins (Table S3; Toka et al. 2010; Karijolich et al. 2015). Another example of potentially 650	

biologically informative results included the QTL on linkage group 9 for δ15N where putative 651	

homologs for proteins with domains such as ribosomal protein L38e, cytochrome P450, and 652	

thiolase were present. Proteins containing these domains have been implicated in lipid turnover 653	

during leaf senescence (Troncoso-Ponce et al. 2013), as well as plant growth and drought 654	

stress response (Tamiru et al. 2015). Care should be taken in interpreting these results, 655	

however, as QTL intervals were wide, annotations were based on statements of homology with 656	

gene predictions in an early release of the loblolly pine genome sequence (Wegrzyn et al. 657	

2014), and post hoc explanations linking gene products to phenotypic traits is prone to 658	

storytelling (Barrett and Hoekstra 2011; Pavlidis et al. 2012). It is important to note, however, 659	
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that these concerns are with interpretations of putative functions of genes located within the 660	

QTL as sensible in their effect on the measured phenotypic trait, and not with the biological 661	

signal of linkage driving the discovery of the QTL. 662	

Conclusions 663	

We have used a mixture of species distribution modeling and quantitative genetics to 664	

test two hypotheses about WUE, as measured by δ13C, for foxtail pine. We showed that 665	

precipitation-related variables structured the geographical range of foxtail pine, that climate-666	

based niches differed between regional populations, and that similar patterns were apparent for 667	

δ13C, which was also demonstrated to be heritable.  We subsequently dissected this heritability 668	

into a set of large-effect QTLs (n = 21 total, with 11 for δ13C and 10 for δ15N), which we interpret 669	

in light of population genetic theory about local adaptation. While we cannot definitely say that 670	

WUE, as measured by δ13C, contributes to local adaptation, we have described to a first 671	

approximation its genetic architecture, while noting several patterns consistent with δ13C being a 672	

fitness-related trait affected by natural selection. These are useful results with which to generate 673	

further hypotheses about the evolution of genetic architecture contributing to local adaptation in 674	

natural populations (e.g. Holliday et al. 2015).  Our results also shed light on ecologically 675	

relevant phenotypic trait variation useful for management decisions and predictions for range 676	

shifts under changing climates.  677	

 678	

 679	

 680	

 681	

 682	

 683	
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Table 1. Summary of the families (n = 5) used for QTL mapping 962	

 Red Green Purple Blue Yellow 

Latitude 36.448075 36.448075 41.319871 41.195910 41.748267 

Longitude -118.170644 -118.170644 -122.479184 -122.792240 -123.133233 

Elevation (m) 3352.80 3352.80 2397.56 2103.12 2103.12 

Siblingsa 35 40 34 40 32 

Locality Cottonwood 

Pass 

Cottonwood 

Pass 

Mt. Eddy East Boulder 

Lake 

Lake 

Mountain 

Region SN SN KM KM KM 

aThese counts represent the numbers of siblings genotyped and phenotyped for each family. 963	

Additional siblings for each family are still growing within the common garden (see Materials 964	

and Methods).  965	

 966	

 967	

 968	

 969	

 970	

 971	

 972	

 973	

 974	

 975	

 976	

 977	

 978	

 979	
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Table 2. Mean and standard deviation (in parentheses) of read metrics by family 980	

 981	

 982	

 983	

 984	

 985	

 986	

 987	

 988	

 989	

 990	

 991	

 992	

 993	

 994	

 995	

 996	

 997	

 998	

Family Number of reads Length (bp) Quality % Aligned 

Blue 1,092,446 (319,903)  89.0 (8.28)  38.0 (1.05)  31.00 (4.881) 

Green 691,141 (119,272)  87.6 (10.32)  37.5 (1.16)  26.08 (1.614) 

Purple 724,998 (126,585)  88.1 (9.98)  37.6 (1.15)  24.81 (1.398) 

Red 1,289,156 (304,551)  89.0 (8.10)  38.1 (1.05)  33.14 (3.577) 

Yellow 952,597 (377,357)  88.6 (9.17)  37.8 (1.12)  28.89 (4.185) 
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Table 3. Attributes of linear mixed models used to estimate familial and regional effects for each 999	

phenotypic trait. Values in parentheses are 95% parametric bootstrap confidence intervals (see 1000	

