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Abstract

We introduce a novel Empirical Bayes approach for large-scale hypothesis testing, including

estimating False Discovery Rates (FDRs), and estimating effect sizes. Compared with existing

approaches to FDR analysis, the method has two key differences. First, it assumes that the

distribution of the actual (unobserved) effects being tested is unimodal, with a mode at 0. This

“unimodal assumption” (UA), although natural in many contexts, is very different from assump-

tions usually made in FDR analyses, and yields more accurate inferences than existing methods

provided that it holds. The UA also facilitates efficient and robust computation because estimat-

ing the unimodal distribution involves solving a simple convex optimization problem. Second,

the method takes as its input two numbers for each test (an effect size estimate, and corre-

sponding standard error), rather than the one number usually used (p value, or z score). When

available, using two numbers instead of one helps account for variation in measurement precision

across tests. It also facilitates the estimation of actual effect sizes, and our approach provides

interval estimates (credible regions) for each effect in addition to measures of significance. To

provide a bridge between interval estimates and significance measures we introduce the term

“local false sign rate” to refer to the probability of getting the sign of an effect wrong, and argue

that it is a superior measure of significance than the local FDR because it is both more generally

applicable, and can be more robustly estimated. Our methods are implemented in an R package

ashr available from http://github.com/stephens999/ashr.
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Introduction

Since its introduction in 1995 by Benjamini and Hochberg [1], the “False Discovery Rate” (FDR)

has quickly established itself as a key concept in modern statistics, and the primary tool by which

most practitioners handle large-scale multiple testing in which the goal is to identify the non-zero

“effects” among a large number of imprecisely-measured effects.

Here we consider an Empirical Bayes (EB) approach to FDR. This idea is, of course, far from

new: indeed, the notion that EB approaches could be helpful in handling multiple comparisons

predates introduction of the FDR (e.g. [2]). More recently, EB approaches to the FDR have been

extensively studied by several authors, especially B. Efron and co-authors [3–7]; see also [8–11]

for example. So what is the “New Deal” here? We introduce two simple ideas that are new (at

least compared with existing widely-used FDR pipelines) and can substantially affect inference.

The first idea is to assume that the distribution of effects is unimodal. We provide a very simple,

fast, and stable computer implementation for perfoming EB inference under this assumption,

and illustrate how it can improve inference of FDR when the unimodal assumption is correct.

The second idea is to use two numbers – effect sizes, and their standard errors – rather than

just one – p values, or z scores – to summarize each measurement. This idea allows variations in

measurement precision to be better accounted for, and avoids a problem with standard pipelines

that poor-precision measurements can inflate estimated FDR.

In addition to these two new ideas, we highlight a third idea that is old, but which remains

under-used in practice: the idea that it may be preferable to focus on estimation rather than

on testing. In principle, Bayesian approaches can naturally unify testing and estimation into

a single framework – testing is simply estimation with some positive prior probability that the

effect is exactly zero. However, despite ongoing interest in this area from both frequentist [12]

and Bayesian [13,14] perspectives, in practice large-scale studies that assess many effects almost

invariably focus on testing significance and controlling the FDR, and not on estimation. To help

provide a bridge between FDR and estimation we introduce the term “local false sign rate” (lfsr),

which is analogous to the “local false discovery rate” (lfdr) [6], but which measures confidence
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in the sign of each effect rather than confidence in each effect being non-zero. We show that in

some settings, particularly those with many discoveries, the lfsr and lfdr can be quite different,

and emphasize benefits of the lfsr, particularly its increased robustness to modeling assumptions.

Although we have focussed here on applications to FDR, the idea of performing Empiri-

cal Bayes inference by flexibly esimating an underlying unimodal prior distribution could be

useful more generally - for example in shrinkage estimation contexts such as wavelet denois-

ing [15]. Importantly, our work demonstrates that EB inference under a general unimodal

assumption is, if anything, computationally simpler than commonly-used more restrictive as-

sumptions – such as a spike and slab or Laplace prior distribution [16] – as well as being more

flexible. Our methods are implemented in an R package, ashr (for adaptive shrinkage in R),

available at http://github.com/stephens999/ashr. (The name comes from the fact that our EB

approach using a unimodal prior naturally results in shrinkage estimation, and the shrinkage

is adaptive to both the amount of signal in the data and the measurement precision of each

observation.) Code and instructions for reproducing analyses and figures in this paper are at

https://github.com/stephenslab/ash.

Methods

Model Outine

Here we describe the simplest version of the method, and briefly discuss embellishments we have

also implemented.

Suppose that we are interested in the values of J “effects” β = (β1, . . . , βJ). For example, in

a typical genomics application that aims to identify differentially expressed genes, βj might be

the difference in the mean (log) expression of gene j in two conditions. In contexts where FDR

methods are applied, interest often focuses on identifying “significant” non-zero effects; that is,

in testing the null hypotheses Hj : βj = 0. Here we tackle both this problem, and the more

general problem of estimating, and assessing uncertainty in, βj .
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Assume that the available data are estimates β̂ = (β̂1, . . . , β̂J) of the effects, and correspond-

ing (estimated) standard errors ŝ = (ŝ1, . . . , ŝJ). Our goal is to compute a posterior distribution

for β given the observed data β̂, ŝ, which by Bayes theorem can be written as

p(β|β̂, ŝ) ∝ p(β|ŝ)p(β̂|β, ŝ). (1)

For p(β|ŝ) we assume that the βj are independent from a unimodal distribution g. This

unimodal assumption (UA) is a key assumption that distinguishes our approach from previous

EB approaches to FDR analysis. A simple way to implement the UA is to assume that g is a

mixture of a point mass at 0 and a mixture of zero-mean normal distributions:

p(β|ŝ, π) =
∏
j

g(βj ;π), (2)

g(·;π) = π0δ0(·) +

K∑
k=1

πkN(·; 0, σ2
k), (3)

where N(·;µ, σ2) denotes the density of the normal distribution with mean µ and variance σ2.

Here the mixture proportions π = (π0, . . . , πK) are hyper-parameters, which are non-negative

and sum to one, and are to be estimated, while the mixture component standard deviations

σ1, . . . , σK represent a large and dense grid of fixed positive numbers spanning a range from very

small to very big (so K is fixed and large). (We encourage the reader to think of this grid as

becoming infinitely large and dense, as a non-parametric limit, although of course in practice

we use a finite grid – see Implementation Details.)

For the likelihood p(β̂|β, ŝ) we assume

p(β̂|β, ŝ) =
∏
j

N(β̂j ;βj , ŝ
2
j ). (4)

Here, in additional to some conditional independence assumptions, we are effectively assuming

that the number of observations used to compute β̂j , ŝj are sufficiently large to justify a normal
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approximation.

This simple model features both the key ideas we want to emphasize in this paper: the

UA is encapsulated in (3) while the different measurement precision of different observations is

encapsulated in the likelihood (4) – specifically, observations with larger standard error will have

a flatter likelihood, and therefore have less impact on inference. However, this simple model also

has several additional assumptions that can be relaxed. Specifically,

1. The use of a mixture of zero-mean normals (3) implies that g is symmetric about 0. More

flexibility can be obtained by replacing the mixture of normals with mixtures of uniforms

[see equation (11)]; indeed this can allow g to approximate any unimodal distribution.

2. The model (2) assumes that the effects are identically distributed, independent of their

standard errors ŝ. We can relax this to allow for a relationship between these quantities

[see (12)].

3. The likelihood (4) effectively assumes that the number of observations used to compute

β̂j , ŝj are sufficiently large to justify a normal approximation. We can generalize this

likelihood using a t likelihood [see (13)].

