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ABSTRACT 16	
  

 Urbanization significantly alters natural ecosystems and has accelerated globally as 17	
  

humans move into dense urban centers.  Urban wildlife populations are often highly fragmented 18	
  

by an inhospitable matrix of human infrastructure.  Isolated populations may adapt in response to 19	
  

novel urban pressures, but few studies have found evidence of selection in urban environments.  20	
  

We used multiple approaches to examine signatures of selection in transcriptomes from white-21	
  

footed mice (Peromyscus leucopus) in New York City.  We analyzed transcriptomes from 48 P. 22	
  

leucopus individuals from three urban and three rural populations for evidence of rapid local 23	
  

adaption in isolated urban habitats.  We generated a dataset of 154,770 SNPs and analyzed 24	
  

patterns of genetic differentiation between urban and rural sites. We also used genome scans and 25	
  

genotype-by-environment (GEA) analyses to identify signatures of selection in a large subset of 26	
  

genes.  Neutral demographic processes may create allele frequency patterns that are 27	
  

indistinguishable from positive selection.  Thus, we accounted for demography by simulating a 28	
  

neutral SNP dataset under the inferred demographic history for the sampled P. leucopus 29	
  

populations to serve as a null model for outlier analysis.  We then annotated outlier genes and 30	
  

further validated them by associating allele frequency differences with two urbanization 31	
  

variables: percent impervious surface and human population density.  Many candidate genes 32	
  

were involved in metabolic functions, especially dietary specialization.  A subset of these genes 33	
  

have well-established roles in metabolizing lipids and carbohydrates, including transport of 34	
  

cholesterol and desaturation of fatty acids.  Our results reveal clear genetic differentiation 35	
  

between rural and urban sites that resulted from rapid local adaptation and drift in urbanizing 36	
  

habitats. The specific outlier loci that we identified suggest that populations of P. leucopus are 37	
  

using novel food resources in urban habitats and selection pressures are acting to change 38	
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metabolic pathways.  Our findings support the idea that cities represent novel ecosystems with a 39	
  

unique set of selective pressures. 40	
  

 41	
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INTRODUCTION 48	
  

Traits are adaptive when they increase an organism’s fitness in a specific environment 49	
  

(Barrett & Hoekstra 2011).  The identification of genotypes underlying adaptive traits is a major 50	
  

goal in evolutionary biology. Many studies have identified the genetic basis underlying 51	
  

adaptation, but they often focus on a small number of well-known, conspicuous traits (Nachman 52	
  

et al. 2003; Pool & Aquadro 2007; Linnen et al. 2009; Storz et al. 2009).  With costs of high-53	
  

throughput DNA sequencing continuing to drop by orders of magnitude (De Wit et al. 2015), 54	
  

generating genomic datasets for natural populations of non-model organisms is feasible.  These 55	
  

datasets facilitate reverse-genomics approaches where candidate genes behind ecologically 56	
  

relevant, but non-conspicuous, phenotypes are identified based on patterns of variation and 57	
  

signatures of selection in protein-coding sequences (Li et al. 2008). Here we examined local 58	
  

adaptation in isolated urban populations of white-footed mice, Peromyscus leucopus, in New 59	
  

York City (NYC).  We identified regions of P. leucopus transcriptomes with divergent allele 60	
  

frequencies suggestive of positive selection.  We incorporated a neutral SNP dataset from an 61	
  

inferred demographic history (Harris et al. 2016) directly into our null model for identifying 62	
  

outliers. We then examined statistical associations between allele frequencies and environmental 63	
  

measures of urbanization. 64	
  

 Adaptive processes leave a predictable pattern of genetic variation and differentiation 65	
  

along environmental gradients (Savolainen et al. 2013).  Examining genetic variation using the 66	
  

site frequency spectrum (SFS), the distribution of allele frequencies across the genome, can be an 67	
  

efficient method of detecting these adaptive processes (Merila & Hendry 2014).  Our goal was to 68	
  

identify local instances of adaptation from specific patterns in the SFS.  Local adaptation, while 69	
  

difficult to identify from genetic signals, is a common pattern in nature (Stinchcombe & 70	
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Hoekstra 2008; Bonin 2008; Linnen et al. 2009; Hohenlohe et al. 2010a; Turner et al. 2010; 71	
  

Ellison et al. 2011; De Wit & Palumbi 2013), and uncovering the genetic basis of local 72	
  

adaptation has provided insight into a variety of evolutionary processes including speciation, 73	
  

maintenance of genetic diversity, range expansion, and species responses to changing 74	
  

environments (Savolainen et al. 2013; Tiffin & Ross-Ibarra 2014). Urban habitats are one of the 75	
  

fastest growing and most rapidly changing environments around the world and may be ideal 76	
  

environments for local adaptation.  Urbanization leads to habitat loss and fragmentation, changes 77	
  

in resource availability, novel species interactions, altered community composition, and 78	
  

increased exposure to pollutants (McKinney 2002; Chace & Walsh 2004; Shochat et al. 2006; 79	
  

Sih et al. 2011).  These ecological changes may exert strong selective pressure, and there is 80	
  

mounting evidence that rapid adaptation occurs in many urban organisms.  Another cause of 81	
  

rapidly changing environments is global climate change, where increasing temperatures and 82	
  

altered precipitation patterns strongly influence the life history traits of many species (Franks & 83	
  

Hoffmann 2011; Franks et al. 2014).  These two processes, urbanization and climate change, are 84	
  

not mutually exclusive.  Understanding local adaptation in urban habitats may lead to general 85	
  

insights about local adaptation to anthropogenic climate change, such as what traits are involved 86	
  

or how quickly populations respond and adapt to changing environments. 87	
  

 Peromyscus leucopus is one of the most abundant small mammals in North America, 88	
  

preferring the typical oak-hickory forest commonly found in the eastern USA (Wang et al. 89	
  

2008).  They are generalists that burrow in a variety of habitats (Metzger 1971; Vessey & Vessey 90	
  

2007), and feed on a wide-range of invertebrates, nuts, fruit, vegetation, and fungus (Wolff et al. 91	
  

1985; Ostfeld et al. 1996). They are especially reliant on oak mast cycles and an important 92	
  

predator of gypsy moths (Ostfeld et al. 1996).  There is also evidence that Peromyscus spp. can 93	
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adapt to environmental change (Storz et al. 2007, 2009, 2010; Mullen & Hoekstra 2008; Linnen 94	
  

et al. 2009; Weber et al. 2013; Natarajan et al. 2013; Munshi-south & Richardson 2016), making 95	
  

them good candidates for the study of local adaptation. White-footed mice are one of the few 96	
  

native mammals that thrive in extremely small, fragmented urban forests in North America 97	
  

(Pergams & Lacy 2007; Rogic et al. 2013; Munshi-South & Nagy 2014). P. leucopus tend to be 98	
  

found at higher densities in urban patches due to a thick understory and fewer predators and 99	
  

competitors (Rytwinski & Fahrig 2007). Increased density may also be due to limited P. 100	
  

leucopus dispersal between urban sites.  Munshi-South (2012) found barriers to dispersal 101	
  

between isolated NYC parks, with migrants only moving through significantly vegetated 102	
  

corridors throughout the city. There is also substantial genetic structure between NYC parks as 103	
  

measured by microsatellites (Munshi-South & Kharchenko 2010), genome-wide SNPs (Munshi-104	
  

South et al. 2016) and demographic modeling (Harris et al. 2016). We have also previously 105	
  

identified signatures of selection in urban populations of NYC white-footed mice (Harris et al. 106	
  

2013), though we used smaller datasets and more limited approaches than presented here. This 107	
  

study builds on our previous work by employing a larger dataset and more comprehensive 108	
  

statistical analyses to identify signatures of selection in P. leucopus populations while explicitly 109	
  

using the inferred demographic history as a null model.  We further confirm outlier genes by 110	
  

associating allele frequencies with environmental metrics of urbanization and perform 111	
  

enrichment analyses to predict functional relevance of outlier genes. 112	
  

 Urbanization and global climate change are relatively recent disturbances that rapidly 113	
  

change native ecosystems.  Over short timescales, adaptive evolution tends to act on standing 114	
  

genetic variation as opposed to de novo mutations (Barrett & Schluter 2008; Stapley et al. 2010).  115	
  

