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ABSTRACT	

Osteoarthritis	(OA)	is	a	degenerative	joint	disease	with	substantial	global	health	economic	

burden	and	no	curative	therapy.	Here	we	investigate	genes	and	pathways	underpinning	

disease	progression,	combining	methylation	typing,	RNA	sequencing	and	quantitative	

proteomics	in	chondrocytes	from	matched	damaged	and	healthy	articular	cartilage	samples	5 

from	OA	patients	undergoing	knee	replacement	surgery.	Our	data	highlight	49	genes	

differentially	regulated	at	multiple	levels,	identifying	19	novel	genes	with	a	potential	role	in	

OA	progression.	An	integrated	pathway	analysis	identifies	established	and	emerging	

biological	processes.	We	perform	an	in	silico	search	for	drugs	predicted	to	target	the	

differentially	regulated	factors	and	identify	several	established	therapeutic	compounds	10 

which	now	warrant	further	investigation	in	OA.	Overall	this	work	provides	a	first	integrated	

view	of	the	molecular	landscape	of	human	primary	chondrocytes	and	offers	insights	into	the	

mechanisms	of	cartilage	degeneration.	The	results	point	to	new	therapeutic	avenues,	

highlighting	the	translational	potential	of	integrated	functional	genomics.	All	data	from	

these	experiments	are	freely	available	for	access	in	the	appropriate	repositories.	15 
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INTRODUCTION	

Osteoarthritis	(OA)	affects	over	40%	of	individuals	over	the	age	of	70	(1),	and	is	a	leading	

cause	of	pain	and	loss	of	physical	function	(2).	There	is	no	treatment	for	OA;	instead,	disease	

management	targets	symptom	control	and	culminates	in	joint	replacement	surgery.	OA	is	a	5 

complex	disease,	with	both	heritable	and	environmental	factors	contributing	to	

susceptibility	(3).	Despite	the	increasing	prevalence,	morbidity,	and	economic	impact	of	the	

disease	(1,2,4),	the	underlying	molecular	mechanisms	of	OA	pathogenesis	and	progression	

remain	incompletely	characterized	and	the	mainstay	of	treatment	for	advanced	disease	is	

still	total	joint	replacement.	The	reasons	for	the	limited	success	in	unraveling	the	10 

pathogenesis	of	OA	is	due,	in	part,	to	reductionist	approaches	applied	in	models	that	do	not	

accurately	recapitulate	the	clinical	disease	suffered	by	patients	(5).		

	

Emergent	high	throughput	technologies	and	bioinformatics	analyses	of	clinical	tissues	offer	

the	promise	of	novel	functional	approaches	to	disease	characterization	and	therapeutic	15 

target	and	biomarker	discovery	in	complex	diseases	like	OA.	In	recent	years,	studies	

individually	examining	gene	expression,	DNA	CpG	methylation	and	proteomics	have	

expanded	our	understanding	of	OA	pathogenesis,	reviewed	in	(6,7).	OA	is	primarily	

characterized	by	cartilage	degeneration,	thought	to	be	brought	about	by	an	imbalance	

between	anabolic	and	catabolic	processes	through	a	complex	network	of	proteins	including	20 

proteases	and	cytokines,	reviewed	in	(8-10).	Here	we	report	the	first	application	of	

integrated	omics,	including	DNA	methylation,	RNA	sequencing	and	quantitative	proteomics	

from	joint	tissue	to	obtain	a	comprehensive	molecular	portrait	of	diseased	versus	healthy	

knee	cartilage	in	OA	patients	(Figure	1a).	Our	data	highlight	both	familiar	and	less	well-

established	disease	processes	with	involvement	across	multiple	omics	levels,	and	reveal	25 

novel	candidate	molecular	players	with	therapeutic	or	diagnostic	potential.		
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RESULTS	

We	extracted	cartilage	and	subsequently	isolated	chondrocytes	from	the	knee	joints	of	12	

OA	patients	undergoing	total	knee	replacement	surgery.	We	obtained	two	cartilage	samples	

from	each	patient,	scored	using	the	OARSI	cartilage	classification	system	(11,12):	one	‘high-

grade	degenerate’	sample	which	we	classified	as	diseased,	and	one	‘normal’	or	‘low-grade	5 

degenerate’	sample	which	we	classified	as	healthy	(Supplementary	Figure	1).	We	compared	

the	healthy	and	diseased	tissue	across	patient-matched	samples.	

