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Integrative	epigenomics,	transcriptomics	and	proteomics	of	patient	chondrocytes	reveal	

genes	and	pathways	involved	in	osteoarthritis	
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ABSTRACT	

Background:	Osteoarthritis	(OA)	is	a	common	disease	characterized	by	cartilage	

degeneration	and	joint	remodeling.	The	underlying	molecular	changes	underpinning	disease	

progression	are	incompletely	understood,	but	can	be	characterized	using	recent	advances	in	

genomics	technologies,	as	the	relevant	tissue	is	readily	accessible	at	joint	replacement	5 

surgery.	Here	we	investigate	genes	and	pathways	that	mark	OA	progression,	combining	

genome-wide	DNA	methylation,	RNA	sequencing	and	quantitative	proteomics	in	isolated	

primary	chondrocytes	from	matched	intact	and	degraded	articular	cartilage	samples	across	

twelve	patients	with	OA	undergoing	knee	replacement	surgery.		

Results:	We	identify	49	genes	differentially	regulated	between	intact	and	degraded	cartilage	10 

at	multiple	omics	levels,	16	of	which	have	not	previously	been	implicated	in	OA	progression.	

Using	independent	replication	datasets,	we	replicate	statistically	significant	signals	and	show	

that	the	direction	of	change	is	consistent	for	over	90%	of	differentially	expressed	genes	and	

differentially	methylated	CpG	probes.	Three	genes	are	differentially	regulated	across	all	3	

omics	levels:	AQP1,	COL1A1	and	CLEC3B,	and	all	three	have	evidence	implicating	them	in	OA	15 

through	animal	or	cellular	model	studies.	Integrated	pathway	analysis	implicates	the	

involvement	of	extracellular	matrix	degradation,	collagen	catabolism	and	angiogenesis	in	

disease	progression.	All	data	from	these	experiments	are	freely	available	as	a	resource	for	

the	scientific	community.	

Conclusions:	This	work	provides	a	first	integrated	view	of	the	molecular	landscape	of	human	20 

primary	chondrocytes	and	identifies	key	molecular	players	in	OA	progression	that	replicate	

across	independent	datasets,	with	evidence	for	translational	potential.		
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BACKGROUND	

Osteoarthritis	(OA)	affects	over	40%	of	individuals	over	the	age	of	70	[1],	and	is	a	leading	

cause	of	pain	and	loss	of	physical	function	[2].	There	is	no	curative	therapy	for	OA;	instead,	

disease	management	targets	symptom	control	until	disease	progression	culminates	in	joint	5 

replacement	surgery.	OA	is	a	complex	disease,	with	both	heritable	and	environmental	

factors	contributing	to	susceptibility	[3].	Despite	the	increasing	prevalence,	morbidity,	and	

economic	impact	of	the	disease	[1,	2,	4],	the	underlying	molecular	mechanisms	of	OA	

progression	remain	poorly	characterized.		

	10 

Emergent	high-throughput	technologies	and	bioinformatics	analyses	of	clinical	tissues	offer	

the	promise	of	novel	functional	approaches	to	disease	characterization,	as	well	as	biomarker	

and	therapeutic	target	discovery.	Cartilage	degeneration	is	a	key	feature	of	OA,	thought	to	

be	brought	about	by	an	imbalance	between	anabolic	and	catabolic	processes	through	a	

complex	network	of	proteins	including	proteases	and	cytokines,	reviewed	in	[5-7].	While	15 

disease	tissues	are	inaccessible	for	many	other	common	complex	diseases,	cartilage	is	a	

relevant	disease	tissue	for	OA	and	is	readily	accessible	at	joint	replacement	surgery.	This	

provides	an	opportunity	to	deploy	multi-omics	(DNA	CpG	methylation,	gene	expression,	and	

proteomics	assays)	in	order	to	characterize	the	molecular	processes	underpinning	disease	

development	in	the	right	tissue,	both	to	fill	a	gap	in	our	fundamental	understanding	of	20 

disease	biology	and	to	identify	novel	therapeutic	opportunities.	In	recent	years,	studies	

examining	individual	–omics	levels	have	expanded	our	understanding	of	OA	pathogenesis,	

reviewed	in	[8-11].	Here	we	report	the	first	application	of	integrated	multi-omics	across	DNA	

methylation,	RNA	sequencing	and	quantitative	proteomics	from	knee	joint	tissue	to	obtain	a	

comprehensive	molecular	portrait	of	cartilage	degeneration	in	OA	patients	(Figure	1a).	The	25 

fundamental	question	here	addresses	the	biological	processes	underpinning	disease	
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progression	within	the	OA	joint,	which	is	of	direct	clinical	relevance	to	patients	suffering	

from	OA.	To	achieve	this,	we	collected	individually-matched	pairs	of	cartilage	tissue	from	

patients	undergoing	joint	replacement	surgery,	with	one	sample	demonstrating	advanced	

degenerative	change	and	the	other	demonstrating	little	or	no	evidence	of	cartilage	

degeneration.	The	findings	were	then	replicated	in	independent	populations	of	patients	5 

undergoing	joint	replacement.	Notably,	no	functional	genomics	study	carried	out	to	date	in	

knee	OA	chondrocytes	has	focused	on	all	three	–omics	levels	examined	here.	Our	data	

highlight	disease	processes	with	involvement	across	multiple	levels,	and	reveal	novel	and	

robustly	replicating	molecular	players	with	translational	potential.	
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RESULTS	

In	the	discovery	population	we	extracted	cartilage	and	subsequently	isolated	chondrocytes	

from	the	knee	joints	of	12	OA	patients	undergoing	total	knee	replacement	surgery	(see	

Methods).	We	obtained	two	cartilage	samples	from	each	patient,	scored	using	the	OARSI	

cartilage	classification	system	[12,	13]:	one	sample	with	high	OARSI	grade	signifying	high-5 

grade	degeneration	(referred	to	as	“degraded	sample”),	and	one	sample	with	low	OARSI	

grade	signifying	healthy	tissue	or	low-grade	degeneration	(referred	to	as	“intact	sample”)	

(Supplementary	Figure	1).	We	compared	the	degraded	and	intact	tissue	across	patient-

matched	samples.	

	10 

Quantitative	proteomics	

We	used	isobaric	labeling	liquid	chromatography-mass	spectrometry	(LC-MS)	to	quantify	the	

relative	abundance	of	6540	proteins	that	mapped	to	unique	genes.	This	is	the	most	

comprehensive	differential	proteomics	study	on	OA	samples	to	date.	We	identified	209	

proteins	with	evidence	of	differential	abundance	(Supplementary	Table	1);	ninety	were	15 

found	at	higher	abundance	in	the	degraded	samples,	and	119	were	found	at	lower	

abundance.	For	two	representative	patients	we	also	used	an	orthogonal	label-free	approach	

that	confirmed	the	protein	quantification	data	(Supplementary	Figure	2).	For	three	of	the	

differentially	abundant	proteins	(ANPEP,	AQP1	and	TGFBI),	we	validated	the	higher	levels	in	

degraded	cartilage	by	Western	blotting	(Supplementary	Figure	3).	All	three	were	also	20 

detected	as	significant	in	the	RNA	sequencing	data	(see	below).		