As these pre-existing mutations spread to fixation they produce a detectable signal in the form of 116	
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‘hard’ or ‘soft’ selective sweeps (Hermisson & Pennings 2005; Messer & Petrov 2013).  117	
  

Additionally, ecologically important traits involved in local adaptation are often quantitative 118	
  

traits with many genes of small effect involved in producing the desired phenotype (Orr 2005; 119	
  

Rockman 2012).  To distinguish between these more subtle signatures of selection, we used 120	
  

multiple tests that provide greater statistical power and higher resolution at identifying types and 121	
  

age of selection when used together (Grossman et al. 2010; Hohenlohe et al. 2011). 122	
  

We analyzed transcriptomes sequenced from urban and rural populations of P. leucopus 123	
  

to produce estimates of nucleotide diversity (π, Tajima 1983), Tajima’s D (Tajima 1989), and 124	
  

FST (Wright 1951) and make inferences about the evolutionary processes at work in these 125	
  

populations. We also used a variety of tests to identify outlier genes subject to selection, and took 126	
  

extra steps to account for the potentially confounding effects of demography.  Specifically, 127	
  

neutral demographic processes, like population bottlenecks, can produce signatures of variation 128	
  

similar to those produced by selection (Oleksyk et al. 2010; Li et al. 2012).  For example, both 129	
  

selection and a population bottleneck followed by an expansion may produce genomic regions 130	
  

with low genetic diversity, but recent literature discusses how to deal with these overlapping 131	
  

signals (Excoffier et al. 2009; Li et al. 2012; Vitti et al. 2013; Lotterhos & Whitlock 2015). The 132	
  

prevailing approach assumes selection acts on one or a few loci while demographic processes act 133	
  

across the genome.  Outlier tests for loci under selection typically generate a null distribution 134	
  

based on an island model of population differentiation (Excoffier et al. 2009), and then identify 135	
  

candidate genes with genetic differentiation that exceeds this simulated null distribution.  The 136	
  

true demographic history of most organisms is much more complex, and computational 137	
  

approaches have been developed to robustly infer demographic parameters (Gutenkunst et al. 138	
  

2009; Excoffier et al. 2013).  This inferred demographic history can then be used to construct a 139	
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more realistic null model, reducing the rate of false positives in tests for selection (Excoffier et 140	
  

al. 2009; Yoder et al. 2014).   141	
  

We used the inferred demographic history of urban populations of P. leucopus (Harris et 142	
  

al. 2016) to simulate comparable SNP datasets to our observed sequence data.  We then used 143	
  

multiple approaches that identify outlier loci based on population differentiation, the SFS, or 144	
  

associations between allele frequencies and environmental variables.  Bayescan uses a Bayesian 145	
  

approach to identify SNPs that exhibit extreme allele frequency divergence between populations 146	
  

(Foll & Gaggiotti 2008).  SweeD is a likelihood based test that identifies selective sweeps based 147	
  

on SFS that deviate from neutral expectations.  We examined associations between allele 148	
  

frequencies and environmental variation using a genotype-environment association (GEA) test.  149	
  

GEA tests have been shown to perform better than outlier tests under complex demographic 150	
  

scenarios (Lotterhos & Whitlock 2015) but can suffer from a high rate of false positives. 151	
  

Analyses suggest that using genome scan-based outlier tests in conjunction with GEA tests leads 152	
  

to reliable outlier identification (De Villemereuil et al. 2014).  GEA also identifies local 153	
  

adaptation in polygenic phenotypes where each polymorphism has a relatively weak effect 154	
  

(Frichot et al. 2013), because correlations between alleles and environmental variables do not 155	
  

rely on the strength of genetic differentiation or SFS skew between populations.  (Pavlidis et al. 156	
  

2013).  Using multiple analyses with alternative statistical approaches is preferred for genome 157	
  

scans, and provides more power and confidence in results when markers are repeatedly found as 158	
  

outliers (Grossman et al. 2010). BayPass also uses a Bayesian approach to identify divergent 159	
  

adaptive processes (Gautier 2015), but explicitly incorporates population demographic history 160	
  

including hierarchical population structure.  Conveniently, it also uses a population covariance 161	
  

matrix to associate SNPs with population-specific environmental covariables.  This feature 162	
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allowed us to use BayPass to identify congruence across outliers identified in Bayescan and 163	
  

LFMM. 164	
  

In this study, we examined transcriptomes generated from RNAseq for 48 P. leucopus 165	
  

individuals from three urban sites in NYC and three rural sites from the surrounding area.  166	
  

Including population pairs that are near each other and genetically similar, but occur in different 167	
  

environments (urban versus rural), increases the power to identify candidate genes under 168	
  

selection (Lotterhos & Whitlock 2015).  We used traditional population genetic summary 169	
  

statistics to generate per-site estimates and identify loci that deviate from neutral expectations.  170	
  

Next, we used several tests of selection to determine whether these deviations are due to recent 171	
  

selection.  To increase power, reduce false positives, identify more subtle signals of selection 172	
  

from standing genetic variation, and find candidate genes involved in polygenic phenotypic 173	
  

traits, we simulated a null background model from the inferred demographic history for NYC 174	
  

populations of P. leucopus.  We examined the association between quantitative metrics of 175	
  

urbanization (percent impervious surface and human population density) and polymorphisms 176	
  

between rural and urban populations to identify candidate genes experiencing selection in NYC. 177	
  

We used overlapping results from multiple tests and environmental associations to generate a 178	
  

robust list of candidate genes involved in local adaptation of P. leucopus to the urban 179	
  

environment. Evidence of local adaptation in urban populations reveals how urbanization acts as 180	
  

an evolutionary force, gives insights into important traits for local adaptation, and provides 181	
  

evidence of rapid evolution in novel, human-dominated environments. 182	
  

 183	
  

 184	
  

 185	
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MATERIALS AND METHODS 186	
  

Sampling, library preparation, and transcriptome assembly 187	
  

 We trapped and collected white-footed mice from 2009 - 2013.  For full details on 188	
  

sampling and transcriptome sequencing, see Harris et al. (2015).  In brief, we randomly chose 189	
  

eight individual white-footed mice (equal numbers of males and females) from six sampling 190	
  

locations representative of urban and rural habitats and with minimal within-site genetic structure 191	
  

(Fig. 1) (Harris et al. 2013, 2015). Three sampling sites occurred within NYC parks: Central 192	
  

Park in Manhattan (CP), New York Botanical Gardens in the Bronx (NYBG), and Flushing 193	
  

Meadows—Willow Lake in Queens (FM).  These sites represented urban habitats surrounded by 194	
  

high levels of impervious surface cover and high human population density, as previously 195	
  

quantified in Munshi-South et al. (2016).  The remaining three sites occurred ~100 km outside of 196	
  

NYC in rural, undisturbed habitat representative of natural environments for Peromyscus 197	
  

leucopus.  High Point State Park is in the Kittatinny Mountains in New Jersey (HIP), Clarence 198	
  

Fahnestock State Park is located in the Hudson Highlands in New York (CFP), and Brookhaven 199	
  

and Wilde Wood State Parks and neighboring sites occur on the northeastern end of Long Island, 200	
  

New York (BHWWP).  We sacrificed mice on site and liver, gonad, and brain tissue were 201	
  

harvested in the field for immediate storage in RNAlater (Ambion).  In the lab, we extracted total 202	
  

RNA, removed ribosomal RNA, barcoded each tissue type, and then pooled samples during 203	
  

library preparation.  The reverse transcribed cDNA was sequenced using the 454 GS FLX+ and 204	
  

SOLiD 5500 xl systems using standard RNAseq protocols. We called SNPs with the Genome 205	
  