These embellishments are detailed in Detailed Methods. Of course there remain limitations that

are harder to relax, most notably the independence and conditional independence assumptions

encapsulated in our model (which are also made by most existing EB approaches to this prob-

lem). Correlations among tests certainly arise in practice, either due to genuine correlations in

the system of study, or due to unmeasured confounders, and their potential to impact results of

an FDR analysis is important to consider whatever analysis methods are used: see [17, 18] for

relevant discussion.

Fitting the model

In words, the model above assumes that the effects βj are independent and identically distributed

from a mixture of zero-centered normal distributions, and each observation β̂j is a noisy mea-
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surement of βj with standard error ŝj . Together, these assumptions imply that the observations

β̂j are also independent observations, each from a mixture of normal distributions:

p(β̂|ŝ, π) =
∏
j

[

K∑
k=0

πkN(β̂j ; 0, σ2
k + ŝ2

j )], (5)

where we define σ0 := 0.

The usual EB approach to fitting this model would involve two simple steps:

1. Estimate the hyper-parameters π by maximizing the likelihood L(π), given by (5), yielding

π̂ := arg maxL(π).

2. Compute quantities of interest from the conditional distributions p(βj |β̂, ŝ, π̂). For ex-

ample, the evidence against the null hypothesis βj = 0 can be summarized by p(βj 6=

0||β̂, ŝ, π̂).

Both steps 1 and 2 are very straightforward. Step 1 is a convex optimization problem, and can

be solved quickly and reliably using interior point methods [19,20]. (Alternatively a simple EM

algorithm can be used, and we found this to perform adequately for moderate-sized problems, say

J < 2000). And the conditional distributions p(βj |β̂j , ŝj , π̂) in Step 2 are analytically available,

each a mixture of a point mass on zero and K normal distributions. (The simplicity of step 1

is due to our use of a fixed grid for σk in (3), instead of estimating σk, which may seem more

natural but is not straightforward when ŝj varies among j. This simple device may be useful in

other applications.)

Here we slightly modify this usual procedure: instead of obtaining π̂ by maximizing the

likelihood, we maximize a penalized likelihood [see (18)], where the penalty encourages π̂0 to

be as big as possible whilst remaining consistent with the observed data. We introduce this

penalty because in FDR applications it is considered desirable to avoid underestimating π0 so

as to avoid underestimating the FDR.

Our R package implementation typically takes about 20 seconds on a modern laptop for

p = 100, 000, and scales linearly with J .
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The local False Discovery Rate and local False Sign Rate

As noted above, the posterior distributions p(βj |β̂, ŝ, π̂) have a simple analytic form. In practice

it is common, and desirable, to summarize these distributions to convey the “significance” of each

observation j. One natural measure of the significance of observation j is its “local FDR” [6],

which is the probability, given the observed data, that effect j would be a false discovery, if we

were to declare it a discovery. In other words it is the posterior probability that βj is actually

zero:

lfdr j := Pr(βj = 0|β̂, ŝ, π̂). (6)

The lfdr, like most other measures of significance (e.g. p values and q values), is rooted in

the hypothesis testing paradigm which focuses on whether or not an effect is exactly zero. This

paradigm is popular, despite the fact that many statistical practitioners have argued that it is

often inappropriate because the null hypothesis Hj : βj = 0 is often implausible. For example,

Tukey ( [21]) argued that “All we know about the world teaches us that the effects of A and B

are always different – in some decimal place – for any A and B. Thus asking ‘Are the effects

different?’ is foolish.” Instead, Tukey suggested ( [22], p32,) that one should address

...the more meaningful question: “is the evidence strong enough to support a belief

that the observed difference has the correct sign?”

Along the same lines, Gelman and co-authors [14, 23] suggest focussing on “type S errors”,

meaning errors in sign, rather than the more traditional type I errors.

Motivated by these suggestions, we define the “local False Sign Rate” for effect j, lfsrj , to be

the probability that we would make an error in the sign of effect j if we were forced to declare

it either positive or negative. Specifically,

lfsrj := min[p(βj ≥ 0|β̂, s), p(βj ≤ 0|π̂, β̂, s)]. (7)
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To illustrate, suppose that

p(βj < 0|β̂, s, π̂) = 0.95,

p(βj = 0|β̂, s, π̂) = 0.03,

p(βj > 0|β̂, s, π̂) = 0.02.

Then from (7) lfsrj = min(0.05, 0.98) = 0.05 (and, from (6), lfdrj = 0.03). This lfsr corresponds

to the fact that, given these results, our best guess for the sign of βj is that it is negative, and

the probability that this guess is wrong would be 0.05.

As our notation suggests, lfsrj is intended to be compared and contrasted with lfdrj : whereas

small values of lfdrj indicate that we can be confident that βj is non-zero, small values of lfsrj

indicate that we can be confident in the sign of βj . Of course, being confident in the sign of an

effect logically implies that we are confident it is non-zero, and this is reflected in the fact that

lfsrj ≥ lfdrj (this follows from the definition because both the events βj ≥ 0 and βj ≤ 0 in (7)

include the event βj = 0). In this sense, as a measure of “significance”, lfsr is more conservative

than lfdr. More importantly, as we illustrate in Results, lfsr can be substantially more robust

to modeling assumptions than lfdr.

From these “local” measures of significance, we can also compute average error rates over

subsets of observations Γ ⊂ {1, . . . , J}. For example,

F̂DR(Γ) := (1/|Γ|)
∑
j∈Γ

lfdr j . (8)

estimates the FDR we would obtain if we were to declare all tests in Γ significant. And

qj := F̂DR({k : lfdrk ≤ lfdr j}) (9)

provides a measure of significance analogous to Storey’s q value [24].

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2016. ; https://doi.org/10.1101/038216doi: bioRxiv preprint 

https://doi.org/10.1101/038216
http://creativecommons.org/licenses/by/4.0/


9

Related work

Previous approaches focussed on FDR

Among previous methods that explicitly consider the FDR and related quantities, our work

here seems most naturally compared with the EB methods of [6] and [11] (implemented in

the R packages locfdr and mixfdr respectively) and with the widely-used methods from [24]

(implemented in the R package qvalue), which although not formally an EB approach, shares

some elements in common.

There are two key differences between our approach and all of these three existing methods.

First, whereas these existing methods summarize the information on βj by a single number

– either a z score (locfdr and mixfdr), or a p value (qvalue) – we instead work with two

numbers (β̂j , ŝj). Here we are building on [25], who develops Bayesian tests for individual null

hypotheses using these two numbers, using the normal approximation 4; see also [26]. Using

two numbers instead of one clearly has the potential to be more informative, and indeed, results

later (Figure 4) illustrate how it can improve performance by taking better account of variation

in measurement precision among observations.

Second, our unimodal assumption (UA) that the effects are unimodal about zero is quite

different from assumptions made by qvalue, locfdr or mixfdr. Indeed, locfdr assumes that

all z scores near 0 are null (Efron calls this the Zero Assumption; ZA), which implies that under

the alternative hypothesis the distribution of z scores has no mass at 0; this contrasts strikingly

with the UA, which implies that this distribution has its peak at 0! Similarly, qvalue assumes

that all p values near 1 are null, which is the same as the ZA because p values near 1 correspond

to z scores near 0. And although mixfdr does not formally make the ZA, we have found that in

practice, with default settings, the results often approximately satisfy the ZA (due, we believe,

to the default choice of penalty term β described in [11]). Thus, not only do these existing

methods not make the UA, they actually make assumptions that are, in some sense, as different

from the UA as they can be.