		

RNA	sequencing	

We	sequenced	total	RNA	from	all	samples	and	identified	349	genes	differentially	expressed	

at	a	5%	false	discovery	rate	(FDR).	Of	these,	296	and	53	genes	demonstrated	higher	25 

transcription	levels	in	the	degraded	and	intact	samples,	respectively	(Supplementary	Table	
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2).	One	of	the	most	strongly	down-regulated	genes	in	chondrocytes	isolated	from	damaged	

sites	was	CHRDL2,	the	presence	of	which	was	further	confirmed	by	immunohistochemistry	

(IHC;	Supplementary	Figure	4).	This	gene	was	also	found	at	lower	abundance	in	the	

proteomics	data.	

	5 

DNA	methylation	

We	used	the	Illumina	450k	methylation	array	to	assay	~480,000	CpG	sites	across	the	genome.	

We	first	performed	a	probe	level	analysis	and	identified	9,896	differentially	methylated	

probes	(DMPs)	at	5%	FDR	(Supplementary	Table	3).	We	also	identified	271	differentially	

methylated	regions	(DMRs),	composed	of	multiple	differentially	methylated	CpG	sites	(see	10 

Methods),	associated	with	296	unique	overlapping	genes	(Supplementary	Table	4).		

	

Integrative	analyses:	proteomics	and	RNA	sequencing	

Among	the	209	proteins	with	evidence	of	differential	abundance	in	the	proteomics	data,	31	

were	also	differentially	expressed	at	the	RNA	level	(hypergeometric	p=5.3x10-7,	Figure	1b).	15 

Twenty-six	of	these	31	genes	showed	concordant	directions	of	effect	between	degraded	and	

intact	samples	(binomial	p=0.0002),	while	the	direction	differed	for	five	(COL4A2,	CXCL12,	

FGF10,	HTRA3	and	WNT5B).	In	all	five	cases	the	gene	was	found	to	be	over-expressed	at	the	

RNA	level	and	less	abundant	at	the	protein	level	in	the	degraded	tissue.	Based	on	the	Human	

Protein	Atlas	[14],	all	five	proteins	encoded	by	these	genes	are	annotated	as	predicted	20 

secreted	proteins.	In	agreement	with	this,	several	collagens	are	more	abundantly	released	

into	the	culture	media	from	diseased	tissue	than	from	healthy	tissue	[15].		

	

We	computed	the	global	correlation	in	all	samples	irrespective	of	tissue	status,	comparing	

the	RNA	fragments	per	kilobase	of	transcript	per	million	fragments	mapped	(FPKM)	[16]	to	25 

normalized	peptide	spectral	counts	(Supplementary	Figure	5a)	and	found	a	significant	
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positive	correlation	(Spearman’s	rho=0.29,	p<2.2x10-16)	between	RNA	expression	levels	and	

protein	abundance.	To	establish	if	there	were	also	concordant	differences	in	RNA	and	

protein	abundance	between	intact	and	degraded	tissue,	we	computed	the	correlations	

between	RNA	and	protein	changes	in	degraded	compared	to	intact	samples	(Figure	2a),	and	

identified	a	significant	positive	correlation	(Pearson’s	r=0.17,	p<2.2x10-16).	The	magnitude	of	5 

correlation	became	substantially	stronger	when	we	only	considered	the	31	genes	that	were	

expressed	differentially	in	both	datasets	(Pearson’s	r=0.43,	p=0.01).	

	

Integrative	analyses:	methylation	and	RNA	sequencing	

Sixteen	of	the	genes	with	an	associated	DMR	were	also	differentially	transcribed	(Figure	1b).	10 

For	the	direct	comparison	of	methylation	and	gene	expression	in	the	following,	we	used	the	

aggregate	methylation	status	of	promoter	region	CpG	probes	with	transcription	levels	in	all	

samples	irrespective	of	intact/degraded	status	(see	Methods,	Supplementary	Table	5).	We	

found	the	expected	negative	correlation	between	promoter	region	methylation	and	gene	

expression	(Spearman’s	rho=-0.43,	p<2.2x10-16,	Supplementary	Figure	5b).	Based	on	the	15 

comparison	of	intact	to	degraded	cartilage,	the	log-fold-changes	in	RNA	expression	and	the	

differences	in	mean	promoter	region	methylation	values		demonstrated	a	small	but	highly	

significant	correlation	(Pearson’s	r=-0.08,	p<2.2x10-16,	Figure	2b).	Again,	the	correlation	

became	substantially	higher	when	we	considered	the	39	genes	with	significant	differences	at	

both	the	promoter	methylome	and	transciptome	levels	(Pearson’s	r=-0.48,	p=0.002).	20 

	

Integrative	analyses:	methylation,	RNA	sequencing,	and	proteomics	

We	identified	49	genes	with	evidence	of	differential	regulation	from	at	least	two	of	the	three	

–omics	analyses	(using	the	DMR	methylation	data;	Supplementary	Table	6),	and	three	genes	

with	consistent	significant	evidence	for	involvement	in	OA	progression	across	all	three	25 

levels:	AQP1,	COL1A1	and	CLEC3B	(Figure	1b).	All	three	genes	were	up-regulated	in	degraded	
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tissue	in	both	the	RNA-seq	and	proteomics	analyses	(Figure	2a).	AQP1	and	COL1A1	showed	a	

consistent	decrease	in	methylation	of	all	CpG	probes	in	their	associated	DMRs,	

commensurate	with	an	increase	in	transcription,	while	the	DMR	associated	with	CLEC3B	

showed	evidence	of	increased	methylation.	Using	IHC	we	independently	confirmed	the	

presence	of	AQP1,	COL1A1	and	CLEC3B	in	articular	cartilage	chondrocytes	(Supplementary	5 

Figure	4).	We	also	replicated	the	direction	of	gene	expression	change	for	all	three	genes	in	

independent	data	(see	below	and	Supplementary	Table	7).		

Of	the	49	genes	with	evidence	of	differential	regulation	on	at	least	two	molecular	levels,	33	

add	substantive	evidence	to	genes	previously	reported	and	16	genes	(33%)	have	not	

previously	been	implicated	in	OA	(Supplementary	Table	6).		10 

	

Replication	of	gene	expression	changes	

We	assayed	gene	expression	in	degraded	and	intact	cartilage	samples	from	two	independent	

cohorts:	a	set	of	17	patients	with	knee	OA	and	a	set	of	9	patients	with	hip	OA,	using	the	

same	approach	as	for	the	discovery	data	(see	Methods).	After	quality	control,	we	retained	15 

14,762	genes	common	to	the	discovery	and	both	replication	datasets,	including	332	of	349	

genes	with	FDR≤5%	in	the	discovery	data.	We	found	excellent	concordance	in	the	direction	

of	change	for	the	genes	with	FDR≤5%	in	the	discovery	data:	93.4%	of	genes	showed	the	

same	direction	of	effect	in	the	knee	replication	data	and	91.0%	of	genes	showed	the	same	

direction	of	effect	in	the	hip	replication	data	(Figure	3a-b;	both	binomial	p<10-15).	Of	the	20 

genes	with	concordant	effect	between	the	discovery	and	replication	data,	65.5%	reached	

nominal	statistical	significance	in	the	knee	replication	data	and	47%	in	the	hip	replication	

data	(Supplementary	Table	8;	both	binomial	p<10-15).		