Analysis Toolkit pipeline using a Bayesian genotype likelihood model (GATK version 2.8, 206	
  

DePristo et al. 2011) and removed related individuals.  See Harris et al. 2013, 2015 for full 207	
  

transcriptome sequencing, assembly and SNP calling details, but in short, for SNP calling  we 208	
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required coverage >5X, nucleotide quality >30, no strand bias (FS >35), and SNPs from a 209	
  

uniquely mapped read. We also removed SNPs where every individual was heterozygous, overall 210	
  

depth >10, overall depth <350 and minor allele frequency (MAF) >0.025.  The VCF file of SNP 211	
  

genotypes used for demographic inference is on the Dryad digital repository at 212	
  

http://dx.doi.org/10.5061/dryad.d48f9, raw sequencing files for the transcriptome are deposited 213	
  

in the GenBank Sequence Read Archive (SRA Accession no. SRP020005), and transcriptome 214	
  

contigs are available in the Dryad digital repository, doi: 10.5061/dryad.6hc0f. 215	
  

 216	
  

Summary statistics 217	
  

 SNP information was stored in a VCF (variant call format) file and summary statistics 218	
  

were calculated using vcftools 0.1.12b (Danecek et al. 2011).  We calculated per-site nucleotide 219	
  

diversity (π), Tajima’s D, and FST for each site.  We also calculated the statistics for each contig 220	
  

(per-site statistic summed across all SNPs per contig divided by total sites) and calculated the 221	
  

average estimate for each population, including all pairwise population comparisons for FST. 222	
  

 223	
  

Scans for positive selection based on population differentiation  224	
  

We used information from multiple previous studies on P. leucopus in order to choose 225	
  

our final subset of urban and rural sites for this study.  White-footed mice respond surprisingly 226	
  

well to habitat fragmentation (Pergams & Lacy 2007; Rogic et al. 2013), including forested 227	
  

urban fragments, which are often densely populated with mice (Munshi-South & Nagy 2014).  228	
  

Previous work suggests that migration is relatively low, only occurring along vegetated pathways 229	
  

between urban parks (Munshi-South 2012).  This isolation leads to genetic differentiation 230	
  

between populations in different NYC parks, which was confirmed using microsatellite loci 231	
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(Munshi-South & Kharchenko 2010), genome-wide neutral SNPs (Munshi-South et al. 2016), 232	
  

and protein coding sequences (Harris et al. 2013, 2015).  Previous analysis of the demographic 233	
  

history of populations occupying contemporary forest fragments in NYC and the surrounding 234	
  

area estimated that population divergence occurred within the time frame of urbanization (Harris 235	
  

et al. 2016). The three urban and three rural sites chosen to investigate patterns of selection in 236	
  

fragmented urban parks in this study represent sampling sites with the strongest evidence of 237	
  

being independent evolutionary clusters.  We used the FST based analysis implemented in 238	
  

Bayescan v. 2.1 (Foll & Gaggiotti 2008) to compare all six population-specific allele frequencies 239	
  

with global averages and identify outlier SNPs. Bayescan identifies loci that exhibit divergence 240	
  

between groups that is stronger than would be expected under neutral genetic processes.  Based 241	
  

on a set of neutral allele frequencies under a Dirichlet distribution, Bayescan uses a Bayesian 242	
  

model to estimate the probability that a given locus has been subject to selection.  To generate 243	
  

more realistic allele frequency distributions, we used Bayescan for independent coalescent 244	
  

simulations of SNP datasets based on the neutral demographic history inferred specifically for 245	
  

each P. leucopus population in (Harris et al. 2016). We generated 100 sets of 100,000 SNPs for 246	
  

each population in this study from a three population isolation-with-migration model using the 247	
  

previously inferred parameter estimates for divergence time, effective population size, migration 248	
  

rate, and population size change in the coalescent-based software program, fastsimcoal2 249	
  

(Excoffier et al. 2013).  In short, the model represented a deep split between an ancestral 250	
  

population into Long Island, NY and the mainland (including Manhattan) 29,440 generations 251	
  

before present (GBP).  Migration was asymmetrical from the mainland into Long Island and a 252	
  

third population (representing the sampling sites in this study) later became isolated 746 GBP.  253	
  

Urban populations were also modeled to include a bottleneck event at the time of divergence.  254	
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Finally, we allowed migration to occur between all three populations (Harris et al. 2016). 255	
  

Bayescan was run independently on each simulated dataset using default parameters.   Using the 256	
  

observed SNP dataset, we performed a global analysis, one Bayescan run where all individuals 257	
  

were partitioned into urban  and rural groups, and finally analyses on all individual pairwise 258	
  

population comparisons.  Outlier SNPs were retained if they had a false discovery rate (FDR) 259	
  

value ≤ 0.1 and if the posterior odds probability from Bayescan was higher than for any value 260	
  

calculated from the simulated dataset.  Outlier SNPs with a FDR ≤ 0.1 were considered 261	
  

significant, implying that diversifying selection better explains allele frequency differences 262	
  

between urban and rural populations (urban vs. rural) and sub-populations (pairwise population 263	
  

comparison) than a neutral null model.  A relatively high FDR was chosen for all analyses to 264	
  

ensure inclusion of all putative outlier SNPs.   265	
  

We reduced the risk of including false positives by also using the software program 266	
  

BayPass (Gautier 2015) to identify putative SNPs showing evidence of divergent selection 267	
  

between populations.  We filtered our final outlier SNP list to only include those identified in 268	
  

both Bayescan and BayPass.  BayPass incorporates population demographic history when 269	
  

identifying outlier SNPs (Gautier 2015) based on associations between allele frequencies and 270	
  

environmental variables. We ran BayPass using default parameters under the AUX model (Table 271	
  

S2).  BayPass uses the XtX differentiation measure to identify differentiated SNPs.  We created 272	
  

an empirical distribution of XtX values for each locus by analyzing pseudo-observed data sets 273	
  

(PODs) and chose a 5% threshold value for XtX to use as the cutoff value to differentiate 274	
  

between selection and neutrality (Gautier 2015).  PODs were also used to determine a 5% 275	
  

threshold value for Bayes Factors used for associating environmental covariables with allele 276	
  

frequencies. 277	
  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2016. ; https://doi.org/10.1101/038141doi: bioRxiv preprint 

https://doi.org/10.1101/038141
http://creativecommons.org/licenses/by/4.0/


	
   14	
  

 278	
  

Analysis for selective sweeps 279	
  

 We also identified outlier regions when the observed SFS showed an excess of low 280	
  

frequency and high frequency minor alleles, a signal indicative of a recent selective sweep.  The 281	
  

composite likelihood ratio (CLR) statistic is used to identify regions where the observed SFS 282	
  

matches the expected SFS generated from a selective sweep (Kim & Stephan 2002; Nielsen et al. 283	
  

2005; Pavlidis et al. 2010).  We calculated the CLR along sliding windows across the 284	
  

transcriptome using the software program SweeD (Pavlidis et al. 2013).  SweeD is an extension 285	
  

of Sweepfinder (Nielsen et al. 2005) that is optimized for large next generation sequencing 286	
  

(NGS) datasets.  SweeD was run separately for each population and on individual contigs using 287	
  

default parameters except for setting a sliding window size of 200 bp and using the folded SFS, 288	
  

as we lacked an outgroup to infer the ancestral state.  The window within each contig with the 289	
  

highest CLR score is the likely location of a selective sweep.  Similar to the method used for 290	
  

Bayescan analyses, statistical significance was established from a null distribution generated by 291	
  

running SweeD on SNP datasets simulated under the inferred demographic history for P. 292	
  

leucopus populations (Harris et al. 2016).  SweeD does not inherently identify outlier regions. 293	
  