Materials and Methods). 1001	

Model Attribute δ13C δ15N 

logL -151.705 

(-167.029 – -130.520) 

-512.587 

(-528.588 – -491.444) 

Intercept -30.755 

(-31.439 – -30.075) 

21.519 

(18.615 – 24.596) 

Family variance component (σ2
fam) 0.159 

(0.002 – 0.432) 

7.826 

(0.000 – 17.521) 

Region variance component (σ2
reg) 0.167 

(0.000 – 0.538) 

1.696 

(0.000 – 9.933) 

Residual variance component (σ2
res) 0.316 

(0.249 – 0.384) 

22.486 

(17.927 – 27.912) 

 1002	

 1003	

 1004	

 1005	

 1006	

 1007	

 1008	

 1009	

 1010	

 1011	

 1012	
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Table 4. Comparisons of linear mixed models using the Akaike Information Criterion (AIC) by 1013	

trait were used to select the best model (bolded text). In these models, the intercept was a fixed 1014	

effect, while families nested within regions and regions were random effects.  1015	

 δ13C  δ15N  

Model AIC AIC weighta AIC AIC weighta 

Intercept 408.10 3.66 x 10-22 1071.76 1.16 x 10-9 

Intercept + family 310.29 0.64 1031.26 0.72 

Intercept + family + region 311.41 0.36 1033.17 0.28 

aThe AIC weight is calculated using the standardized relative likelihoods, where the relative 1016	

likelihood is given as e(-0.5 x ΔAIC). For this calculation, ΔAIC is the difference between the AIC for 1017	

each model and the AIC for the best model (bolded text), where the best model is the one with 1018	

the lowest AIC. The weights are then calculated as each of relative likelihoods over the sum of 1019	

the relative likelihoods, thus making the sum of the weights equal to 1. Akaike weights can also 1020	

be considered as the conditional probabilities for each model. 1021	

 1022	

 1023	

 1024	

 1025	

 1026	

 1027	

 1028	

 1029	

 1030	

 1031	

 1032	

 1033	
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Table 5. Summary of QTLs for each trait that survive multiple test corrected significance 1034	

thresholds at either the level of the whole genome (α = 0.05 for G0.05) or a chromosome (α = 1035	

0.01 for C0.01, α = 0.05 for C0.05)  1036	

Trait LGa Position  

(cM) 

F PVEb 

(PVEc) 

Threshold Fc 95% CId  

(cM) 

δ15N 1 0.0 4.422 26.540 

(25.489) 

3.818 (C0.05) 0.0 – 97.0 

δ13C 1 98.0 7.506 49.778 

(47.807) 

5.803 (G0.05) 13.0 – 99.0 

δ13C 2 78.0 6.040 39.139 

(37.589) 

5.803 (G0.05) 3.0 – 78.0 

δ13C 3 34.0 4.356 26.092 

(25.058) 

3.456 (C0.05) 13.0 – 93.0 

δ15N 3 93.0 4.475 27.065 

(25.993) 

3.725 (C0.05)  14.0 – 93.0 

δ13C 5 64.0 4.659 28.625 

(27.491) 

4.008 (C0.05) 17.0 – 103.0 

δ13C 6 0.0 4.198 24.825 

(23.842) 

3.835 (C0.05) 0.0 – 85.0 

δ15N 7 62.0 6.351 41.413 

(39.773) 

6.091 (G0.05) 16.0 – 89.0 

δ15N 8 72.0 5.784 37.182 

(35.710) 

5.559 (C0.01) 1.0 – 100.0 

δ15N 9 95.0 5.924 38.237 

(36.809) 

4.958 (C0.01) 9.0 – 95.0 

δ13C 12 23.0 4.105 24.066 

(23.113) 

4.072 (C0.05) 15.0 – 91.0 

aLG, Linkage group 1037	
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bPVE, percent variance explained; PVEc, corrected percent variance explained 1038	
cThe threshold value for the F-statistic under the null model as determined using the listed value of α 1039	

(0.05 or 0.01) and permutations following Churchill and Doerge (1994) for either individual linkage groups 1040	