	

Moreover,	we	found	good	correlation	for	the	estimates	of	the	log-fold-changes	across	all	25 

14,762	genes	between	the	knee	discovery	and	the	replication	data:	r=0.56	for	knee	
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replication	data	and	r=0.51	for	hip	replication	data	(both	p<10-15).	These	correlations	are	

higher	for	the	332	genes	with	FDR≤5%	in	the	discovery	gene	expression	data	(r=0.73	for	

knee,	r=0.66	for	hip	replication	data,	both	p<10-15).	This	shows	that	the	gene	expression	

changes	identified	in	this	study	are	robust	and	largely	joint-independent.	

	5 

We	specifically	considered	the	49	genes	with	evidence	from	at	least	two	–omics	levels.	Of	

these,	47	had	gene	expression	data	in	the	discovery	and	both	replication	datasets;	36	genes	

had	nominally	significant	differential	gene	expression	in	the	same	direction	in	the	knee	

replication	data,	and	26	genes	in	the	hip	replication	data	(Supplementary	Table	7).	This	

included	ANPEP,	for	which	we	have	used	Western	blotting	to	confirm	protein	changes	10 

(Supplementary	Figure	3),	and	CHRDL2,	for	which	we	used	immunohistochemistry	to	

confirm	presence	of	the	protein	(Supplementary	Figure	4).	Notably,	the	direction	of	change	

replicates	in	at	least	one	of	the	knee	and	hip	replication	datasets	at	nominal	significance	for	

13	of	the	16	genes	that	have	not	previously	been	associated	with	OA	(Supplementary	Table	

7).	15 

	

We	also	pursued	replication	in	an	independent	published	microarray	gene	expression	

dataset	of	degraded	and	intact	cartilage	from	the	RAAK	study,	including	22	individuals	with	

hip	OA	and	11	individuals	with	knee	OA	[17].	Of	the	349	genes	with	FDR≤5%	in	the	discovery	

data,	154	genes	had	expression	measurements	in	the	RAAK	knee	and	hip	replication	20 

datasets.	We	found	highly	significant	agreement	between	the	discovery	and	RAAK	data:	

83.8%	of	the	genes	showed	the	same	direction	of	effect	in	the	knee	RAAK	data	(binomial	

one-sided	p<10-15)	and	69.5%	of	genes	showed	the	same	direction	of	effect	in	the	hip	RAAK	

data	(binomial	one-sided	p<10-6).	Furthermore,	despite	the	difference	in	genomics	

technology	(RNA-seq	in	discovery,	microarray	in	RAAK),	we	found	good	concordance	for	the	25 
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estimates	of	the	log-fold-changes	between	the	knee	discovery	and	the	RAAK	replication	

data:	r=0.43	for	knee	(p=3.6x10-8)	and	r=0.24	for	hip	replication	data	(p=0.003).	

	

Replication	of	methylation	changes	

To	replicate	the	methylation	results,	we	assayed	DNA	methylation	in	degraded	and	intact	5 

cartilage	samples	from	two	independent	datasets:	a	set	of	17	patients	with	knee	OA	and	a	

set	of	8	patients	with	hip	OA,	using	the	same	approach	as	for	the	discovery	data	(see	

Methods).	After	quality	control,	we	retained	416,437	probes	common	to	the	discovery	and	

both	replication	data	sets,	including	9,723	of	9,867	differentially	methylated	probes	(DMPs)	

with	FDR≤5%	in	the	knee	discovery	data.	We	found	excellent	concordance	in	the	direction	of	10 

change	for	the	DMPs:	96.9%	of	probes	showed	the	same	direction	of	effect	in	the	knee	

replication	data	and	95.2%	probes	showed	the	same	direction	of	effect	in	the	hip	replication	

data	(Figure	3c-d;	both	binomial	one-sided	p<10-15).		

	

Furthermore,	we	found	good	correlation	for	the	estimates	of	the	fold-changes	across	all	15 

416,437	probes	between	the	knee	discovery	and	the	replication	data:	r=0.69	for	knee	

replication	data	and	r=0.56	for	hip	replication	data	(both	p<10-15).	The	correlation	is	even	

higher	for	the	DMPs:	r=0.91	for	knee,	r=0.85	for	hip	replication	data	(both	p<10-15).	

Similarly	to	the	gene	expression	data,	this	shows	that	the	methylation	changes	estimated	in	

this	study	are	robust	and	largely	joint-independent.	20 

	

In	summary,	our	combined	epigenetic,	transcriptomic	and	proteomic	analysis	has	uncovered	

a	substantial	number	of	genes	associated	with	OA	progression,	some	of	which	have	known	

connections	to	cartilage	or	bone-related	processes,	and	others	with	no	links	reported	to	

date,	bringing	new	potential	insights	into	the	molecular	mechanisms	of	OA	pathogenesis.	25 
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The	replication	data	confirm	the	high	quality	of	our	discovery	experiment	and	further	

support	a	large	number	of	the	novel	genes	with	a	suggested	role	in	OA	progression.	

	

Gene	set	analyses	

We	performed	a	gene	set	enrichment	analysis	on	the	genes	with	significant	evidence	for	5 

differential	expression,	methylation	and/or	protein	abundance	from	each	separate		

–omics	analysis	and	found	that	several	common	biological	processes	are	highlighted	at	

multiple	levels	(Supplementary	Tables	9-10).	We	additionally	identified	pathways	jointly	

affected	by	genes	identified	at	multiple	molecular	levels	(Figure	4,	Supplementary	Figure	6,	

Supplementary	Tables	9-10).	10 

	

A	strong	theme	in	the	highlighted	pathways	is	cartilage	matrix	regulation	and	degeneration,	

confirming	the	fact	that	increased	ECM	turnover	is	a	crucial	component	in	OA	pathogenesis.	

Pathways	including	extracellular	matrix	organization	and	collagen	formation	were	also	

implicated	by	genes	identified	by	all	three	–omics	analyses	(Figure	4).	Results	from	the	three	15 

analyses	converge	on	shared	mechanisms,	supporting	the	importance	of	taking	an	

integrated	perspective.	The	GO	term	analysis	also	uncovered	consistent	evidence	from	all	

three	–omics	assays	for	genes	annotated	for	extracellular	matrix	disassembly	and	collagen	

catabolic	process.	In	these	pathways	we	also	find	suggestive	evidence	of	a	link	to	genetic	OA	

risk	loci	(see	Supplementary	Methods	and	Results,	Supplementary	Table	11).	These	signals	20 

would	not	necessarily	have	been	identified	directly	from	GWAS	data,	highlighting	the	

importance	of	synthesizing	information	from	multiple	molecular	levels	to	obtain	a	more	

powerful	integrated	view.		

	

Positive	regulation	of	ERK1/2	cascade,	heparin-binding	and	platelet	activation	were	also	25 

enriched	at	multiple	molecular	levels	and	are	interconnected	through	common	genes.	
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Several	studies	have	linked	the	extracellular	signal-regulated	kinase	(ERK)	cascade	to	OA	[5,	

18-21].	Heparin-binding	growth	factors	have	also	been	shown	to	be	involved	in	OA	[22-25],	

some	in	particular	through	activation	of	the	ERK	signaling	pathway.	Injection	of	platelet-rich	

plasma	in	OA	knees	leads	to	significant	clinical	improvement	[26,	27]	and	there	is	evidence	

to	suggest	that	this	effect	is	mediated	via	the	ERK	cascade	[28].	Our	findings	provide	strong	5 

evidence	supporting	a	role	for	this	pathway	in	OA	pathogenesis.	