The CLR is computed using a selective sweep model on the observed data and then compared to 294	
  

a neutral model calibrated with the background SFS generated from simulations.  As before, we 295	
  

used 100 datasets with 100,000 SNPs each, simulated under the inferred neutral demographic 296	
  

history for urban and rural populations of white-footed mice in NYC.  The CLR was calculated 297	
  

using SweeD for all simulated datasets and the resulting distribution was used to set a 298	
  

significance cutoff.  For the observed dataset, we lacked a genome to provide clear linkage 299	
  

information so SweeD was run separately on each contig.  We identified outlier contigs if their 300	
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CLR value was greater than any produced when calculated for neutral simulations.  We also 301	
  

required outliers to fall within the top 0.01% of the CLR distribution for the observed SNPs.  302	
  

 303	
  

Genotype-environment association tests for environmental selection 304	
  

 We used the GEA approach of LFMM: Latent Factor Mixed Models (Frichot et al. 2013) 305	
  

to associate outlier SNPs and candidate loci identified above with potential environmental 306	
  

selection pressures. LFMM examines associations between environmental and genetic variation 307	
  

while accounting for the neutral genetic background and structure between populations (Frichot 308	
  

et al. 2013).  We tested three environmental variables associated with urbanization: 1) percent 309	
  

impervious surface within a 2 km buffer around each sampling site, 2) human density within a 310	
  

two-kilometer buffer around each sampling site, and 3) designating each site as urban or rural.  311	
  

We previously found that variables 1-2 are significantly associated with genome-wide variation 312	
  

in P. leucopus populations in the NYC metropolitan area (Munshi-South et al. 2016). Our final 313	
  

data set included all individuals but only the subset of outlier SNPs that were detected in 314	
  

Bayescan and SweeD.  LFMM requires the user to define the number of latent factors, K, that 315	
  

describe population structure in the dataset.  To identify the appropriate number of K latent 316	
  

factors, we performed a genetic PCA followed by a Tracy-Widom test to find the number of 317	
  

eigenvalues with P values ≤ 0.01 (Patterson et al. 2006; Frichot & François 2015).  Based on this 318	
  

approach, we ran LFMM with default parameters except for K = 6, number of MCMC cycles = 319	
  

100,000, and burn-in = 50,000.  Using author recommendations, we combined 10 replicate runs 320	
  

and readjusted the p values to increase the power of the test.  LFMM uses |z|- scores to report the 321	
  

probability of a SNP’s association with an environmental variable. After correcting for multiple 322	
  

testing, we used a cutoff value of q ≤ 0.1. 323	
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 Similar to the approach described above, we increased statistical power by repeating the 324	
  

GEA test in a separate analysis.  We used the auxiliary variable model in the program BayPass 325	
  

(Gautier 2015) to identify associations between allele frequencies and environmental variables.  326	
  

We filtered our final list of markers to only include those identified in both LFMM and BayPass. 327	
  

PODs were also used to determine a 5% threshold value for Bayes Factors used for associating 328	
  

environmental covariables with allele frequencies. 329	
  

 330	
  

Functional annotation of candidate gene 331	
  

 We used the gene annotation pipeline in Blast2GO (Conesa et al. 2005; Götz et al. 2008) 332	
  

to find sequences from the NCBI non-redundant protein database that were homologous to our 333	
  

outlier contigs identified above. We then retrieved associated gene ontology (GO) terms.  334	
  

Blast2GO retrieves GO terms associated with BLASTX hits and uses the KEGG database to 335	
  

describe biochemical pathways linking different enzymes (Ogata et al. 1999; Kanehisa et al. 336	
  

2014).  For downstream enrichment analyses, we also used the Ensembl gene annotation system 337	
  

(Aken et al. 2016) to find homologous Mus musculus genes for each P. leucopus contig (Table 338	
  

S3).  We further interpreted the outlier gene lists using g:Profiler (Reimand et al. 2016) to 339	
  

identify gene ontology terms enriched in our outlier gene list compared to the fully annotated 340	
  

Mus musculus genome.  Poorly updated gene annotation databases can significantly affect results 341	
  

and g:Profiler is one of the most comprehensive and most often updated gene annotation 342	
  

databases available (Wadi et al. 2016).  We used the g:Profiler webserver and identified enriched 343	
  

terms from the full outlier gene list using default parameters displaying only significant results 344	
  

(Table S3).  We visualized and summarized the enriched gene ontology list using the revigo 345	
  

webserver (Supek et al. 2011). 346	
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 347	
  

RESULTS 348	
  

Genetic diversity statistics 349	
  

 We retained 154,770 total SNPs for use in looking at patterns of genetic variation and 350	
  

performing tests of selection.  For each population we obtained estimates of nucleotide diversity, 351	
  

Tajima’s D, and pairwise FST.  Urban populations had a two-fold decrease in nucleotide diversity 352	
  

compared to the rural populations (Table 1).  The average nucleotide diversity for all three rural 353	
  

populations was 0.224 ± 0.034, while the average for urban populations was only 0.112 ± 0.019. 354	
  

The average Tajima’s D calculation within populations did not show substantial differences 355	
  

between populations (Table 1).  For all populations, Tajima’s D was slightly positive. Average 356	
  

pairwise FST calculated using vcftools ranged from a low of 0.018 ± 0.364 between two rural 357	
  

populations (CFP – HIP) to a high of 0.110 ± 0.520 between two urban populations (CP – FM, 358	
  

Table S5).  These FST  values were similar to FST for neutral genome-wide SNP datasets from the 359	
  

same P. leucopus populations (Munshi-South et al. 2016).  Comparisons between rural 360	
  

populations had the lowest FST values, urban to rural pairs had the second lowest, and urban to 361	
  

urban pairs had the highest overall FST values despite occurring less than 5 km apart (Table S5).  362	
  

 363	
  

Outlier detection 364	
  

 The global Bayescan analysis identified 309 SNPs potentially under the influence of 365	
  

divergent selection. After sampling sites were grouped as urban or rural, Bayescan identified 40  366	
  

SNPs with signatures of positive selection (Fig. 2A, Table 2). Eight of these SNPs were also 367	
  

found in the global analysis.  Individual urban to rural population comparisons did not find any 368	
  

outlier SNPs, and zero SNPs exhibited signatures of balancing selection.  FST for outlier SNPs 369	
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ranged from 0.21 - 0.33, much higher than the population median of 0.059.  Bayescan identified 370	
  

zero outlier SNPs in the simulated neutral dataset.  However, we only included outlier SNPs 371	
  

from the observed dataset with FDR and posterior odds values that were smaller and larger, 372	
  

respectively, than the most extreme values for the simulated data (FDR ≤ 0.6 and log10(PO) ≥-373	
  

0.196). 374	
  

 To generate the null distribution of the CLR statistic for analyses in SweeD, we tested the 375	
  

100 SNP datasets simulated under the inferred demographic history for NYC populations of P. 376	
  

leucopus.  We found that CLR scores in the top 5% of the simulated distribution were generally 377	
  

2-3X lower than values in the top 5% of the observed dataset.  We ran SweeD on observed SNPs 378	
  

within individual contigs and identified outliers by filtering for a CLR score ≥ 3.53 (the 379	
  

maximum CLR from simulated data).  We also chose regions that fell within the top 0.01% of 380	
  

the observed distribution (Fig. 2B).  SweeD identified regions with SFS patterns that fit a 381	
  

selective sweep model in 55 contigs within urban populations (Table 3).  Contig 35790-44, 382	
  

annotated as the lipid transporter Apolipoprotein B100, had the highest CLR (8.56). All outliers 383	
  

had CLR scores ≥ 4.97. Bayescan and SweeD did not identify any of the same outliers. 384	
  

 The BayPass analysis identified 59 SNPs that showed evidence divergent selection.  We 385	
  

used PODs to estimate a null distribution and identified SNPs with XtX values ≥ 8.35 (top 5% of 386	
  

the null distribution).  BayPass also identified 33 of the 40 outliers (82.5 %) from the Bayescan 387	
  

analysis, and 26 of the 55 outliers (47.3 %) from the SweeD analysis. 388	
  

 389	
  

Environmental associations 390	
  

 Thirty of the 40 (75%) outliers identified using Bayescan were significantly associated 391	
  

with at least one of the three environmental variables tested using LFMM (Fig. 3A, Table 2).  All 392	
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30 of the identified SNPs were associated with the binary classification of urban vs. rural.  Only 393	
  

seven of the outlier SNPs were associated with percent impervious surface and five were 394	
  

associated with human population density.  Twenty-six of the 55 outlier contigs identified using 395	
  