Given that the UA and ZA are so different, it seems worth discussing why we generally
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favor the UA. Although the UA will not apply to all situations, we believe that it will often

be reasonable, especially in FDR-related contexts that have traditionally focussed on rejecting

the null hypotheses βj = 0. This is because if “βj = 0” is a plausible null hypothesis, it seems

reasonable to expect that “βj very near 0” is also plausible. Further, it seems reasonable to

expect that larger effects become decreasingly plausible, and so the distribution of the effects

will be unimodal about 0. To paraphrase Tukey, “All we know about the world teaches us that

large effects are rare, whereas small effects abound.” We emphasize that the UA relates to the

distribution of all effects, and not only the detectable effects (i.e. those that are significantly

different from zero). It is very likely that the distribution of detectable non-zero effects will be

multimodal, with one mode for detectable positive effects and another for detectable negative

effects, and the UA does not contradict this.

In further support of the UA for FDR applications, we note that almost all analogous work

in sparse regression models make the UA for the regression coefficients – common choices of uni-

modal distribution being the spike and slab, Laplace, t, normal-gamma, normal-inverse-gamma,

or horseshoe priors [27]. These are all less flexible than the approach we take here, which

provides for general uni-modal distributions, and it may be fruitful to apply our methods to

the regression context; indeed see [28] for work in this vein. The UA assumption on regression

coefficients is directly analagous to our UA here, and so its widespread use in the regression

context supports its use here.

Alternatively, we could motivate the UA by its effect on point estimates, which is to “shrink”

the estimates towards the mode - such shrinkage is desirable from several standpoints for improv-

ing estimation accuracy. Indeed most model-based approaches to shrinkage make parametric

assumptions that obey the UA (e.g. [16]).

Finally, the UA also has a considerable practical benefit: it yields simple algorithms that are

both computationally and statistically stable (see Results).
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Other work

There is also a very considerable literature that does not directly focus on the FDR problem,

but which involves similar ideas and methods. Among these, a paper about deconvolution [29]

is most similar, methodologically, to our work here: indeed, this paper includes all the elements

of our approach outlined above, except for the point mass on 0 and corresponding penalty term.

This said, the focus is very different: [29] focuses entirely on estimating g, whereas our primary

focus is on estimating βj . Also, they provide no software implementation. More generally,

the related literature is too large to review comprehensively, but relevant key-words include

“empirical bayes”, “shrinkage”, “deconvolution”, “semi-parametric”, “shape-constrained”, and

“heteroskedastic”. Some pointers to recent papers in which other relevant citations can be found

include [30–32]. Much of the literature focusses on the homoskedastic case (i.e. ŝj all equal)

whereas we allow for heteroskedasticity. And much of the recent shrinkage-oriented literature

focuses only on point estimation of βj , whereas for FDR-related applications measures of uncer-

tainty are essential. Several recent papers consider more flexible non-parametric assumptions

on g than the UA assumption we make here. In particular, [32, 33] consider the unconstrained

non-parametric maximum likelihood estimate (NPMLE) for g. These methods may provide

alternatives to our approach in settings where the UA assumption is considered too restrictive.

However, the NPMLE for g is a discrete distribution, which will induce a discrete posterior

distribution on βj , and so although the NPMLE may perform well for point estimation, it may

not adequately reflect uncertainty in βj , and some regularization on g may be necessary. Indeed,

one way of thinking about the UA is as a way to regularize g.

Results

We compare results of ashr with existing FDR-based methods implemented in the R packages

qvalue (v2.1.1), locfdr (v1.1-8), and mixfdr (v1.0, from https://cran.r-project.org/src/contrib/Archive/mixfdr/).

In all our simulations we assume that the test statistics follow the expected theoretical distri-
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bution under the null, and we indicate this to locfdr using nulltype=0 and to mixfdr using

theonull=TRUE. Otherwise all packages were used with default options.

Effects of the Unimodal Assumption

Here we consider the effects of making the UA. To isolate these effects we consider the simplest

case, where every observation has the same standard error, sj = 1 and all methods are provided

that information. That is, β̂j |βj ∼ N(βj , 1) and ŝj = sj = 1. In this case the z scores

zj := β̂j/ŝj = β̂j , so modelling the z scores is the same as modelling the β̂j , and so the only

difference between our method and methods like locfdr and mixfdr are in how they estimate

g.

To briefly summarize the results in this section:

1. The UA can produce very different inferences compared with the ZA made by existing

methods.

2. The UA can yield conservative estimates of the proportion of true nulls, π0, and hence

conservative estimates of lfdr and FDR.

3. The UA results in a stable procedure, both numerically and statistically, and is somewhat

robust to deviations from unimodality.

The UA and ZA can produce different inferences

To illustrate the different inferences from the UA and ZA we show results for a single dataset

simulated with the true effects βj ∼ N(0, 1) (so with sj = 1, β̂j ∼ N(0, 2)). Note that none of

the effects are truly null, but nonetheless there are many p values near 1 and z scores near 0

(Figure 1). We used each of the methods qvalue, locfdr, mixfdr and ashr to decompose the

z scores (zj = β̂j), or their corresponding p values, into null and alternative components. The

results (Figure 1) illustrate the clear difference between the existing methods and our method.

The effects of the ZA made by qvalue and locfdr are visually clear, producing a “hole” in the
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Figure 1. Illustration that the unimodal assumption (UA) in ashr can produce very different
results from existing methods. The figure shows, for a single simulated dataset, the way
different methods decompose p values (left) and z scores (right) into a null component (dark
blue) and an alternative component (cyan). In the z score space the alternative distribution is
placed on the bottom to highlight the differences in its shape among methods. The three
existing methods (qvalue, locfdr, mixfdr) all effectively make the Zero Assumption, which
results in a “hole” in the alternative z score distribution around 0. In contrast the method
introduced here (ashr) makes the Unimodal Assumption – that the effect sizes, and thus the z
scores, have a unimodal distribution about 0 – which yields a very different decomposition. (In
this case the ashr decomposition is closer to the truth: the data were simulated under a model
where all of the effects are non-zero, so the “true” decomposition would make everything cyan.)
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alternative z score distribution around 0. Although mixfdr does not formally make the ZA,

its decomposition exhibits a similar hole. In contrast, due to the UA, the alternative z score

distribution for ashr is required to have a mode at 0, effectively “filling in” the hole. (Of course

the null distribution also has a peak at 0, and the local fdr under the UA is still smallest for z

scores that are far from zero – i.e. large z scores remain the “most significant”.)

Figure 1 may also be helpful in understanding the interacting role of the UA and the

penalty term (18) that attempts to make π0 as “large as possible” while remaining consis-

tent with the UA. Specifically, consider the panel of Figure 1 that shows ashr’s decomposition

of z scores, and imagine increasing π0 further. This would increase the null component (dark

blue) at the expense of the alternative component (light blue). Because the null component is

N(0, 1), and so is biggest at 0, this would eventually create a “dip” in the light-blue histogram

at 0. The role of the penalty term is to push the dark blue component as far as possible,

right up to (or, to be conservative, just past) the point where this dip appears. In contrast

the ZA pushes the dark blue component until the light-blue component disappears at 0. See

https://stephens999.shinyapps.io/unimodal/unimodal.Rmd for an interactive demonstration.