	

We	also	found	enrichment	of	genes	involved	in	the	regulation	of	angiogenesis	at	multiple	

levels.	The	growth	of	blood	vessels	and	nerves	are	closely	linked	processes	that	share	

regulatory	mechanisms,	including	the	ERK	cascade	and	heparin-binding	proteins	mentioned	10 

above	[29].	Accordingly,	NCAM	signaling	for	neurite	outgrowth	and	PDGF	signaling	that	play	

a	significant	role	in	blood	vessel	and	nervous	system	formation	were	highlighted	by	the	

pathway	analysis.		We	found	significant	enrichment	in	plasma	proteins	for	both	the	RNA-seq	

(hypergeometric	p=6.9x10-11)	and	the	proteomics	experiments	(p=1.8x10-5).	This	supports	a	

role	for	angiogenesis	and	nerve	growth	in	OA	progression	[29,	30].	Indeed,	histological	15 

examination	of	the	samples	we	investigated	showed	greater	blood	vessel	ingrowth	in	tissues	

with	more	advanced	OA	(Supplementary	Figure	1).	Results	from	the	three	molecular	

analyses	converge	on	shared	biological	mechanisms	that	are	relevant	to	the	pathogenesis	of	

OA.	These	data	should	be	useful	in	pinpointing	candidate	targets	to	help	improve	

therapeutic	intervention.		20 

	

In	silico	screen	for	drug	targets	

To	identify	existing	drugs	that	could	be	applied	to	OA,	we	searched	Drugbank	[31]	using	the	

49	differentially	regulated	genes	identified	by	at	least	two	of	the	functional	genomics	

approaches.	We	uncovered	29	compounds	with	investigational	or	established	actions	on	the	25 

corresponding	proteins.	After	filtering	to	include	only	agents	with	current	Food	and	Drug	
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Administration	Marketing	Authorization	for	use	in	humans,	we	identified	ten	agents	with	

actions	on	nine	of	the	dysregulated	proteins	(see	Supplementary	Results,	Supplementary	

Table	12).	For	the	corresponding	nine	genes,	eight	have	RNA-seq	data,	and	the	direction	of	

change	replicates	for	seven	genes	in	the	knee	and	six	genes	in	the	hip	RNA-seq	replication	

data	at	nominal	significance	(Supplementary	Tables	8,12).	Consequently,	this	work	could	5 

help	prioritize	the	repurposing	of	existing	drugs	for	the	treatment	of	OA.	
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DISCUSSION	

Previous	studies	of	osteoarthritis	have	investigated	methylation	[32,	33],	transcription	[17,	

34,	35],	or	protein	expression	[36,	37]	in	OA	tissue	separately,	and	others	have	combined	up	

to	two	of	these	–omics	assays	[38,	39],	some	with	the	addition	of	genetic	data	[40].	By	

contrast,	this	study	provides	the	first	integrated,	systematic	and	hypothesis-free	analysis	of	5 

the	biological	changes	involved	in	human	cartilage	OA	progression	using	genome-wide	data	

at	three	molecular	levels.	Using	this	multi-level	functional	genomics	approach,	we	have	

provided	a	first	integrated	view	of	the	molecular	alterations	within	chondrocytes	that	

accompany	cartilage	degeneration	leading	to	debilitating	end-stage	joint	disease.	All	data	

arising	from	the	experiments	described	here	are	freely	available	to	the	wider	scientific	10 

community,	from	the	raw	data	to	the	analysis	results	for	each	–omics	level.			

	

We	show	that	the	direction	of	effect	for	over	90%	of	gene	expression	and	CpG	methylation	

changes	replicate	in	independent	knee	or	hip	OA	data.	We	also	replicate	the	majority	of	

gene	expression	changes	using	independent	knee	and	hip	OA	data	from	a	microarray	15 

experiment.	This	supports	the	quality	of	our	data	and	suggests	that	there	are	largely	shared	

molecular	changes	in	knee	and	hip	OA	progression,	within	the	power	constraints	of	our	

study.	

	

We	have	focused	on	improving	our	understanding	of	the	molecular	processes	that	underpin	20 

disease	progression	and	have	used	matched	intact	and	degraded	cartilage	samples	from	

knee	OA	joints.	Our	data	highlight	49	genes	with	evidence	of	differential	regulation	at	

multiple	molecular	levels,	identifying	several	novel	genes,	including	MAP1A	and	PXDN,	and	

providing	robust	cross-cutting	evidence	for	genes	previously	implicated	in	OA,	including	

AQP1,	COL1A1,	and	CLEC3B.		25 
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AQP1	encodes	aquaporin-1,	a	member	of	a	family	of	proteins	that	facilitate	water	transport	

across	biological	membranes.	Chondrocyte	swelling	and	increased	cartilage	hydration	has	

been	suggested	as	an	important	mechanism	in	OA	[41].	Accordingly,	AQP1	has	been	

observed	to	be	over-expressed	in	a	rat	model	of	knee	OA	[42],	and	in	knee	OA	in	humans	

[43].		5 

	

CLEC3B	(also	known	as	TNA)	encodes	the	protein	tetranectin,	which	binds	human	tissue	

plasminogen	activator	(tPA)	[44].	Previous	studies	have	identified	CLEC3B	as	up-regulated	in	

human	OA	[34,	45],	mediating	extracellular	matrix	destruction	in	cartilage	and	bone	[46],	

and	a	candidate	gene	association	study	found	evidence	of	association	of	a	coding	variant	10 

(rs13963,	Gly106Ser)	in	CLEC3B	with	OA	[47]	(although	this	association	has	not	been	

replicated	in	subsequent	studies	[48]).		

	

COL1A1	is	one	of	several	collagen	proteins,	which	were	differentially	abundant	at	both	the	

RNA-seq	and	proteomics	levels	(including	COL1A2,	COL3A1,	COL4A2,	COL5A1,	15 

Supplementary	Table	6).	Collagens	are	the	main	structural	components	of	cartilage	and	

several	studies	have	highlighted	the	importance	of	collagen	dysregulation	in	OA	[6,	49].	A	

recent	study	also	identified	up-regulation	of	COL1A1	and	COL5A1	in	synovium	from	humans	

with	end-stage	OA,	in	the	synovium	of	mice	with	induced	OA	and	in	human	fibroblasts	

stimulated	with	TGF-β	[50].		20 

	

MAP1A	and	MAP1B,	two	novel	genes	with	convergent	evidence	confirmed	by	replication,	

encode	microtubule-associated	proteins,	both	of	which	were	up-regulated	significantly	at	

both	the	RNA	and	protein	levels	(Figure	2a).	These	proteins	are	expressed	mostly	in	the	

brain	and	are	involved	in	regulation	of	the	neural	cytoskeleton	[51].	Cytoskeletal	regulation	25 
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is	thought	to	be	an	important	process	in	OA	[52]	and	accordingly,	recent	studies	have	

implicated	these	proteins	in	bone	formation	[53].		

	

The	PXDN	gene	was	up-regulated	at	the	RNA	level,	confirmed	by	replication,	and	associated	

with	2	hypo-methylated	DMRs.	PXDN	encodes	peroxidasin,	which	is	secreted	into	the	5 

extracellular	matrix	and	catalyses	collagen	IV	cross-linking	[54].	The	other	replicated	genes	

not	previously	implicated	in	OA	(Supplementary	Table	6)	have	relatively	little	

characterization.	