SweeD were associated with one of the environmental variables (Table 3).  Again, all 26 regions 396	
  

were associated with the urban vs. rural site classification.  Fourteen outliers from SweeD were 397	
  

associated with percent impervious surface and eight were associated with human population 398	
  

density. Some contigs associated with environmental variables were outliers in only one urban 399	
  

population, possibly indicating local adaptation within parks, selection on a polygenic trait, or 400	
  

genetic drift. 401	
  

 The only environmental variable significantly associated with SNPs in the BayPass 402	
  

analysis was urban or rural classification.  Percent human density and percent impervious surface 403	
  

cover did not show significant associations.  All outliers identified in Bayescan, BayPass, 404	
  

SweeD, and LFMM showed associations with urban versus rural classification (5% threshold 405	
  

value, BF ≥ 17.8, Table S2). 406	
  

  407	
  

 408	
  

Functional annotation 409	
  

 The full contig sequences containing outlier SNPs were obtained from the P. leucopus 410	
  

transcriptome (Harris et al. 2015) and used to identify functional annotations. Of the 40 contigs 411	
  

identified by Bayescan as divergent between urban and rural populations, 36 were annotated with 412	
  

gene names and functional information (Table 2).  Of these, 29 were also associated with urban 413	
  

environmental variables.  The ten most frequent GO terms among the Bayescan outliers involved 414	
  

organismal metabolism (Table S1).  Some outliers occurred within sequences homologous with 415	
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genes of known functions and biochemical pathways.  These outliers included a farnesoid-x-416	
  

receptor (FXR, Contig 25795-154), a myosin light chain kinase (MYLK, Contig 7975-418), and 417	
  

the gene SORBS2 (Contig 37967-26). 418	
  

 Of the 55 contigs with signatures of selection identified by SweeD, forty-nine were 419	
  

annotated with gene names and gene ontology terms, and 25 were significantly associated with 420	
  

urbanization variables.  Many of these sequences were homologous with genes involved with 421	
  

basic metabolic functions such as glycolysis and ATP production (Table S1).  Contig 35790-44 422	
  

was homologous to the gene APOB, an apolipoprotein, and Contig 10636-348 to an aflatoxin 423	
  

reductase gene AKR7A1. Other outliers were identified as the gene FADS1, part of the fatty acid 424	
  

denaturase family (Contig 342-1776), and a heat-shock protein (Hsp90, Contig 3964-627).  Most 425	
  

gene annotations did not have known phenotypic traits related to their function, but KEGG 426	
  

analysis revealed several contigs involved in the same biochemical pathways: galactose 427	
  

metabolism, fructose metabolism, and mannose metabolism (Fig. S1).  428	
  

 The results from g:Profiler and Revigo show that the identified outlier genes have 429	
  

functions primarily related to metabolic processes.  There were 101 GO terms that were 430	
  

significantly overrepresented in the list of outlier genes compared to the curated Mus musculus 431	
  

gene list from g:Profiler  (Table S3).  The top 5 GO terms that occurred with the highest 432	
  

frequency across the outlier genes were metabolic process, cellular process, organic substance 433	
  

metabolic process, cellular metabolic process, and primary metabolic process, respectively 434	
  

(Table S4).  Metabolic processes comprised 82% of the overrepresented GO terms.  There were 435	
  

also several unique clusters with multiple GO terms dealing with proteolysis, organic substance 436	
  

transport, and nitrogen utilization. The largest cluster of individual GO terms dealt with lipid 437	
  

metabolism and response to lipids (Table S4). 438	
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 439	
  

DISCUSSION 440	
  

 The results of this study provide insight into the genetic basis of local adaptation when 441	
  

populations evolve in response to rapidly changing environments.  We previously found 442	
  

evidence for older occurrences of divergent selection in NYC white-footed mice by investigating 443	
  

non-synonymous polymorphisms in pooled transcriptome samples (Harris et al. 2013).  There 444	
  

was little overlap between previous results and those found here, but this dataset was much 445	
  

larger, included more sampling sites, and used analyses that identify more recent signatures of 446	
  

selection. However, two of the eleven previously identified candidate genes (Harris et al. 2013) 447	
  

were direct matches to outliers in this current analysis (Serine protease inhibitor a3c and Solute 448	
  

carrier organic anion transporter 1A5), and three other genes were from the same gene families 449	
  

or involved in the same biological processes. One gene, an aldo-keto-reductase protein, is part of 450	
  

the same gene family as the aflatoxin reductase gene (Contig 10636-348) identified in this study.  451	
  

The aldo-keto reductase gene family comprises a large group of essential enzymes for 452	
  

metabolizing various natural and foreign substances (Hyndman et al. 2003).  Two others, 453	
  

camello-like 1 and a cytochrome P450 (CYPA1A) gene, are involved in metabolism of drugs 454	
  

and lipids.  In Peromyscus spp., CYPA1A is directly expressed along with Hsp90 (outlier from 455	
  

current SweeD analysis) when exposed to environmental toxins (Settachan 2001).  456	
  

 In this study, we observed patterns of divergent positive selection between urban and 457	
  

rural populations of P. leucopus, and were able to associate outlier SNPs with environmental 458	
  

variables relevant to urbanization.  The majority of candidate loci were annotated with GO terms 459	
  

that are significantly associated with organismal metabolism, particularly breakdown of lipids 460	
  

and carbohydrates.  We discuss what these findings mean for organisms inhabiting novel urban 461	
  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2016. ; https://doi.org/10.1101/038141doi: bioRxiv preprint 

https://doi.org/10.1101/038141
http://creativecommons.org/licenses/by/4.0/


	
   22	
  

ecosystems, and more generally for understanding the ecological processes and time frame of 462	
  

local adaptation in changing environments. 463	
  

 464	
  

The utility of using genome scan methods to test for selection 465	
  

 Over the past decade, genome scans have become feasible methods to detect and 466	
  

disentangle neutral and adaptive evolutionary processes (De Villemereuil et al. 2014).  One of 467	
  

the most popular approaches looks at locus-specific allele frequency differentiation between 468	
  

sampling locations as measured by FST (Lewontin & Krakauer 1973; Weir & Cockerham 1984).  469	
  

Sites with extremely high allele frequency differences may be subjects of positive directional 470	
  

selection.  Bayescan (Foll & Gaggiotti 2008) calculates the posterior probability that a site is 471	
  

under the influence of selection by testing models with and without selection.  The model that 472	
  

does not invoke selection is based on a theorized neutral distribution of allele frequencies.   473	
  

 While Bayescan has been shown to be relatively robust to confounding demographic 474	
  

processes (Pérez-Figueroa et al. 2010; De Villemereuil et al. 2014), population bottlenecks, 475	
  

hierarchical structure, recent migration, or variable times to most-recent-common-ancestor 476	
  

(MRCA) between populations can artificially inflate FST values (Hermisson 2009; Lotterhos & 477	
  

Whitlock 2014).  We minimized false positives by incorporating population structure and a 478	
  

specific demographic history for P. leucopus in NYC directly into the null distribution of FST.  479	
  

(Harris et al. 2016).  We only included outliers if their posterior probability was greater than 480	
  

probabilities calculated from simulations. The outliers comprised 0.024% of the total number of 481	
  

loci analyzed from the transcriptome. This percentage is in line with candidates uncovered from 482	
  

a similar study (0.05%) that looked at high and low altitude populations of the plant S. 483	
  

chrysanthemifolius (Chapman et al. 2013).  Many studies find higher percentages of outlier loci 484	
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using Bayescan; for example, 4.5% in the American pika across its range in British Colombia 485	
  