The UA can produce conservative estimates of π0

The illustration in Figure 1 suggests that the UA will produce smaller estimates of π0 than

the ZA. Consequently ashr will estimate smaller lfdrs and FDRs than existing methods that

make the ZA. This is desirable, provided that these estimates remain conservative: that is,

provided that π0 does not underestimate the true π0 and lfdr does not underestimate the true

lfdr. The penalty term (18) aims to ensure this conservative behavior. To check its effectiveness

we performed simulations under various alternative scenarios (i.e. various distributions for the

non-zero effects, which we denote g1), and values for π0. The alternative distributions are

shown in Figure 2a, with details in Table 2. They range from a “spiky” distribution – where

many non-zero β are too close to zero to be reliably detected, making reliable estimation of π0

essentially impossible – to a much flatter distribution, which is a normal distribution with large
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variance (“big-normal”) – where most non-zero β are easily detected making reliable estimation

of π0 easier. We also include one asymmetric distribution (“skew”), and one clearly bimodal

distribution (“bimodal”), which, although we view as generally unrealistic, we include to assess

robustness of ashr to deviations from the UA.

For each simulation scenario we simulated 100 independent data sets, each with J = 1000

observations. For each data set we simulated data as follows:

1. Simulate π0 ∼ U [0, 1].

2. For j = 1, . . . , J , simulate βj ∼ π0δ0 + (1− π0)g1(·).

3. For j = 1, . . . , J , simulate β̂j |βj ∼ N(βj , 1).

Figure 2b compares estimates of π0 from qvalue, locfdr, mixfdr and ashr (y axis) with

the true values (x axis). For ashr we show results for g1 modelled as a mixture of normal

components (“ash.n”) and as a mixture of symmetric uniform components (“ash.u”). (Results

using the asymmetric uniforms, which we refer to as “half-uniforms”, and denote “ash.hu” in

subsequent sections, are here generally similar to ash.u and omitted to avoid over-cluttering

figures.) The results show that ashr provides the smallest more accurate, estimates for π0,

while remaining conservative in all scenarios where the UA holds. When the UA does not hold

(“bimodal” scenario) the ashr estimates can be slightly anti-conservative. We view this as a

minor concern in practice, since we view such a strong bimodal scenario as unlikely in most

applications where FDR methods are used. (In addition, the effects on lfsr estimates turn out

to be relatively modest; see below).

The lfsr is more robust than lfdr

The results above show that ashr can improve on existing methods in producing smaller, more

accurate, estimates of π0, which will lead to more accurate estimates of FDR. Nonetheless,

in many scenarios ashr continues to substantially over-estimate π0 (see the “spiky” scenario
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spiky near−normal flat−top skew big−normal bimodal
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(a) Densities of non-zero effects, g1, used in simulations.

spiky near−normal flat−top skew big−normal bimodal

0.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

True pi0

E
st

im
at

ed
 p

i0

method ● ● ● ● ●ash.n ash.u locfdr mixfdr.tnull qvalue

(b) Comparison of true and estimated values of π0. When the UA holds all methods yield conservative
(over-)estimates for π0, with ashr being least conservative, and hence most accurate. When the UA
does not hold (“bimodal” scenario) the ashr estimates are slightly anti-conservative.

(c) Comparison of true and estimated lfdr from ashr (ash.n). Black line is y = x and red line is y = 2x.
Estimates of lfdr are conservative when UA holds, due to conservative estimates of π0.

(d) As in c), but for lfsr instead of lfdr. Estimates of lfsr are consistently less conservative than lfdr
when UA holds, and also less anti-conservative in bimodal scenario.

Figure 2. Results of simulation studies (constant precision sj = 1).
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for example). This is because these scenarios include an appreciable fraction of “small non-

null effects” that are essentially indistinguishable from 0, making accurate estimation of π0

impossible. Put another way, and as is well known, π0 is not identifiable: the data can effectively

provide an upper bound on plausible values of π0, but not a lower bound (because the data

cannot rule out that everything is non-null, but with minuscule effects). To obtain conservative

behavior we must estimate π0 by this upper bound, which can be substantially larger than the

true value.

Since FDR-related quantities depend quite sensitively on π0, the consequence of this over-

estimation of π0 is corresponding overestimation of FDR (and lfdr, and q values). To illustrate,

Figure 2c compares the estimated lfdr from ash.n with the true value (computed using Bayes

rule from the true g1 and π0). As predicted, lfdr is overestimated, especially in scenarios which

involve many non-zero effects that are very near 0 (e.g. the spiky scenario with π0 small) where

π0 can be grossly overestimated. (Of course other methods will be similarly affected by this:

those that more grossly overestimate π0, will more grossly overestimate lfdr and FDR/q-values.)

The key point we want to make here is estimation of π0, and the accompanying identifiability

issues, become substantially less troublesome if we use the local false sign rate lfsr (7), rather than

lfdr, to measure significance. This is essentially because lfsr is less sensitive to the estimate of π0.

To illustrate, Figure 2d compares the estimated lfsr from ash.n with the true value: although

the estimated lfsr continue to be conservative, overestimating the truth, the overestimation is

substantially less pronounced than for the lfdr, especially for the “spiky” scenario. Further, in

the bi-modal scenario, the anti-conservative behavior is less pronounced in lfsr than lfdr.

Note that, compared with previous debates regarding testing, this section advances an ad-

ditional reason for focussing on the sign of the effect, rather than just testing whether it is 0.

In previous debates authors have argued against testing whether an effect is 0 because it is

implausible that effects are exactly 0. Here we add that even if one believes that some effects

may be exactly zero, it is still better to focus on the sign, because generally the data are more

informative about that question and so inferences are more robust to, say, the inevitable mis-
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estimation of π0. To provide some intuition, consider an observation with a z score of 0. The

lfdr of this observation can range from 0 (if π0 = 0) to 1 (if π0 = 1). But, assuming a symmetric

g, the lfsr > 0.5 whatever the value of π0, because the observation z = 0 says nothing about

the sign of the effect. Thus, there are two reasons to use the lfsr instead of the lfdr: it answers

a question that is more generally meaningful (e.g. it applies whether or not zero effects truly

exist), and estimation of lfsr is more robust.

Given that we argue for using lfsr rather than lfdr, one might ask whether we even need a

point mass on zero in our analysis. Indeed, one advantage of the lfsr is that it makes sense even if

no effect is exactly zero. And, if we are prepared to assume that no effects are exactly zero, then

removing the point mass yields smaller and more accurate estimates of lfsr when that assumption

is true (Figure 6a). However, there is “no free lunch”: if in fact some effects are exactly zero then

the analysis with no point mass will tend to be anti-conservative, underestimating lfsr (Figure

6b). We conclude that if ensuring a “conservative” analysis is important then one must allow

for a point mass at 0.

The UA helps provide reliable estimates of g

An important advantage of our EB approach based on modelling the effects βj , rather than p

values or z scores, is that it can estimate the size of each effect βj . Specifically, it provides a

posterior distribution for each βj , which can be used to construct interval estimates for βj and

address question such as “which effects exceed T”, for any threshold T . Further, because the

posterior distribution is, by definition, conditional on the observed data, interval estimates based

on posterior distributions are also valid Bayesian inferences for any subset of the effects that

have been selected based on the observed data. This kind of “post-selection” validity is much

harder to achieve in the frequentist paradigm. In particular the posterior distribution solves the

(Bayesian analogue of the) “False Coverage Rate” problem posed by [12] which [6] summarizes

as follows: “having applied FDR methods to select a set of nonnull cases, how can confidence

intervals be assigned to the true effect size for each selected case?”. [6] notes the potential for
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EB approaches to tackle this problem, and [13] consider in detail the case where the non-null

effects are normally distributed.

The ability of the EB approach to provide valid “post-selection” interval estimates is ex-

tremely attractive in principle. But its usefulness in practice depends on reliably estimating the

distribution g. Estimating g is a “deconvolution problem”, which are notoriously difficult in

general. Indeed, Efron emphasizes the difficulties of implementing a stable general algorithm,

noting in his rejoinder “the effort foundered on practical difficulties involving the perils of de-

convolution... Maybe I am trying to be overly nonparametric ... but it is hard to imagine a

generally satisfactory parametric formulation...” ( [6] rejoinder, p46). Our key point here is

that the UA greatly simplifies the deconvolution problem. While not meeting Efron’s desire for

an entirely general nonparametric approach, we believe that the UA can handle many cases of

practical interest.