	

Among	the	genes	we	identify	that	have	been	previously	implicated	in	OA,	ANPEP	10 

(aminopeptidase	E)	is	a	broad	specificity	aminopeptidase	that	has	previously	been	detected	

in	the	synovial	fluid	of	OA	patients	[55]	and	therefore	has	potential	as	a	novel	OA	biomarker.	

CHRDL2	is	a	bone	morphogenetic	protein	(BMP)	inhibitor	that	has	previously	been	reported	

to	be	lost	from	chondrocytes	of	the	superficial	zone	and	shifted	to	the	middle	zone	in	OA	

cartilage	in	a	targeted	study	[56].	WNT5B,	a	ligand	for	frizzled	receptors	in	the	WNT	signaling	15 

pathway,	has	previously	been	reported	to	be	differentially	transcribed	in	osteoarthritic	bone,	

consistent	with	current	understanding	that	OA	is	a	disease	involving	both	cartilage	and	bone	

[57].	

	

On	the	level	of	gene	sets,	we	identify	extracellular	matrix	organization,	collagen	catabolism	20 

and	angiogenesis	as	biological	pathways	that	are	clearly	implicated	in	disease	progression.		

	

Intervention	to	prevent	disease	progression	in	OA	as	well	as	targeted	prevention	in	high-risk	

disease-free	individuals	will	be	important	in	reducing	the	future	societal	burden	of	OA	[58].	

A	clearer	understanding	of	the	factors	that	modulate	OA	disease	progression	is	thus	critical	25 

to	the	development	of	novel	prognostic	markers	and	biological	disease-modifying	agents,	
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analogous	to	those	emerging	or	successfully	applied	in	inflammatory	arthritis	[59-61].	

Follow-up	mechanistic	studies	will	be	required	before	causal	relationships	between	the	

identified	pathways	and	OA	progression	can	be	established.	

	

In	the	chondrocyte,	we	found	little	evidence	of	differential	inflammatory	pathway	activity	5 

between	the	intact	and	degraded	samples	[62,	63].	This	is	not	surprising,	as	all	of	the	

patients	whose	tissues	were	studied	here	had	a	diagnosis	of	OA	and	clinically	advanced	

disease	in	at	least	1	location	within	the	joint.	Inflammatory	mediators	are	soluble	factors	

present	throughout	the	joint,	to	which	both	the	healthy	and	the	diseased	chondrocyte	

populations	are	potentially	exposed,	and	for	which	the	regulatory	molecules	may	differ	to	10 

those	prioritized	by	the	tissues	studied	here.		

	

Based	on	our	discovery	data	from	12	individuals,	we	estimate	that	~10%	of	the	“true”	

differentially	expressed	genes	are	statistically	significant	in	this	study	and	~95%	of	

significantly	different	genes	are	true	positives	(Supplementary	Figure	7).	The	high	true	15 

positive	rate	is	also	confirmed	by	the	replication	data	for	gene	expression	and	methylation.		

	

Larger	sample	sizes	will	be	required	for	a	more	powerful	characterization	of	the	molecular	

changes	occurring	with	disease	progression.	The	integrative	functional	genomics	approach	

illustrated	here	offers	an	opportunity	to	identify	molecular	signatures	in	disease-relevant	20 

tissues,	thereby	gaining	insights	into	disease	mechanism,	identifying	potential	biomarkers,	

and	discovering	druggable	targets	for	intervention.	A	key	future	challenge	will	be	the	

development	of	powerful	statistical	approaches	for	the	integration	of	high-dimensional	

molecular	traits	in	the	context	of	complex	diseases.		

	25 
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METHODS	

Patient	consent	&	study	approval	

All	subjects	provided	written,	informed	consent	prior	to	participation	in	the	study.	Tissue	

samples	were	collected	under	Human	Tissue	Authority	license	12182,	Sheffield	

Musculoskeletal	Biobank,	University	of	Sheffield,	UK.	All	samples	were	collected	from	5 

patients	undergoing	total	knee	replacement	for	primary	osteoarthritis.	The	patients	

comprised	2	women	and	10	men,	mean	age	66	years	(range	50-88).	Patients	with	diagnosis	

other	than	osteoarthritis	were	excluded	from	the	study.	The	study	was	approved	by	Oxford	

NHS	REC	C	(10/H0606/20).	

	10 

Sample	processing	

Extraction	of	chondrocytes	from	osteochondral	tissue	taken	at	knee	replacement	

Osteochondral	samples	were	transported	in	Dulbecco's	modified	Eagle's	medium	(details	

see	Supplementary	Methods).	Half	of	each	sample	was	taken	for	chondrocyte	extraction	and	

the	remaining	tissue	was	fixed	in	10%	neutral	buffered	formalin,	decalcified	in	surgipath	15 

decalcifier	(Leica)	and	embedded	to	paraffin	wax	for	histological	and	immunohistochemical	

analysis.	Chondrocytes	were	directly	extracted	from	each	paired	macroscopic	intact	and	

degraded	OA	cartilage	sample	in	order	to	remove	the	extracellular	matrix	allowing	a	higher	

yield	of	cells	to	be	loaded	onto	the	Qiagen	column.		

	20 

	

Histological	examination	

Four	micron	sections	of	paraffin-embedded	cartilage	tissue	were	mounted	onto	positively	

charged	slides	and	histologically	stained	using	Haematoxylin	and	Eosin,	Alcian	blue,	Masson	

trichrome	(details	see	Supplementary	Methods).	Cartilage	tissue	was	graded	using	the	25 

Mankin	Score	(0-14)	with	additional	scores	for	abnormal	features	(0-4)	and	cartilage	
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thickness	(0-4)	based	on	the	OARSI	scoring	system	[12,	13].	The	total	scores	were	used	to	

determine	the	overall	grade	of	the	cartilage	as	healthy/low-grade	degenerate,	referred	to	as	

“intact”	(median:	4.5;	IOR:	3-5.5;	n=12),	or	high-grade	degenerate,	referred	to	as	“degraded”	

(median:	14;	IOR:	11.75-18;	n=12).			

	5 

Extraction	of	DNA,	RNA,	and	protein	

Detailed	protocols	are	included	in	the	Supplementary	Methods.	In	brief,	cartilage	was	

removed	from	the	bone,	dissected	and	washed	twice	in	1xPBS.	Tissue	was	digested	

overnight,	passed	through	a	cell	strainer,	centrifuged,	washed	twice,	and	re-suspended.	Cells	

were	counted	using	a	haemocytometer	and	the	viability	checked	using	trypan	blue	exclusion	10 

(Invitrogen).	The	optimal	cell	number	for	spin	column	extraction	from	cells	was	between	

4x106	and	1x107.	Cells	were	then	pelleted	and	homogenized.	DNA,	RNA	and	protein	

extractions	were	performed	using	the	Qiagen	AllPrep	DNA/RNA/Protein	Mini	Kit,	as	per	

manufacturer’s	instructions.	RNA,	DNA	and	protein	were	quantitated	by	picogreen	and	gel	

electrophoresis.	Samples	were	frozen	at	-80	degrees	C	prior	to	assays.		15 

	

Proteomics	

Detailed	protocols	for	protein	digestion,	TMT	labelling,	peptide	fractionation	and	all	

individual	steps	below	are	included	in	the	Supplementary	Methods.	

LC-MS	Analysis			20 

LC-MS	analysis	was	performed	on	the	Dionex	Ultimate	3000	UHPLC	system	coupled	with	the	

high-resolution	LTQ	Orbitrap	Velos	mass	spectrometer	(Thermo	Scientific).		