(Henry & Russello 2013), and 5.7% in Atlantic herring across their range (Limborg et al. 2012).  486	
  

Our lower overall percentage of outliers may be due to the use of the inferred demographic 487	
  

history to establish outlier cutoffs and reduce false positives, or because of the relatively recent 488	
  

isolation or strength of selection in urban populations. 489	
  

 SweeD, another genome scan approach, examines patterns within a population’s SFS 490	
  

rather than allelic differentiation between populations.  The main footprint that selective sweeps 491	
  

leave on the SFS is an excess of rare low-and high-frequency variants (Nielsen 2005).  The 492	
  

SweepFinder method (Nielsen et al. 2005), recently upgraded to the NGS compatible SweeD 493	
  

(Pavlidis et al. 2013), uses a CLR test based on the ratio between the likelihood of a neutral and 494	
  

selective sweep hypothesis.  As above, the weakness of hitchhiking methods is the confounding 495	
  

influence certain demographic processes have on the SFS (Hermisson 2009).  However, building 496	
  

a robustly inferred demographic history into the null model substantially reduces false positive 497	
  

rates (Pavlidis et al. 2013).   498	
  

 We included the P. leucopus demographic history into our analysis, and found 0.019% of 499	
  

the transcriptome to contain SFS patterns indicative of selective sweeps.  This rate is in line with 500	
  

other studies that reported that 0.5% of regions in domesticated rice (Wang et al. 2014), 0.02% 501	
  

of loci in black cottonwood (Zhou et al. 2014), and 0.02% of the gorilla genome (McManus et 502	
  

al. 2014) show evidence of selective sweeps or hitchhiking.   503	
  

 Several studies have shown that performing multiple tests that employ diverse theoretical 504	
  

approaches is the best way to avoid Type I and II errors in genome outlier analyses (Nielsen 505	
  

2005; Grossman et al. 2010; Hohenlohe et al. 2010b).  We used Bayescan and SweeD to identify 506	
  

signatures of positive selection, and confirmed outliers using BayPass to identify divergent 507	
  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2016. ; https://doi.org/10.1101/038141doi: bioRxiv preprint 

https://doi.org/10.1101/038141
http://creativecommons.org/licenses/by/4.0/


	
   24	
  

selection while incorporating genetic structure.  While BayPass confirmed the majority of 508	
  

outliers identified using other methods (Table S2), there was no overlap between Bayescan and 509	
  

SweeD outliers.  This discrepancy is likely due to the different selection scenarios underlying 510	
  

each test, i.e. divergent local selection versus population-wide positive selection in the form of 511	
  

selective sweeps (Hermisson 2009).  FST  based methods can respond to allelic divergence 512	
  

relatively quickly, while models for selective sweeps typically require nearly-fixed derived 513	
  

alleles (Hohenlohe et al. 2010b).  Given the recency of urbanization in NYC, many selective 514	
  

sweeps may be ongoing or otherwise incomplete.  Selection may also be acting on standing 515	
  

genetic variation in the form of soft sweeps (Hermisson & Pennings 2005) that are not readily 516	
  

identified by SweeD (De Villemereuil et al. 2014). We identified several outliers that were 517	
  

unique to specific urban populations, which is characteristic of soft sweeps and polygenic traits 518	
  

(Messer & Petrov 2013).  Despite the lack of overlapping outliers between the two tests, further 519	
  

confirmation of outlier genes experiencing positive selection was provided by genotype-520	
  

environment association tests. These methods may often be more powerful than the genome 521	
  

scans above (Savolainen et al. 2013). 522	
  

 523	
  

Environmental associations strengthen evidence of local adaptation to urbanization 524	
  

 GEA tests are a growing class of methods that identify loci with allele frequencies that 525	
  

are associated with environmental factors (Joost et al. 2007; Coop et al. 2010; Frichot et al. 526	
  

2013). Here we used LFMM (Frichot et al. 2013) to associate outlier SNPs with environmental 527	
  

metrics of urbanization.  LFMM performs better than other methods in the presence of 528	
  

hierarchical structure and when polygenic selection is acting on many loci with small effect (De 529	
  

Villemereuil et al. 2014).  Hierarchical structure in our dataset includes urban and rural 530	
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differentiation (Harris et al. 2015; Harris et al. 2016), patterns of geographic structure between 531	
  

mainland mice and Long Island, NY (Harris et al. 2016), and population structure between 532	
  

individual urban parks (Munshi-South & Kharchenko 2010).  Simulations also suggest that 533	
  

LFMM is superior when sample size is less than 10 individuals per population, there is no 534	
  

pattern of IBD, and the study compares environmentally divergent habitats (Lotterhos & 535	
  

Whitlock 2015).  We sampled eight white-footed mice per population, found no evidence of IBD 536	
  

(Munshi-South et al. 2016), and sampled environmentally divergent rural and urban locations. 537	
  

 Using LFMM, we found that 75 % and 47 % of outliers from Bayescan and SweeD, 538	
  

respectively, were significantly associated with one or more urbanization variables. BayPass also 539	
  

confirmed associations between all outlier SNPs and urbanization variables, though only with the 540	
  

binary classification of a site as urban or rural.  These results are consistent with other studies 541	
  

combining genome scan methods and GEA tests.  Limborg et al. (2012) found 62.5% of the 542	
  

outliers identified in Bayescan were correlated with temperature or salinity in Atlantic herring, 543	
  

and 26.3% of genome scan outliers were associated with temperature or latitude in a tree species 544	
  

(De Kort et al. 2014).  We acknowledge that percent impervious surface, human population 545	
  

density, or binary classification as urban versus rural may not capture the specific, causative 546	
  

selection pressures acting on white-footed mouse populations. We used these metrics as general 547	
  

proxies for ecological processes that in urbanized habitats.  The percent of impervious surface 548	
  

around a park is likely representative of habitat fragmentation, as urban infrastructure changes 549	
  

the net primary productivity due to increasing percentages of impervious surface or artificial 550	
  

landscapes, parks and yards (Shochat et al. 2006).  This fragmentation then leads to changing 551	
  

species interactions as migration is impeded or organisms are forced into smaller areas (Shochat 552	
  

et al. 2006).  The percent human density surrounding an urban park can serve as a proxy for the 553	
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multitude of ecological changes humans impose on their surrounding environment. Humans 554	
  

often introduce invasive species into cities (Sih et al. 2011), leading to increased competition or 555	
  

novel predator-prey interactions.  Urbanization and increasing human density also change the 556	
  

types and availability of resources in the altered habitat (McKinney 2002; Sih et al. 2011).  557	
  

Finally, classifying our sites as urban or rural can generally capture the main differences in urban 558	
  

and natural sites.  For example, pollution is a major consequence of urbanization (Donihue & 559	
  

Lambert 2014), and urban areas often include increased chemical, noise, or light pollution (Sih et 560	
  

al. 2011).    561	
  

 Between divergent allele frequencies, a skewed SFS, environmental associations, and 562	
  

overrepresented GO terms, we find several overlapping lines of evidence that support rapid 563	
  

divergent selection in white-footed mice.  Evidence of selection operating in urban environments 564	
  

is accumulating (Donihue & Lambert 2014), and our results are in line with other studies that 565	
  

have found rapid local adaptation to urbanization.  Yeh (2004) found sexually-selected tail 566	
  

coloration in juncos was rapidly evolving in urban populations compared to rural ones.  567	
  

European blackbirds show reduced migratory behavior in cities, and there is also evidence of 568	
  

selection on genes underlying anxiety behavior across multiple urban areas (Partecke et al. 2006; 569	
  

Mueller et al. 2013).  Cheptou et al. (2008) reported that weeds in urban vegetation plots 570	
  

surrounded by paved surfaces showed heritable changes in seed morphology and disperal.  571	
  