(C) or the entire genome (G).  1041	
d95% CI, 95% confidence interval determined through bootstrap analysis (n = 1,000 replicates) 1042	

 1043	

 1044	

 1045	

 1046	

 1047	

 1048	

 1049	

 1050	

 1051	

 1052	

 1053	

 1054	

 1055	

 1056	

 1057	

 1058	

 1059	

 1060	

 1061	

 1062	

 1063	

 1064	

 1065	
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Table 6. Summary of two QTL models fit to each significant QTL from Table 4. Bolded P-values 1066	

are less than 0.05. 1067	

Trait LGa Position 1 

(cM) 

Position 2 

(cM) 

F P PVEb 

δ15N 1 0.0 79.0 3.89 0.0023 54.518 

δ13C 1 98.0 13.0 2.92 0.0149 64.725 

δ13C 2 77.0 66.0 3.76 0.0030 61.685 

δ13C 3 34.0 14.0 3.18 0.0091 44.459 

δ15N 3 52.0 35.0 4.24 0.0012 57.594 

δ13C 5 64.0 88.0 1.81 0.1135 37.745 

δ13C 6 46.0 56.0 3.84 0.0026 48.892 

δ15N 7 62.0 80.0 4.69 0.0005 71.315 

δ15N 8 71.0 68.0 2.57 0.0287 49.661 

δ15N 9 95.0 64.0 2.90 0.0155 53.602 

δ13C 12 23.0 43.0 3.20 0.0088 42.685 

aLG, Linkage group 1068	
bPVE, percent variance explained by both QTLs 1069	

 1070	

 1071	

 1072	

 1073	

 1074	

 1075	

 1076	
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Figure Legends 1077	
 1078	
Figure 1. Species distribution models (SDMs) created using MaxEnt are good predictors of the 1079	

current geographical range of foxtail pine (inlaid maps; AUC = area under the receiver operating 1080	

characteristic curve). Precipitation and temperature-related variables are differentially important, 1081	

as measured by variable contributions to each model, to the SDM of each regional population of 1082	

foxtail pine, with precipitation-related variables more important for the Klamath Region and 1083	

temperature-related variables more important for the southern Sierra Nevada. Variable 1084	

contribution scores (+/- 1 standard deviation derived from 10 replicated runs of MaxEnt per 1085	

SDM) are uncorrelated (Spearman’s ρ = -0.065). For symbols without apparent error bars, the 1086	

diameter of the circle was greater than the standard deviation. 1087	

 1088	

Figure 2. Ranks of variable importance (low rank = more important) based on variable 1089	

contribution (VC) scores and permutation importance (PI) scores to the SDM for each regional 1090	

population are moderately correlated (r = Spearman’s ρ). Variable types are denoted using filled 1091	

circles, with black used for temperature-related variables, white for precipitation-related 1092	

variables, and gray for variables related to both temperature and precipitation.  1093	

 1094	

Figure 3. Familial and regional level means (+/- 1 standard error) by trait (left: δ13C, right: δ15N) 1095	

are differentiated across families and regions relative to the global mean. Dashed gray lines 1096	

give global means across all families for each trait. Estimates for the Klamath Mountains (KM) 1097	

are given as filled circles, while estimates for the southern Sierra Nevada (SN) are given as 1098	

filled triangles. Familial names are given as colors (see Materials and Methods).  1099	

 1100	

Figure 4. The relationship between traits based on family means (+/- 1 standard error) is 1101	

positive (Pearson’s r = 0.415), although statistically non-significant at α = 0.05 (P = 0.487). 1102	

Dashed gray lines give global means across all families for each trait.  1103	
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 1104	

Figure 5. The distributions of the F-statistic derived from single QTL models across each 1105	

linkage group for carbon isotope discrimination and nitrogen content of needles reveals the 1106	

isolated nature of QTLs. The dashed horizontal line in each panel is the genome-wide 1107	

significance threshold (α = 0.05) for the F-statistic based on the permutation scheme (n = 1,000 1108	

permutations) suggested by Churchill and Doerge (1994). Significant QTLs are denoted with 1109	

filled circles (α = 0.05, genome-wide), filled triangles (α = 0.01, chromosome-wide) or filled 1110	

squares (α = 0.05, chromosome-wide).  1111	
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