The	ten	most	abundant	multiply	charged	precursors	within	380	-1500	m/z	were	selected	

with	FT	mass	resolution	of	30,000	and	isolated	for	HCD	fragmentation	with	isolation	width	

1.2	Th.	Tandem	mass	spectra	were	acquired	with	FT	resolution	of	7,500	and	targeted	25 

precursors	were	dynamically	excluded	for	further	isolation	and	activation	for	40	seconds	
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with	10	ppm	mass	tolerance.	Samples	from	one	individual	were	excluded	during	quality	

control.	

	

Database	Search	and	Protein	Quantification		

The	acquired	mass	spectra	were	submitted	to	SequestHT	search	engine	implemented	on	the	5 

Proteome	Discoverer	1.4	software	for	protein	identification	and	quantification,	with	settings	

as	described	in	the	Supplementary	Methods.	Peptide	confidence	was	estimated	with	the	

Percolator	node.	Peptide	FDR	was	set	at	0.01	and	validation	was	based	on	q-value	and	decoy	

database	search.	All	spectra	were	searched	against	a	UniProt	fasta	file	containing	20,190	

Human	reviewed	entries.	The	Reporter	Ion	Quantifier	node	included	a	custom	TMT	6plex	10 

Quantification	Method	with	integration	window	tolerance	20	ppm	and	integration	method	

the	Most	Confident	Centroid.	For	each	identified	protein	a	normalized	spectral	count	value	

was	calculated	for	each	one	of	the	6-plex	experiments	by	dividing	the	number	of	peptide	

spectrum	matches	(PSMs)	of	each	protein	with	the	total	number	of	PSMs.	Median	

normalized	spectral	counts	per	protein	were	computed	across	the	different	multiplex	15 

experiments.		

	

Differential	abundance	

To	identify	those	proteins	with	evidence	of	differential	expression,	we	shortlisted	proteins	

with	absolute	median	abundance	ratios	between	degraded	and	intact	samples	≥0.75,	where	20 

the	median	abundance	ratio	was	greater	than	the	standard	deviation	in	all	samples	with	

data,	and	with	evidence	from	at	least	5	patients.	This	analysis	identified	209	proteins	

(Supplementary	Table	1).	

	

Western	blotting	25 
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Sample	pairs	were	adjusted	to	the	same	protein	concentration.	Primary	antibodies	used	

were	as	follows:	ANPEP,	ab108382;	AQP1,	ab168387;	COL1A,	ab14918;	TGFB1,	ab89062;	

WNT5B,	ab124818	(Abcam);	GAPDH,	sc-25778	(Santa	Cruz	Biotechnologies).	Intensity	values	

were	normalized	to	GAPDH	loading	control	before	ratio	calculation.	Further	details	are	in	the	

Supplementary	Methods.	5 

	

Label	free	quantification	of	representative	samples	

For	a	selection	of	four	representative	control	and	disease	samples,	peptide	aliquots	of	500ng	

without	TMT	labelling	were	analyzed	on	the	Dionex	Ultimate	3000	UHPLC	system	coupled	

with	the	Orbitrap	Fusion	(Thermo	Scientific)	mass	spectrometer	for	label	free	quantification	10 

and	validation,	as	described	in	the	Supplementary	Methods.	With	a	minimum	requirement	

of	at	least	total	14	spectra	per	protein	we	found	excellent	agreement	in	the	direction	of	

change	between	isobaric	labelling	and	label	free	quantification	for	at	least	32	proteins	which	

is	approximately	90%	of	the	common	proteins	between	the	TMT	changing	list	and	the	label	

free	identified	list	(Supplementary	Figure	2).		15 

	

RNA-seq		

Detailed	protocols	for	all	individual	steps	are	included	in	the	Supplementary	Methods.	

RNA	sequencing	

The	steps	for	mRNA	purification,	cDNA	library	creation,	and	litigation	to	Illumina	Paired-end	20 

Sequencing	adaptors	are	described	in	the	Supplementary	Methods.	The	libraries	then	went	

through	10	cycles	of	PCR	amplification	using	KAPA	Hifi	Polymerase	rather	than	the	kit-

supplied	Illumina	PCR	Polymerase	due	to	better	performance.	

	

Samples	were	quantified	and	pooled	based	on	a	post-PCR	Agilent	Bioanalyzer,	then	the	pool	25 

was	size-selected	using	the	LabChip	XT	Caliper.	The	multiplexed	library	was	then	sequenced	
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on	the	Illumina	HiSeq	2000,	75bp	paired-end	read	length.	Sequenced	data	was	then	

analyzed	and	quality	controlled	(QC)	and	individual	indexed	library	BAM	files	were	produced.	

	

Read	alignment	

The	resulting	reads	that	passed	QC	were	realigned	to	the	GRCh37	assembly	of	the	human	5 

genome	using	a	splice-aware	aligner,	bowtie	version	2.2.3	[64],	and	using	a	reference	

transcriptome	from	Ensembl	release	75	[65],	using	the	–library-type	option	fr-firststrand	to	

bowtie.	We	limited	the	alignments	to	uniquely	mapping	reads.	We	then	counted	the	number	

of	reads	aligning	to	each	gene	in	the	reference	transcriptome	using	htseq-count	from	the	

HTSeq	package	[66]	separately	for	each	sample	to	produce	a	read	count	matrix	counting	the	10 

number	of	reads	mapping	to	each	gene	in	the	transcriptome	for	each	sample.	To	quantify	

absolute	transcript	abundance	we	computed	the	fragments	per	kilobase	of	transcript	per	

million	fragments	mapped	(FPKM)	[16]	for	each	gene	using	the	total	read	counts	from	this	

matrix,	and	the	exonic	length	of	each	gene	calculated	from	gene	models	from	Ensembl	

release	75.	We	obtained	a	mean	of	49.3	million	uniquely	mapping	reads	from	each	sample	15 

(range:	39.2-71.4	million)	with	a	mean	of	84%	of	reads	mapping	to	genes	(range:	67.9-

90.6%)	which	were	used	for	the	differential	expression	analysis.	

	

Differential	expression	analysis	

We	used	edgeR	version	3.0	[67]	to	identify	differentially	expressed	genes	from	the	read	20 

count	matrix.	We	restricted	the	analysis	to	15,418	genes	with	>1	counts	per	million	in	at	

least	3	samples	(similar	to	the	protocol	described	by	[68]).	We	followed	the	processing	steps	

listed	in	the	manual,	using	a	generalized	linear	model	with	tissue	status	(degraded	or	intact)	

and	individual	ID	as	covariates.	349	genes	were	differentially	expressed	between	the	

degraded	and	intact	samples	at	5%	FDR	(296	up-,	54	down-regulated	in	degraded	tissue).	25 

The	genes	differentially	expressed	at	5%	FDR	had	somewhat	higher	exonic	length	than	the	
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remaining	genes	(Wilcox-test	p=0.00013;	4804	vs	4153	bases),	hence	we	adjusted	for	gene	

length	in	the	randomizations	for	gene	set	analyses	(see	Supplementary	Methods).	

	

Methylation	

We	used	the	Illumina	450k	BeadChip	to	assay	methylation,	with	sample	preparation	5 

(including	Bisulfite	Conversion,	pre-	and	post-amplification)	described	in	detail	in	the	

Supplementary	Methods.	