Thompson et al. (2016) found parallel adaptive evolution to urbanization in white clover, T. 572	
  

repens, by identifying reduced cyanogenesis and freezing tolerance in plants in response to 573	
  

warmer minimum ground temperatures in urban areas relative to rural areas.  Rapid adaptation 574	
  

for polychlorinated biphenyl (PCB) resistance occurred in both killifish and tomcod inhabiting 575	
  

urban water bodies (Whitehead et al. 2010; Wirgin et al. 2011).  576	
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 577	
  

Functional roles and ecological relevance of candidate genes 578	
  

 The model rodents Mus musculus, Rattus norvegicus, and Cricetulus griseus all have 579	
  

deeply sequenced, assembled and annotated reference genomes.  These resources allowed us to 580	
  

annotate 89.5% of outlier loci with high quality functional information.  Urban P. leucopus 581	
  

exhibited signatures of positive selection in genes with GO terms overrepresented for organismal 582	
  

metabolic processes, specifically digestion and metabolism of lipids and carbohydrates.   583	
  

 While not significantly overrepresented, association with mitochondrial processes was 584	
  

another of the most common annotations among our outlier loci (Table S1). While we can only 585	
  

speculate until further physiological studies are conducted, our evidence suggests that the 586	
  

evolution of mitochondrial and metabolic processes has been important to the success of P. 587	
  

leucopus living in NYC’s urban forests.  Mitochondrial genes have often been used to describe 588	
  

neutral population variation, but researchers have found ample evidence of selection acting on 589	
  

the mitochondrial genome (Oliveira et al. 2008; Balloux 2010).  For example, specific 590	
  

mitochondrial haplotypes are associated with more efficient thermogenesis and higher fitness in 591	
  

over-wintering shrews (Fontanillas et al. 2005). Pergams & Lacy (2007) found complete 592	
  

mitochondrial haplotype replacement in contemporary P. leucopus in Chicago compared to 593	
  

haplotypes sequenced from museum skins collected before urbanization.  The agent of selection 594	
  

is not clear, but Munshi-South and Nagy (2014) also identified signatures of selection in 595	
  

mitochondrial D-loop haplotypes from contemporary P. leucopus in NYC.  Many mitochondria-596	
  

related metabolic functions are affected by the same environmental variables that change in 597	
  

response to urbanization, such as temperature (Balloux 2010), reduced migration (Lankau & 598	
  

Strauss 2011; Munshi-South 2012), or resource availability (Burcelin et al. 2002). 599	
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Urban P. leucopus may experience different energy budgets, physiological stressors or 600	
  

diets compared to rural counterparts.  The signatures of selection reported for certain genes here 601	
  

support this scenario, such as heat-shock protein Hsp90.  Heat shock proteins have repeatedly 602	
  

been found to play a pivotal role in adaptation to environmental stress (Limborg et al. 2012).  603	
  

Hsp90 was significantly enriched for 12 GO terms from the g:Profiler analysis with the majority 604	
  

associated with protein metabolism. In Peromyscus spp., Hsp90 is a chaperone for many 605	
  

proteins, including a suite of metabolizing receptors activated by dioxin-like industrial toxins 606	
  

often found in polluted soil samples (Settachan 2001). Another outlier from our analyses, 607	
  

aflatoxin aldehyde reductase (AKR7), was also significantly enriched for 8 GO terms primarily 608	
  

involved with single organism metabolism and is important for metabolizing environmental 609	
  

toxins (Hyndman et al. 2003).Urban soils are often much more contaminated with toxins than 610	
  

soils in adjacent rural areas (McDonnell et al. 1997).  611	
  

 We found a surprising number of candidate genes with functions related to the 612	
  

metabolism and transport of lipids and carbohydrates.  These genes were strongly correlated with 613	
  

environmental measures of urbanization, with clearly divergent allele frequencies between urban 614	
  

and rural sites (Fig. 3B).  APOB-100 is the primary apolipoprotein that binds and transports 615	
  

lipids, including both forms of cholesterol (HDL and LDL).  The outlier gene, APOB-100, was 616	
  

significantly enriched for 9 GO terms with the primary cluster involved in single-organism 617	
  

metabolism, or anabolic / catabolic processes involving one organism and abiotic stimuli.  618	
  

FADS1, a farnesoid-x-receptor, is a nuclear receptor antagonist that is involved in bile synthesis 619	
  

and modulates high fat diets, with variation in expression affecting rates of obesity in mice (Li et 620	
  

al. 2013).  FADS1 was enriched for 23 GO terms including five for lipid metabolism and 621	
  

regulation of lipid biosynthesis.  Manually curated protein annotations show MYLK (10 622	
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significantly enriched GO terms; Metabolism) and SORBS2 (2 significantly enriched GO terms; 623	
  

Cellular processes) are both directly involved in the gastrointestinal system, including smooth 624	
  

muscle contractions and absorption of water and sodium in the intestine, respectively (Magrane 625	
  

& Consortium 2011; Consortium 2014). Finally, KEGG analysis identified two contigs (10636-626	
  

348: 8 enriched GO terms and 27546-129: 22 enriched GO terms) that represent proteins that are 627	
  

both directly involved in galactose (primarily found in dairy products), fructose and mannose 628	
  

(both naturally found in fruits, seeds, and vegetables) metabolism (Ogata et al. 1999).  629	
  

 These candidate genes suggest that white-footed mice in isolated urban parks may be 630	
  

evolving in response to resource differences between urban and rural habitats.  One prediction is 631	
  

that urban P. leucopus consume a diet with a substantially different fat content than diets of rural 632	
  

populations.  The typical diet of P. leucopus across its range consists of arthropods, fruits, nuts, 633	
  

various green vegetation, and fungus (Wolff et al. 1985).  Given that white-footed mice are 634	
  

opportunistic generalists, many different food resources could differ between urban and rural 635	
  

habitats.  Urbanization in NYC has produced relatively small green patches that are surrounded 636	
  

by a dense urban matrix and largely free of white-tailed deer.  The overabundance of deer 637	
  

outside of NYC removes the vegetative understory and inhibits regeneration of many plants 638	
  

(Stewart 2001), decreasing invertebrate species diversity and abundance (Stewart 2001; 639	
  

Allombert et al. 2005).  In contrast, urban parks often have extremely thick and healthy 640	
  

understories composed of invasive plants (Leston & Rodewald 2006) thatproduce novel seed and 641	
  

fruit resources (McKinney 2008), as well as support a high abundance, if not diversity, of 642	
  

invertebrate prey (McDonnell et al. 1997).  P. leucopus in NYC may successfully take advantage 643	
  

of these new food sources in urban habitats. We hypothesize that urban P. leucopus consume 644	
  

significantly different amounts or types of fats than their rural counterparts due to altered 645	
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abundance of seeds, invertebrates, or direct human subsidies. Local adaptation in urban 646	
  

populations may allow these mice to more efficiently metabolize different types or amounts of 647	
  

lipids and carbohydrates.  648	
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FIGURES AND TABLES 937	
  

Table 1.  Summary population genomic statistics (mean ± standard error) for three urban and 938	
  

three rural populations of white-footed mice (Peromyscus leucopus) examined in this study. 939	
  

 940	
  

 941	
  

 942	
  

 943	
  

 944	
  

 945	
  

 946	
  

 947	
  

 948	
  

 949	
  

 950	
  

 951	
  

Population Nucleotide diversity (π)  Tajima’s D  

Urban   

CP 0.131 ±0.0012 0.318 ±0.005 

FM 0.112 ±0.0012 0.301 ±0.006 

NYBG 0.094 ±0.0011 0.280 ±0.006 

Rural   

BHwwp 0.198 ±0.0012 0.350 ±0.004 

CFP 0.211 ±0.0012 0.336 ±0.004 

HIP 0.263 ±0.0011 0.349 ±0.004 
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Table 2.  Outlier loci (N = 33) in the urban to rural comparison identified using Bayescan and 952	
  

confirmed with BayPass. Last three columns indicate whether the locus was also significantly 953	
  

associated with environmental variables across urban (CP, FM, NYBG) and rural (BHwwp, CFP, 954	
  