To illustrate this, Figure 3 compares the estimated g from ashr with that from mixfdr which

does not make the UA (and which models g as a mixture of J normal distributions, with J = 3

by default). The greater reliability of estimates afforded by the UA is immediately apparent.

In particular the estimated cdf from mixfdr often has an almost-vertical segment at some non-

zero location, indicative of a concentration of density in the estimated g at that location. The

UA prevents this kind of “irregular” behavior, effectively requiring g to be somewhat smooth.

While the UA is not the only way to achieve this, we find it an attractive, simple and effective

approach.

Interestingly, even in the “bimodal” scenario ashr is visually more accurate than mixfdr:

although mixfdr is capable, in principle, of fitting the multiple modes of g, it does not do

this well here. Possibly the noise level here is sufficiently large to make reliable estimation

of the multiple modes difficult. Indeed, in multi-modal simulations where the multiple modes

are sufficiently well-spaced to be clearly visible in the observed β̂, mixfdr fits these modes

(http://stephenslab.github.io/ash/analysis/check mixfdr lownoise.html). Of course, we would

not advocate the UA in settings where multi-modality is clearly visible in the observed β̂.
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We note one caveat on the accuracy of estimated g: due to the penalty term (18) ashr tends

to systematically overestimate the mass of g near zero. On careful inspection, this is apparent

in Figure 3: the estimated cdf is generally below the true cdf just to the left of zero, and above

the true cdf just to the right of zero. Averaging the cdf over many replicates confirms this

systematic effect (Figure 3b), and applying our methods without the penalty term removes this

systematic effect, although at the cost of sometimes under-estimating π0 (Figure 3c).

Calibration of posterior intervals

To quantify the effects of errors in estimates of g we examine the calibration of the resulting

posterior distributions (averaged over 100 simulations in each Scenario). Specifically we examine

the empirical coverage of nominal lower 95% credible bounds for a) all observations; b) significant

negative discoveries; c) significant positive discoveries. We examine only lower bounds because

the results for upper bounds follow by symmetry (except for the one asymmetric scenario). We

separately examine positive and negative discoveries because the lower bound plays a different

role in each case: for negative discoveries the lower bound is typically large and negative and

limits how big (in absolute value) the effect could be; for positive discoveries the lower bound

is positive, and limits how small (in absolute value) the effect could be. Intuitively, the lower

bound for negative discoveries depends on the accuracy of g in its tail, whereas for positive

discoveries it is more dependent on the accuracy of g in the center.

The results are shown in Table 1. Most of the empirical coverage rates are in the range

0.92-0.96 for nominal coverage of 0.95, which we view as adequate for practical applications.

The strongest deviations from nominal rates are noted and discussed in the table captions.

Differing measurement precision across units

We turn now to the second important component of our work: allowing for varying measurement

precision across units. The key to this is the use of a likelihood, (4) or (13), that explicitly

incorporates the measurement precision (standard error) of each β̂j .
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(a) Example estimated cdfs for single data sets compared with truth. The unimodal assumption made
by the ash methods effectively regularizes estimates compared with mixfdr.
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(b) Average estimated cdfs across ∼ 10 data sets compared with truth; methods here use penalty (18)
so π0 is systematically overestimated.
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(c) Average estimated cdfs across ∼ 10 data sets compared with truth; methods here do not use
penalty (18) so π0 is not systematically overestimated. Systematic differences from the truth in “skew”
and “bimodal” scenarios highlight the effects of model mis-specification.

Figure 3. Comparisons of estimated cdfs of g and true cdf of g. See Figure 2b for simulation
scenarios.
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spiky near-normal flat-top skew big-normal bimodal

ash.n 0.90 0.94 0.95 0.94 0.96 0.96
ash.u 0.87 0.93 0.94 0.93 0.96 0.96

ash.hu 0.88 0.93 0.94 0.94 0.96 0.96

(a) All observations. Coverage rates are generally satisfactory, except for the extreme “spiky” scenario.
This is due to the penalty term (18) which tends to cause over-shrinking towards zero. Removing this
penalty term produces coverage rates closer to the nominal levels for uniform and normal methods
(Table 3). Removing the penalty in the half-uniform case is not recommended (see Appendix).

spiky near-normal flat-top skew big-normal bimodal

ash.n 0.93 0.94 1.00 0.94 0.95 0.98
ash.u 0.88 0.90 0.93 0.91 0.94 0.94

ash.hu 0.87 0.87 0.92 0.93 0.94 0.94

(b) “Significant” negative discoveries. Coverage rates are generally satisfactory, except for the
uniform-based methods in the spiky and near-normal scenarios, and the normal-based method in the
flat-top scenario. These results likely reflect inaccurate estimates of the tails of g due to a disconnect
between the tail of g and the component distributions in these cases. For example, the uniform methods
sometimes substantially underestimate the length of the tail of g in these long-tailed scenarios, causing
over-shrinkage of the tail toward 0.

spiky near-normal flat-top skew big-normal bimodal

ash.n 0.94 0.94 0.94 0.86 0.95 0.96
ash.u 0.93 0.93 0.93 0.84 0.95 0.95

ash.hu 0.92 0.92 0.93 0.92 0.95 0.95

(c) “Significant” positive discoveries. Coverage rates are generally satisfactory, except for the
symmetric methods under the asymmetric (“skew”) scenario.

Table 1. Table of empirical coverage for nominal 95% lower credible bounds

To illustrate, we conduct a simulation where half the measurements are quite precise (stan-

dard error sj = 1), and the other half are very poor (sj = 10). In both cases, we assume that

half the effects are null and the other half are normally distributed with standard deviation 1:

p(β) = 0.5δ0(β) + 0.5N(β; 0, 1). (10)

In this setting, the poor-precision measurements (sj = 10) tell us very little, and any sane anal-

ysis should effectively ignore them. However, this is not the case in standard FDR-type analyses

(Figure 4). This is because the poor measurements produce p values that are approximately
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uniform (Figure 4a), which, when combined with the good-precision measurements, dilute the

overall signal (e.g. they reduce the density of p values near 0). This is reflected in the results of

FDR methods like qvalue and locfdr: the estimated error rates (q-values, or lfdr values) for

the good-precision observations increase when the low-precision observations are included in the

analysis (Figure 4b). In contrast, the results from ashr for the good-precision observations are

unaffected by including the low-precision observations in the analysis (Figure 4b).

Reordering of significance, and the “p value prior”

Another consequence of accounting for differences in measurement precision is that ashr may

re-order the significance of the observations compared with the original p values or z scores.

This is illustrated, using the same simulation as above, in Figure 5 (left panel). We see that

poor precision measurements are assigned a higher lfsr than good precision measurements that

have the same p value. The intuition is that, due to their poor precision, these measurements

contain very little information about the sign of the effects (or indeed any other aspect of the

effects), and so the lfsr for these poor-precision measurements is always high.