Illumina	450k	BeadChip	assay	

BeadChips	were	scanned	on	five	Illumina	iScans,	four	of	which	are	paired	with	two	Illumina	

Autloader	2.Xs.	The	iScan	software	produced	intensity	files	for	each	channel	(.idat	files).		10 

		

Probe-level	analysis	

The	intensity	files	for	each	sample	were	processed	using	the	ChAMP	package	[69].	Probes	

mapping	to	chromosomes	X	&	Y,	and	those	with	a	detection	p-value	>0.01	(n=3,064)	were	

excluded.	The	beta	values	for	each	probe	were	quantile-normalized,	accounting	for	the	15 

design	of	the	array,	using	the	‘dasen’	method	from	the	wateRmelon	package	[70].	We	also	

excluded	any	probes	with	a	common	SNP	(minor	allele	frequency	>5%)	within	2	base	pairs	of	

the	CpG	site,	and	those	predicted	to	map	to	multiple	locations	in	the	genome	[71]	

(n=45,218),	leaving	a	total	of	425,694	probes	for	the	probe-level	differential	methylation	

analysis.	We	annotated	all	probes	with	genomic	position,	gene	and	genic	location	20 

information	from	the	ChAMP	package.	

	

To	identify	probes	with	evidence	of	differential	methylation	we	used	the	CpGassoc	package	

[72]	to	fit	a	linear	model	at	each	probe,	with	tissue	status	and	individual	ID	as	covariates.	

This	analysis	yielded	9,867	differentially	methylated	probes	(DMP)	between	degraded	and	25 

intact	samples	at	5%	FDR.	
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Region-level	analysis	

To	identify	differentially	methylated	regions,	we	used	custom	software	(available	upon	

request)	to	identify	regions	containing	at	least	3	DMPs	and	no	more	than	3	non-significant	

probes	with	no	more	than	1kb	between	each	constituent	probe,	following	previous	analyses	5 

[39].	We	used	bedtools	[73]	to	identify	genes	overlapping	each	DMR,	using	gene	annotations	

from	Ensembl	release	75,	and	extending	each	gene’s	bound	to	include	1500	basepairs	

upstream	of	the	transcription	start	site	to	include	likely	promoter	regions.	This	analysis	

yielded	271	DMRs	with	a	mean	of	4.04	DMPs	per	region,	and	a	mean	length	of	673	basepairs.	

	10 

Promoter-level	analysis	

We	assigned	probes	in	the	promoter	region	of	each	gene	using	the	probe	annotations	from	

the	ChAMP	package,	and	assigned	to	each	gene	any	probe	with	the	annotation	“TSS1500”,	

“TSS200”,	“5’UTR”	and	“1stExon”	in	order	to	capture	probes	in	likely	promoter	regions.	We	

then	computed	the	mean	normalized	beta	value	of	assigned	probes	for	all	genes	with	at	15 

least	5	associated	probes	for	each	sample	separately,	to	produce	a	single	methylation	value	

for	each	gene	in	each	sample.	We	used	a	paired	t-test	to	identify	genes	with	differential	

promoter-region	methylation	between	degraded	and	intact	samples,	and	a	5%	FDR	cutoff	to	

call	a	gene’s	promoter	region	as	differentially	methylated.	Note	that	the	paired	t-test	

assumes	an	equivalent	model	to	the	linear	model	used	for	the	probe-level	analysis.	20 

		

Immunohistochemistry	

To	identify	whether	native	chondrocytes	demonstrated	expression	of	the	key	factors	

immunohistochemistry	was	deployed.	The	detailed	protocol	is	included	in	the	

Supplementary	Methods.		25 
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Protein	atlas	annotation	

We	downloaded	annotations	from	Human	Protein	Atlas	version	13,	and	annotated	each	

protein-coding	gene	from	the	3	experiments	with	the	following	terms	taken	from	the	

annotation	file:	“Predicted	secreted	protein”,	“Predicted	membrane	protein”,	“Plasma	

protein”.	The	secreted	and	membrane	protein	predictions	are	based	on	a	consensus	call	5 

from	multiple	computational	prediction	algorithms,	and	the	plasma	protein	annotations	are	

taken	from	the	Plasma	Protein	Database,	as	detailed	in	[14].	

	

Identification	of	previously	reported	OA	genes	

In	order	to	identify	whether	some	of	the	genes	we	highlight	have	previously	been	reported	10 

as	associated	with	OA,	we	searched	PubMed	on	2	September	2016.	We	used	an	“advanced”	

search	of	the	form	“(osteoarthritis)	AND	(<gene_name>)”	where	<gene_name>	was	set	to	

each	HGNC	gene	symbol	and	we	report	the	number	of	citations	returned	for	each	search.	

	

Replication	of	gene	expression	changes	using	RNA-seq	data	and	replication	of	methylation	15 

changes	

Knee	samples	

Tissue	samples	were	collected	under	National	Research	Ethics	approval	reference	

15/SC/0132,	South	Yorkshire	and	North	Derbyshire	Musculoskeletal	Biobank,	University	of	

Sheffield.	All	samples	were	collected	from	patients	undergoing	total	knee	replacement	for	20 

primary	osteoarthritis,	and	all	patients	provided	written	informed	consent	before	

participation.	The	patients	comprised	12	women	and	5	men,	mean	age	71	years	(range	54-

82).	Patients	with	diagnosis	other	than	osteoarthritis	were	excluded	from	the	study.		

All	sample	processing	steps	(extraction	of	chondrocytes,	extraction	of	DNA)	were	carried	out	

as	for	the	knee	OA	discovery	samples.	25 
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Hip	samples	

Tissue	samples	were	collected	under	national	Research	Ethics	approval	reference	

11/EE/0011,	Cambridge	Biomedical	Research	Centre	Human	Research	Tissue	Bank,	

Cambridge	University	Hospitals,	UK.	All	samples	were	collected	from	patients	undergoing	

total	hip	replacement	for	primary	osteoarthritis.	The	patients,	who	provided	written	consent	5 

before	participation,	comprised	6	women	and	3	men,	mean	age	61	years	(range	44-84).	

Patients	with	diagnosis	other	than	osteoarthritis	were	excluded	from	the	study.	All	sample	

processing	steps	(extraction	of	chondrocytes,	extraction	of	DNA)	were	carried	out	as	for	the	

knee	OA	discovery	samples,	except	that	the	cartilage	was	digested	overnight	in	6mg/ml	

collagenase	A	(Roche)	in	medium	containing	10%	serum	to	release	the	cells.	10 

	

Replication	analysis	for	gene	expression	changes:	RNA-seq	data		

We	applied	the	same	procedure	to	the	knee	and	hip	replication	data	as	to	the	discovery	data.	

We	considered	14762	genes	that	passed	QC	in	the	knee	discovery,	knee	replication,	and	hip	

replication	data;	this	included	332	of	349	genes	with	FDR<=5%	in	the	knee	discovery	data.	15 

	

Replication	analysis	for	methylation	changes	

We	used	the	Illumina	450k	BeadChip	to	assay	methylation	for	all	knee	and	hip	replication	

samples,	using	the	same	procedure	as	for	the	knee	discovery	data.		The	knee	and	hip	

methylation	data	were	processed	using	the	same	QC	procedure	as	for	the	knee	discovery	20 

samples,	including	the	same	QC	thresholds.	We	excluded	one	degraded	hip	cartilage	sample	

as	an	outlier	in	probe	failure	rate	(over	six	times	the	proportion	of	the	next	highest	sample),	

and	also	excluded	the	paired	intact	cartilage	sample.	After	QC,	417077	probes	remained.	