HIP) populations in the LFMM analysis.  I = percent impervious surface, D = human density, C 955	
  

= Urban or Rural Classification 956	
  

Urban to 
Rural 

 LFMM 
results 

  Outliers Gene I D C 
27691-127 retroviral nucleocapsid protein gag containing protein - - + 
25795-154 af478441_1farnesoid-x-receptor alpha splice variant 1 - - + 
37015-34 tubulin folding cofactor e-like isoform x6 - - - 
902-1236 alkyldihydroxyacetonephosphate peroxisomal - - + 
3135-709 transmembrane 9 superfamily member 1 isoform 2 - - - 
27707-127 autophagy-related protein 2 homolog a isoform x2 - + + 
38397-23 -- - - - 
3567-665 gram domain-containing protein 3 - + + 
2482-790 protein diaphanous homolog 1 isoform x1 - - + 
37967-26 sorbin and sh3 domain-containing protein 2 isoform x3 - - + 
17974-242 40s ribosomal protein s15a-like protein + + + 
36437-38 jnk sapk-inhibitory isoform cra_a - - + 
7975-418 myosin light chain smooth muscle - - + 
12107-321 -- + - + 
5754-511 otu domain-containing protein 3 - - - 
27887-125 26s proteasome non-atpase regulatory subunit 9 - - + 
1749-927 utrophin isoform x2 - - - 
29218-108 n-alpha-acetyltransferase 50 isoform x1 - - - 
31201-85 transmembrane protein 115 - - - 
22365-204 transmembrane protein 19 isoform x1 + + + 
7690-428 casp8-associated protein 2 - - + 
2260-821 a kinase anchor protein isoform cra_a - - + 
1371-1036 signal recognition particle 9 kda protein - - + 
19-4220 cytoplasmic dynein 1 heavy chain 1 + + + 
20787-217 adp-ribosylation factor-like protein 1 - - + 
36491-37 5-oxoprolinase isoform x1 - - + 

23896-185 
low molecular weight phosphotyrosine protein 
phosphatase-like + - + 

1396-1029 proteasome activator complex subunit 1 - - + 
11279-335 mitochondrial ribosomal protein l37 - - - 
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 957	
  

 958	
  

 959	
  

26257-147 
PREDICTED: uncharacterized protein C1orf167 
homolog - - + 

31894-78 -- - - + 
14102-290 succinate dehydrogenase - - + 
40819-1 adaptin ear-binding coat-associated protein 1 + - + 
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Table 3.  Outlier loci (N = 26)  identified using SweeD and confirmed with BayPass. Last three 960	
  

columns indicate whether the locus was also significantly associated with environmental 961	
  

variables across urban (CP, FM, NYBG) and rural (BHwwp, CFP, HIP) populations in the 962	
  

LFMM analysis. Columns to the left of the outliers show the population in which the SweeD 963	
  

outlier was identified.  I = percent impervious surface, D = human density, C = Urban or Rural 964	
  

Classification 965	
  

Population 
  

SweeD  
LFMM 
results 

  CP FM NYBG Combined Outliers  I D C 

- - - + 10099-359 -- - - - 

+ - - - 10636-348 
aflatoxin b1 aldehyde reductase member 
2 + - + 

- - - + 113-2629 -- - - - 

+ - - + 124-2491 -- - - - 

+ - - - 12718-311 -- - - - 

- - + - 1583-971 isoform cra_a - - + 

- - - + 17779-244 -- - - - 

- + + - 17856-243 serine protease inhibitor a3c-like + + + 

- - - + 23358-193 -- - - + 

- + - - 243-1951 solute carrier family member 13 - - + 

+ + + + 25500-158 -- - - - 

- - + - 2736-755 -- - - - 

- - + - 27546-129 6- liver type - - + 

- - - + 28127-122 sarcosine mitochondrial - - + 

- - - + 28528-117 -- - - - 

- - - + 29117-109 -- - - - 

- + - - 31034-87 -- - - - 

+ - - - 342-1776 fatty acid desaturase 1 + - + 

+ + + + 35790-44 apolipoprotein b- partial - - - 

- - - + 37202-32 PREDICTED: poly + - + 

- - - + 37400-30 -- - - - 

- - - + 39-3749 
alpha-aminoadipic semialdehyde 
mitochondrial + + + 

- - - + 3964-627 
heat shock protein alpha class a member 
1 - - + 

- - - + 408-1655 
disintegrin and metalloproteinase 
domain-containing protein 9 isoform x1 - - + 

- - - + 50-3466 -- - - - 

- - - + 533-1512 fructose- -bisphosphatase 1 - - + 
14

2 
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 967	
  

 968	
  

Figure 1.  Map of sample localities in the NYC metropolitan area. Sites in red are urban parks 969	
  

within New York City. CP = Central Park; FM = Flushing Meadows—Willow Lake; NYBG = 970	
  

New York Botanical Gardens; BHwwp = Brookhaven and Wildwood State Park; CFP = 971	
  

Clarence Fahnestock State Park; HIP = High Point State Park 972	
  

973	
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 974	
  

 975	
  

 976	
  

 977	
  

 978	
  

 979	
  

 980	
  

Figure 2. (a) BayeScan 2.1 plot of 154,770 SNPs genome scan analysis between urban and rural 981	
  

populations, including 48 individual white-footed mice from six NYC sampling sites. FST is on 982	
  

the vertical axis plotted against the log10 of the posterior odds (PO). The vertical red line 983	
  

indicates the cutoff (FDR = 0.1) used for identifying outlier SNPs. The markers on the right side 984	
  

of the vertical line show all outlier SNP candidates and the red circles represent the final 985	
  

accepted outlier SNPs from Table 2. (b) SweeD results with each of the 154,770 SNPs plotted 986	
  

from all 48 individuals.  The Composite Likelihood Ratio (CLR) is plotted along the vertical 987	
  

access and each unfilled point represents an individual SNP.  The horizontal red line indicates 988	
  

the cutoff used for identifying outlier SNPs at P ≤ 0.0001.  The red circles represent the final 989	
  

accepted outlier SNPs from Table 3. 990	
  

991	
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 1002	
  

 1003	
  

Figure 3. (a) Plot of urbanization metrics for all 6 sampling sites from NYC used in this study.  1004	
  

The log10 value of % Impervious Surface and Human Density are plotted along the vertical axis 1005	
  

and the oval represents the value for each sampling site.  Ovals on the Rural or Urban plot show 1006	
  

sample sites designated as either Urban or Rural.  (b) Allele frequencies for selected candidate 1007	
  

genes found to contain outlier SNPs from both genome scans and GEA tests grouped by urban 1008	
  

(U) or rural (R) classification.  The frequency of the outlier SNP within each type of population 1009	
  

is plotted on the vertical axis. 1010	
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 1011	
  

SUPPORTING INFORMATION 1012	
  

Figure S1.  KEGG analysis for biochemical pathways that contain multiple outlier contigs. 1013	
  

Colored boxes represent outlier genes. 1014	
  

Table S1. Blast2GO table with BLASTX hits from M. musculus, R. rattus, and C griseus and top 1015	
  

three supported Gene Ontology terms for outlier genes from Bayescan and SweeD 1016	
  

Table S2. Excel file containing Bayescan and SweeD outliers and the corresponding BayPass 1017	
  

results.  Full BayPass results are also included. 1018	
  

Table S3. Excel file containing filtered list of outlier contigs, the homologous Mus musculus 1019	
  

genes, and the significantly enriched GO terms from g:Profiler. 1020	
  

Table S4. Excel file containing Revigo results.  Enriched GO terms from g:Profiler are sorted 1021	
  

into largest parent terms and listed based on the frequency of occurrence. 1022	
  

Table S5. Average pairwise FST among six P. leucopus populations. 1023	
  

Table S6. Top Blast hits including NCBI accession numbers for outlier contigs listed in Table 2 1024	
  

and Table 3. 1025	
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