The potential for Bayesian analyses to re-order the significance of observations, and specifi-

cally to down-weight imprecise observations, was previously discussed in [34]. However, Wake-

field [25] showed that, under a certain prior assumption, the Bayesian analysis produces the

same ranking of significance as p values (or their z scores). He named this prior the “p-value

prior” because it can be thought of as the implicit prior assumption that is being made if we

rank the significance of observations by their p value. Wakefield’s p-value prior assumes that

the less precise effect estimates correspond to larger true effects, and specifically that they scale

proportional to the standard errors sj . More specifically still, it assumes a normal prior for

the non-zero βj with mean 0 and variance Ks2
j for some constant K. Here we observe that

Wakefield’s result extends to our mixture of (zero-mean) normal priors. Specifically, if, instead

of assuming that βj is independent of sj as we have up to now, we assume that zj = βj/sj is

independent of sj , and drawn from a mixture of zero-mean normal distributions, then the lfsr
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Good−precision observations
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(a) Density histograms of p values for good-precision, poor-precision, and combined observations
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(b) Comparison of results of different methods applied to good-precision observations only (x axis) and
combined data (y axis). Each point shows the “significance” (q values from qvalue; lfdr for locfdr; lfsr
for ashr) of a good-precision observation under the two different analyses.

Figure 4. Simulation illustrating how, for existing FDR methods, poor-precision observations
can contaminate signal from good-precision observations. The top panel (a) illustrates that
when p values from good-precision observations (left) and from poor-precision observations
(center) are combined (right), they produce a distribution of p values with less overall signal -
and so, by conventional methods, will give a higher estimated FDR at any given threshold.
The bottom panel (b) illustrates this behavior directly for the methods qvalue and locfdr:
the q-values from qvalue and the lfdr estimates from locfdr are higher when applied to all
data than when applied to good-precision observations only. In contrast the methods described
here (ashr) produce effectively the same results (here, the lfsr) in the good-precision and
combined data analyses.
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computed by ash.n provides the same ranking of observations as the z scores and p values, as

is illustrated in Figure 5, right panel. (This result does not hold when using the mixtures of

uniforms prior, ash.u.)

This p-value prior assumes that the z scores zj = βj/sj are identically distributed, indepen-

dent of sj . This is essentially the assumption made, implicitly or explicitly, by existing methods

– like locfdr, mixfdr and qvalue– that model the zj or pj directly. In contrast, we have as-

sumed up to now that the βj are independent of sj . We can set both these assumptions within

a more general framework, which allows that βj/s
α is independent of sj for some α [Equation

(12))]. Setting α = 0 implies that βj is independent of sj , as we have assumed up to now, and

α > 0 implies that observations with larger standard error tend to have larger effects (in abso-

lute value). This latter assumption may often be qualitatively plausible: for example, in gene

expression studies the standard error for gene j depends partly on the variance of its expression

among samples, and genes with a larger variance may tend to be less tightly regulated and so be

amenable to a larger shift in expression between conditions (i.e. larger effect βj). On the other

hand, there is no particular reason to expect that either α = 1 or α = 0 will be the optimal

choice. Indeed, optimal choice of α will depend on the actual relationship between βj and sj ,

which will be dataset-specific. Framing the problem in this way – that is, as comparing different

modelling assumptions for βj , rather than as comparing “modelling βj” vs “modelling zj” (or

“modelling pj”) – has the important advantage that likelihood-based methods can be used to

select α. For example, following the logic of the EB approach it would be natural to select α

by maximum likelihood. Since α is a one-dimensional parameter, this can be achieved by a 1-d

grid search, which has been implemented in our software by C. Dai.

Discussion

We have presented an Empirical Bayes approach to large-scale multiple testing that emphasizes

two ideas. First, we emphasize the potential benefits of using two numbers (β̂, and its standard

error) rather than just one number (a p value or z score) to summarize the information on each
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Default prior (alpha=0) p−value prior (alpha=1)

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●● ●● ●●● ●●● ●●●● ●●●
●

● ● ●●● ●
● ● ● ●●● ● ●● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ●● ●●●● ●● ● ●

●●
●

● ●● ● ●● ●
● ● ●● ● ●● ●● ●●●● ●●● ●●● ●● ●● ● ● ●●● ●● ● ●●

●
●● ●●● ●●●● ● ●●●
●● ●● ●

●● ● ● ●● ●● ●●● ●●
●●● ● ●● ● ●●● ● ●● ●●●● ●●● ● ●●● ●● ● ●●●●● ●● ●● ● ●●● ● ●●● ● ●● ● ●

●
●● ●● ●●●● ●● ●● ●●● ● ●●● ● ● ●

●
●● ●● ●● ●●● ●● ●●

●
●● ●●●● ● ●●● ●● ●● ●● ●●●● ● ●●●●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
● ●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●
●

●
●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

● ●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
● ●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●
● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●●●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●● ●

●

●

●
●●

●

●

●●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●
●●

●

●

●

●●

●●

●●

● ●●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●
●

●

●

●

●●

●
● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●●

●

●
●● ●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●● ●

●

●●
● ●

●●

●

●
● ●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●●
●

0.00

0.25

0.50

0.75

0.000 0.005 0.010 0.015 0.020 0.0250.000 0.005 0.010 0.015 0.020 0.025
p value

lfs
r

s

●

●

1

10

Figure 5. Figure illustrating affects of prior assumptions on re-ordering of significance. Left
panel shows results under our “default prior” which assumes that effects βj are identically
distributed, independent of sj . Right panel shows results under the “p-value prior”, which
assumes that z scores βj/sj are identically distributed, independent of sj .

test. While requiring two numbers is slightly more onorous than requiring one, in many settings

these numbers are easily available and if so we argue it makes sense to use them. Second, we note

the potential benefits – both statistical and computational – of assuming that the effects come

from a unimodal distribution, and provide flexible implementations for performing inference

under this assumption. We also introduce the “false sign rate” as an alternative measure of

error to the FDR, and illustrate its improved robustness to errors in model fit, particularly

mis-estimation of the proportion of null tests, π0.

Multiple testing is often referred to as a “problem” or a “burden”. In our opinion, EB

approaches turn this idea on its head, treating multiple testing as an opportunity: specifically,

an opportunity to learn about the prior distributions, and other modelling assumptions, to

improve inference and make informed decisions about significance (see also [2]). This view also

emphasizes that, what matters in multiple testing settings is not the number of tests, but the

results of the tests. Indeed, the FDR at a given fixed threshold does not depend on the number

of tests: as the number of tests increases, both the true positives and false positives increase

linearly, and the FDR remains the same. (If this intuitive argument does not convince, see [24],

and note that the FDR at a given p value threshold does not depend on the number of tests

m.) Conversely, the FDR does depend on the overall distribution of effects, and particularly on
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π0 for example. The EB approach captures this dependence in an intuitive way: if there are

lots of strong signals then we infer π0 to be small, and the estimated FDR (or lfdr, or lfsr) at

a given threshold may be low, even if a large number of tests were performed; and conversely

if there are no strong signals then we infer π0 to be large and the FDR at the same threshold

may be high, even if relatively few tests were performed. More generally, overall signal strength

is reflected in the estimated g, which in turn influences the estimated FDR.

Two important practical issues that we have not addressed here are correlations among

tests, and the potential for deviations from the theoretical null distributions of test statistics.

These two issues are connected: specifically, unmeasured confounding factors can cause both

correlations among tests and deviations from the theoretical null [17,18]. And although there are

certainly other factors that could cause dependence among tests, unmeasured confounders are

perhaps the most worrisome in practice because they can induce strong correlations among large

numbers of tests and profoundly impact results, ultimately resulting in too many hypotheses

being rejected and a failure to control FDR. We are acutely aware that, because our method is

less conservative than existing methods, it may unwittingly exacerbate these issues if they are not

adequately dealt with. Approaches to deal with unmeasured confounders can be largely divided

into two types: those that simply attempt to correct for the resulting inflation of test statistics

[35, 36], and those that attempt to infer confounders using clustering, principal components

analysis, or factor models [18, 37–39], and then correct for them in computation of the test

statistics (in our case, β̂, ŝ). When these latter approaches are viable they provide perhaps

the most satisfactory solution, and are certainly a good fit for our framework. Alternatively,

our methods could be modified to allow for test statistic inflation, an idea that may be worth

pursuing in future work.