We	considered	416437	probes	with	methylation	values	in	the	knee	discovery,	knee	

replication,	and	hip	replication	data;	this	included	9723	of	9867	probes	with	FDR<=5%	in	the	25 

knee	discovery	data	(“DMPs”).		
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Replication	of	gene	expression	changes:	microarray	data	

OA-dependent	changes	in	expression	of	genes	with	differential	expression	in	the	discovery	

data	were	assessed	with	the	help	of	an	available	dataset	from	the	ongoing	Research	Arthritis	

and	Articular	Cartilage	(RAAK)	study,	consisting	in	gene	expression	profiles	of	OA	affected	5 

cartilage	and	macroscopically	preserved	cartilage	from	33	patients	undergoing	total	joint	

replacement	surgery	(22	with	hip	OA,	11	with	knee	OA).	Sample	collection	and	

determination	of	gene	expression	levels	have	been	described	in	detail	previously	[17].	In	

short,	cartilage	was	collected	separately	for	the	OA	affected	and	the	unaffected	regions	of	

the	weight	baring	part	of	the	joint,	snap	frozen	in	liquid	nitrogen	and	stored	at	-80°C	prior	to	10 

RNA	extraction.	Gene	expression	was	determined	with	the	Illumina	HumanHT-12	v3	

microarrays.	After	removal	of	probes	that	were	not	optimally	measured	(detection	p-value	

>0.05	in	more	than	50%	of	the	samples)	a	paired	t-test	was	performed	on	all	sample	pairs	

while	adjusting	for	chip	(to	adjust	for	possible	batch	effects).	

	15 

Gene	set	analyses		

Individual	datasets	

We	aimed	to	test	whether	particular	biological	gene	sets	were	enriched	among	the	

significant	genes	from	each	of	the	RNA-seq,	methylation,	and	proteomics	datasets.	To	this	

end,	we	downloaded	KEGG	[74]	and	Reactome	[75]	gene	annotations	from	MSigDB	(version	20 

4)	[76].	We	also	downloaded	Gene	Ontology	(GO)	biological	process	and	molecular	function	

gene	annotations	from	QuickGO	[77]	on	4	February	2015.	For	GO,	we	only	considered	

annotations	with	evidence	codes	IMP,	IPI,	IDA,	IEP,	and	TAS.	Genes	annotated	to	the	same	

term	were	treated	as	a	“pathway”.	KEGG/Reactome	and	GO	annotations	were	analysed	

separately	and	only	pathways	with	20	to	200	genes	were	considered	(555	for	25 

KEGG/Reactome,	677	for	GO).	Enrichment	was	assessed	using	a	1-sided	hypergeometric	test	
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and	only	considering	genes	with	annotations	from	a	particular	resource,	as	described	in	the	

Supplementary	Methods.	Multiple-testing	was	accounted	for	by	using	a	5%	FDR	(separately	

for	KEGG/Reactome	and	GO,	and	for	RNA-seq,	methylation,	and	protein	expression	data).			

	

Empirical	p-values	for	the	enrichments	were	obtained	from	randomizations	accounting	for	5 

overlap	of	significant	genes	among	the	RNA-seq,	methylation,	and	protein	expression	

datasets	(see	Supplementary	Methods).	

	

Integrative	gene	set	analyses	

We	aimed	to	integrate	the	gene	sets	analyses	for	the	RNA-seq,	methylation,	and	protein	10 

expression	datasets.	For	each	gene	set,	we	asked	whether	the	association	across	the	three	

datasets	(calculated	as	geometric	mean	of	the	p-values)	was	higher	than	expected	by	chance.	

To	this	end,	we	obtained	1-sided	empirical	p-values	from	100,000	sets	of	“random	RNA-seq	

genes,	random	methylation	genes,	and	random	protein	expression	genes”.	The	“random”	

sets	were	chosen	to	conservatively	match	the	overlap	observed	among	the	significant	genes,	15 

and	to	account	for	gene	length	as	described	in	the	Supplementary	Methods.	We	confirmed	

that	the	number	of	randomizations	was	sufficient	(see	Supplementary	Methods).	We	

performed	the	randomization	separately	for	KEGG/Reactome	and	for	GO,	as	we	only	

considered	genes	with	at	least	one	annotation	in	the	resource.	

	20 

Analyses	using	the	arcOGEN	genetic	data	are	described	in	the	Supplementary	Methods	and	

in	the	Supplementary	Results.	
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FIGURES	

	
Figure	1	-	Overview	of	the	genes	identified	in	each	–omics	experiment	and	their	overlap.		
a)	Schematic	view	of	the	3	functional	genomics	experiments	identifying	the	number	of	genes	
shortlisted	for	each.	5 
b)	Venn	diagram	identifying	the	number	of	overlapping	shortlisted	genes	from	each	
individual	experiment.	
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Figure	2:	Comparison	of	changes	identified	in	the	–omics	experiments.	
a)	Comparison	of	the	log-fold-changes	between	all	genes	identified	in	both	the	proteomics	
and	RNA-seq	experiments.	Each	gene	is	represented	as	a	single	point,	and	the	colour	
corresponds	to	whether	the	gene	is	identified	as	differentially	expressed	using	edgeR	in	the	
RNA-seq	or	proteomics	experiments,	or	both.	The	trend	lines	are	derived	from	a	linear	5 
regression	in	each	subset.	Positive	fold	changes	indicate	increased	expression	in	degraded	
samples.	
b)	Comparison	of	RNA-seq	log-fold-change,	and	mean	promoter	region	methylation	change.	
The	trend	lines	are	derived	from	a	linear	regression	in	each	subset.	Genes	are	coloured	
according	to	the	results	of	the	RNA-seq	and	the	promoter-region	analyses	analogously	to	10 
Figure	2a.	
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Figure	3:	Replication	of	gene	expression	and	methylation	changes.		
a,	b)	Replication	of	gene	expression	changes	in	independent	RNA-seq	datasets	of	samples	
from	patients	with	knee	(a)	and	hip	(b)	OA.		
c,	d)	Replication	of	CpG	methylation	changes	in	independent	datasets	of	samples	from	
patients	with	knee	(c)	and	hip	(d)	OA.	5 
Genes	or	probes	with	significant	change	at	5%	in	the	discovery	data	are	marked	black;	genes	
or	probes	that	additionally	show	nominal	significance	in	the	replication	data	are	marked	in	
red.	
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Figure	4:	Significant	gene	set	enrichments	in	the	integrative	–omics	analysis.		
a,	b)	Enrichments	from	KEGG/Reactome	(a)	and	Gene	Ontology	(b).	The	circos	plots	show	
enriched	gene	sets,	with	genes	differentially	regulated	in	at	least	one	of	the	methylation,	
RNA-seq,	or	proteomics	experiments.	Lines	connect	genes	that	occur	in	several	gene	sets.	
The	three	outside	circles	show	boxes	for	genes	with	significantly	higher	(black)	or	lower	(red)	5 
methylation,	gene,	or	protein	expression	data.	A	red	box	with	black	border	indicated	a	gene	
that	overlaps	hyper-	as	well	as	hypo-methylated	DMRs.	
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