Another important practical issue is the challenge of small sample sizes. For example, in

genomics applications researchers sometimes attempt to identify differences between two con-

ditions based on only a handful of samples in each. In such settings the normal likelihood

approximation (4) will be inadequate. And, although the t likelihood (13) partially addresses
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this issue, it is also, it turns out, not entirely satisfactory. The root of the problem is that, with

small sample sizes, raw estimated standard errors ŝj can be horribly variable. In genomics it is

routine to address this issue by applying EB methods [40] to “moderate” (i.e. shrink) variance

estimates, before computing p values from “moderated” test statistics. We are currently inves-

tigating how our methods should incorporate such “moderated” variance estimates to make it

applicable to small sample settings.

Our approach involves compromises between flexibility, generality, and simplicity on the one

hand, and statistical efficiency and principle on the other. For example, in using an EB approach

that uses a point estimate for g, rather than a fully Bayes approach that accounts for uncertainty

in g, we have opted for simplicity over statistical principle. And in summarizing every test by

two numbers and making a normal or t approximation to the likelihood, we have aimed to

produce generic methods that can be applied whenever such summary data are available – just

as qvalue can be applied to any set of p values for example – although possibly at the expense

of statistical efficiency compared with developing multiple tailored approaches based on context-

specific likelihoods. Any attempt to produce generic methods will involve compromise between

generality and efficiency. In genomics, many analyses – not only FDR-based analyses – involve

first computing a series of p values before subjecting them to some further downstream analysis.

An important message here is that working with two numbers (β̂j , ŝj), rather than one (pj or

zj), can yield substantial gains in functionality (e.g. estimating effect sizes, as well as testing;

accounting for variations in measurement precision across units) while losing only a little in

generality. We hope that our work will encourage development of methods that exploit this idea

in other contexts.
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Detailed Methods

Embellishments

More flexible unimodal distributions

Using a mixture of zero-centered normal distributions for g in (3) implies that g is not only

unimodal, but also symmetric. Furthermore, even some symmetric unimodal distributions, such

as those with a flat top, cannot be well approximated by a mixture of zero-centered normals.

Therefore, we have implemented a more general approach based on

g(·;π) =
K∑
k=0

πkfk(·), (11)

where f0 is a point mass on 0, and fk (k = 1, . . . ,K) are pre-specified component distributions

with one of the following forms:

(i) fk(·) = N(·; 0, σ2
k), (“ash.n”)

(ii) fk(·) = U [·;−ak, ak], (“ash.u”)

(iii) fk(·) = U [·;−ak, 0] and/or U [·; 0, ak], (“ash.hu”)

where U [·; a, b] denotes the density of a uniform distribution on [a, b]. (In (iii) we include both

components in the mixture (11), so a grid of values a1, . . . , aK defines 2K+1 mixture component

densities, and π is a 2K + 1 vector that sums to 1.) The simplest version (3) corresponds to

(i). Replacing these with uniform components (ii)-(iii) only slightly complicates calculations

under the normal likelihood (4), and greatly simplifies the calculations under the t likelihood

(13) introduced below. The use of uniform components here closely mirrors [29]. (In fact our

implementation can handle any pre-specified uniform or normal distributions for fk provided

they are all from the same family; however, we restrict our attention here to (i)-(iii) which imply

a unimodal g.)
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Moving from (i) to (iii) the representation (11) becomes increasingly flexible. Indeed, using

a large dense grid of σ2
k or ak, (i)-(iii) can respectively approximate, with arbitrary accuracy,

(i) any scale mixture of normals, which includes as special cases the double exponential

(Laplace) distribution, any t distribution, and a very large number of other distributions

used in high-dimensional regression settings.

(ii) any symmetric unimodal distribution about 0.

(iii) any unimodal distribution about 0.

The latter two claims are related to characterizations of unimodal distributions due to [41]

and [42]; see [43], p158. In other words, (ii) and (iii) provide fully non-parametric estimation

for g under the constraints that it is (ii) both unimodal and symmetric, or (iii) unimodal only.

Although our discussion above emphasizes the use of large K, in practice modest values of K

can provide reasonable performance. The key point is that the value of K is not critical provided

it is sufficiently large, and the grid of σk or ak values suitably chosen. See Implementation for

details of our software defaults.

Dependence of effects on standard errors

Equation (2) assumes that the βj all come from the same distribution g, independent of ŝj . This

can be relaxed to allow the distribution of βj to depend on ŝj using

βj
ŝαj

∣∣ŝj ∼ g(·;π) (12)

for any α. Setting α = 0 yields (2), and setting α = 1 corresponds to assuming that the

tj = βj/ŝj have a common distribution. This case is of special interest: it effectively corresponds

to the “p value prior” in [25] and is, implicitly, the assumption made by existing FDR methods

that rank tests by their p values (or z or t scores). See Results for further discussion.

The model 12 for general α can be fitted using the algorithm for α = 0. To see this, define

bj := βj/ŝ
α
j , and b̂ := β̂j/ŝ

α
j . Then b̂j is an estimate of bj with standard error ŝ′j := ŝ1−α

j .
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Applying the algorithm for α = 0 to effect estimates b̂1, . . . , b̂J with standard errors ŝ′1, . . . , ŝ
′
J

yields a posterior distribution p(bj |ŝj , b̂j , π̂, α), which induces a posterior distribution on βj =

bj ŝ
α
j .

Replace normal likelihood with t likelihood

We generalize the normal likelihood (4) by replacing it with a t likelihood:

β̂j |βj , ŝj ∼ Tν(βj , ŝj) (13)

where Tν(βj , ŝj) denotes the distribution of βj + ŝjTν where Tν has a standard t distribution

on ν degrees of freedom, and ν denotes the degrees of freedom used to estimate ŝj (assumed

known, and for simplicity assumed to be the same for each j). The normal approximation

(4) corresponds to the limit ν → ∞. This generalization does not complicate inference when

the mixture components fk in (11) are uniforms; see Implementation below. When the fk are

normal the computations with a t likelihood are considerably more difficult and we have not

implemented this combination.

Equation (13) is, of course, motivated by the standard asymptotic result

(β̂j − βj)/ŝj ∼ Tν . (14)

However (14) does not imply (13), because in (14) ŝj is random whereas in (13) it is conditioned

on. In principle it would be preferable, for a number of reasons, to model the randomness in ŝj ;

we are currently pursuing this improved approach (joint work with M.Lu) and results will be

published elsewhere.

Non-zero mode

An addition to our software implementation, due to C.Dai, allows the mode to be estimated

from the data by maximum likelihood, rather than fixed to 0. This involves a simple grid search.
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Implementation Details

Likelihood for π

We define the likelihood for π to be the probability of the observed data β̂ conditional on ŝ:

L(π) := p(β̂|ŝ, π), which by our conditional independence assumptions is equal to the product∏
j p(β̂j |ŝ, π). [One might prefer to define the likelihood as p(β̂, ŝ|π) = p(β̂|ŝ, π)p(ŝ|π), in which

case our definition comes down to assuming that the term p(ŝ|π) does not depend on π.]

Using the prior βj ∼
∑K

k=0 πkfk(βj) given by (11), and the normal likelihood (4), integrating

over βj yields

p(β̂j |ŝ, π) =
K∑
k=0

πkf̃k(β̂j) (15)

where

f̃k(β̂j) :=

∫
fk(βj)N(β̂j ;βj , ŝ

2
j ) dβj (16)

denotes the convolution of fk with a normal density. These convolutions are straightforward to

evaluate whether fk is a normal or uniform density. Specifically,

f̃k(β̂j) =


N(β̂j ; 0, ŝ2

j + σ2
k) if fk(·) = N(·; 0, σ2

k),

Ψ((β̂j−ak)/ŝj)−Ψ((β̂j−bk)/ŝj)
bk−ak if fk(·) = U(·; ak, bk),

(17)

where Ψ denotes the cumulative distribution function (c.d.f.) of the standard normal distribu-

tion. If we replace the normal likelihood with the tν likelihood (13) then the convolution for

fk uniform the convolution is still given by (17) but with Ψ the c.d.f. of the tν distribution

function. (The convolution for fk normal is tricky and we have not implemented it.)
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Penalty term on π

To make lfdr and lfsr estimates from our method “conservative” we add a penalty term log(h(π;λ))

to the log-likelihood logL(π) to encourage over-estimation of π0:

h(π;λ) =

K∏
k=0

πλk−1
k (18)

where λk ≥ 1 ∀k. The default is λ0 = 10 and λk = 1, which yielded consistently conservative

estimation of π0 in our simulations (Figure 2b).

Although this penalty is based on a Dirichlet density, we do not interpret this as a “prior

distribution” for π: we chose it to provide conservative estimates of π0 rather than to represent

prior belief.

Problems with removing the penalty term in the half-uniform case

It is straightforward to remove the penalty term by setting λk = 1 in (18). We note here an

unanticipated problem we came across when using no penalty term in the half-uniform case

(i.e. fk(·) = U [·;−ak, 0] and/or U [·; 0, ak] in (11)): when the data are nearly null, the estimated

g converges, as expected and desired, to a distribution where almost all the mass is near 0, but

sometimes all this mass is concentrated almost entirely just to one side (left or right) or 0. This

can have a very profound effect on the local false sign rate: for example, if all the mass is just to

the right of 0 then all observations will be assigned a very high probability of being positive (but

very small), and a (misleading) low local false sign rate. For this reason we do not recommend

use of the half-uniform with no penalty.

Optimization

With this in place, the penalized log-likelihood for π is given by:

logL(π) + log h(π) =
n∑
j=1

log(

K∑
k=0

πklkj) +

K∑
k=0

(λk − 1) log πk (19)
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where the lkj := f̃k(β̂j) are known. This is a convex optimization problem, which can be solved

very quickly and reliably using interior point (IP) methods. We used the KWdual function from

the R package REBayes [44], which uses Rmosek [45]. We also found a simple EM algorithm [46],

accelerated using the elegant R package SQUAREM [47], to provide adequate performance. In our

EM implementation we initialized πk = 1/n for k = 1, . . . ,K, with π0 = 1− π1 − · · · − πK , and

the one-step updates are:

wkj = πklkj/
∑
k′

πk′ lk′j (20)

nk =
∑
j

wkj + λk − 1 [E Step] (21)

πk = nk/
∑
k′

nk′ [M step]. (22)

One benefit to the EM algorithm is fewer software dependencies. Both EM and IP methods are

implemented in the ashr package; results shown here are from the IP method, but graphs from

EM are essentially the same. See http://stephenslab.github.io/ash/analysis/checkIP.html and

http://stephenslab.github.io/ash/analysis/IPvsEM.html for comparisons.

Conditional distributions

Given π̂, we compute the conditional distributions

p(βj |π̂, β̂, s) ∝ g(βj ;π)L(βj ; β̂j , ŝj). (23)

Each posterior is a mixture on K + 1 components:

p(βj |π̂, β̂, s) =

K∑
k=0

wkjpk(βj |β̂j , ŝj) (24)

where the posterior weights wkj are computed as in (20) with π = π̂, and the posterior mixture

component pk is the posterior on βj that would be obtained using prior fk(βj) and likelihood
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L(βj ; β̂j , ŝj). All these posterior distributions are easily available. For example, if fk is uniform

and L is tν then this is a truncated t distribution. If fk is normal and L is normal, then this is

a normal distribution.

Choice of grid for σk, ak

When fk is N(0, σk) we specify our grid by specifying: i) a maximum and minimum value

(σmin, σmax); ii) a multiplicative factor m to be used in going from one grid-point to the other,

so that σk = mσk−1. The multiplicative factor affects the density of the grid; we used m =
√

2

as a default. We chose σmin to be small compared with the measurement precision (σmin =

min(ŝj)/10) and σmax = 2
√

max(β̂2
j − ŝ2

j ) based on the idea that σmax should be big enough

so that σ2
max + ŝ2

j should exceed β̂2
j . (In rare cases where max(β̂2

j − ŝ2
j ) is negative we set

σmax = 8σmin.)

When the mixture components fk are uniform, we use the same grid for the parameters ak

as for σk described above.

Our goal in specifying a grid was to make the limits sufficiently large and small, and the grid

sufficiently dense, that results would not change appreciably with a larger or denser grid. For a

specific data set one can of course check this by experimenting with the grid, but these defaults

usually work well in our experience.

Scenario Alternative distribution, g1

spiky 0.4N(0, 0.252) + 0.2N(0, 0.52) + 0.2N(0, 12), 0.2N(0, 22)
near normal 2/3N(0, 12) + 1/3N(0, 22)

flattop (1/7)[N(−1.5, .52) +N(−1, .52) +N(−.5, .52)+
N(0, .52) +N(0.5, .52) +N(1.0, .52) +N(1.5, .52)]

skew (1/4)N(−2, 22) + (1/4)N(−1, 1.52) + (1/3)N(0, 12) + (1/6)N(1, 12)
big-normal N(0, 42)

bimodal 0.5N(−2, 12) + 0.5N(2, 12)

Table 2. Summary of simulation scenarios considered
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(a) Comparison of true and estimated lfsr when data are simulated with no point mass at zero
(π0 = 0), and also analyzed by ashr with no point mass on 0 (and mixture of normal components for
g). Black line is y = x and red line is y = 2x. The results illustrate how estimates of lfsr can be more
accurate in this case. That is, assuming there is no point mass can be beneficial if that is indeed true.

(b) Comparison of true and estimated lfsr when data are simulated with point mass at zero (drawn
uniformly from [0,1] in each simulation), but analyzed by ashr with no point mass on 0 (and mixture of
normal components for g). Black line is y = x and red line is y = 2x. The results illustrate how
estimates of lfsr can be anti-conservative if we assume there is no point mass when the truth is that
there is a point mass.

Figure 6. Illustration of effects of excluding a point mass from the analysis.
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spiky near-normal flat-top skew big-normal bimodal

ash.n.s 0.95 0.95 0.95 0.95 0.96 0.96
ash.u.s 0.94 0.95 0.95 0.94 0.96 0.96

ash.hu.s 0.88 0.92 0.92 0.92 0.93 0.93

(a) All observations

spiky near-normal flat-top skew big-normal bimodal

ash.n.s 0.95 0.95 0.98 0.93 0.95 0.97
ash.u.s 0.89 0.92 0.90 0.92 0.94 0.94

ash.hu.s 0.89 0.92 0.91 0.94 0.95 0.94

(b) “Significant” negative discoveries.

spiky near-normal flat-top skew big-normal bimodal

ash.n.s 0.94 0.94 0.92 0.88 0.95 0.94
ash.u.s 0.93 0.93 0.92 0.88 0.95 0.95

ash.hu.s 0.34 0.60 0.52 0.54 0.79 0.82

(c) “Significant” positive discoveries.

Table 3. Table of empirical coverage for nominal 95% lower credible bounds for methods
without the penalty term).
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Tables

Supporting Information Legends

Supplementary material can be found in Supplementary Information S1.
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