	

Quantitative	proteomics	

We	used	isobaric	labeling	liquid	chromatography-mass	spectrometry	(LC-MS)	to	quantify	the	10 

relative	abundance	of	6540	proteins	that	mapped	to	unique	genes.	We	identified	209	

proteins	with	evidence	of	differential	abundance	(Supplementary	Table	1);	ninety	were	

found	at	higher	abundance	in	the	diseased	samples,	and	119	were	found	at	lower	

abundance.	For	two	representative	patients	we	also	used	an	orthogonal	label-free	approach	

to	confirm	the	protein	quantification	data	(Supplementary	Figure	2).	This	is	the	most	15 

comprehensive	differential	proteomics	study	on	OA	samples	to	date.	One	of	the	most	

strongly	down-regulated	proteins	is	hyaluronan	and	proteoglycan	link	protein	1	(HAPLN1)	,	

which	binds	hyaluronic	acid	in	the	extracellular	matrix.	HAPLN1	was	found	to	be	more	

abundantly	released	to	the	culture	media	by	OA	cartilage	explants	compared	to	healthy	

control	tissue	(13).	Intra-articular	injection	of	hyaluronic	acid	is	one	of	the	few	current	20 

targeted	treatments	for	OA	pain	(14).	Based	on	UniProt	annotation	(15)	we	found	a	number	

of	proteoglycans,	cartilage	and	chondrocyte	function-related	proteins	as	well	as	basement	

membrane	proteins	consistently	at	lower	abundances	in	the	diseased	samples	

(Supplementary	Table	2).	This	is	potentially	a	reflection	of	the	increased	cartilage	catabolism	

that	occurs	in	OA.	As	is	the	case	for	HAPLN1,	several	of	these	are	found	increasingly	in	the	25 

media	released	by	OA	tissue	or	synovial	fluid	from	OA	patients	(13,16).	
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We	validated	the	higher	levels	in	diseased	cartilage	of	four	of	the	differentially	abundant	

proteins	(ANPEP,	AQP1,	TGFBI	and	WNT5B)	by	Western	blotting	(Supplementary	Figure	6).	

ANPEP	(aminopeptidase	E)	is	a	broad	specificity	aminopeptidase	that	has	previously	been	

detected	in	the	synovial	fluid	of	OA	patients	(17),	and	therefore	has	potential	as	a	novel	OA	5 

biomarker.	TGFBI/BGH3	is	an	adhesion	protein	induced	by	TGF-β	that	binds	to	ECM	proteins,	

integrins	and	to	periostin,	another	up-regulated	protein	in	OA	which	promotes	cartilage	

degeneration	through	WNT	signaling	(18,19).	TGFBI	protein	is	released	by	OA	tissue	explants	

(13)	and	is	also	found	in	the	synovial	fluid	of	OA	patients,	but	is	more	abundant	in	that	of	

rheumatoid	arthritis	patients	(16).	WNT5B,	a	ligand	for	frizzled	receptors	in	the	WNT	10 

signaling	pathway,	has	previously	been	reported	to	be	differentially	transcribed	in	

osteoarthritic	bone	(20).	

		

RNA	sequencing	

We	sequenced	total	RNA	from	all	samples	and	identified	349	genes	differentially	expressed	15 

at	a	5%	false	discovery	rate	(FDR)	(Supplementary	Figure	3).	Of	these,	296	and	53	genes	

demonstrated	higher	transcription	levels	in	the	diseased	and	healthy	samples,	respectively	

(Supplementary	Table	3).	Most	of	these	genes	are	annotated	as	protein-coding,	but	the	

shortlist	also	included	several	species	of	non-coding	genes	including	7	long	intergenic	non-

coding	RNA	genes,	3	microRNA	genes,	and	7	annotated	pseudogenes.	One	of	the	most	20 

strongly	down-regulated	genes	in	chondrocytes	isolated	from	damaged	sites	was	CHRDL2,	

the	presence	of	which	was	further	confirmed	by	immunohistochemistry	(IHC)	

(Supplementary	Figure	4).	This	gene	was	also	found	at	lower	abundance	in	the	proteomics	

data,	and	is	a	bone	morphogenetic	protein	(BMP)	inhibitor	that	has	previously	been	

reported	to	be	lost	from	chondrocytes	of	the	superficial	zone	and	shifted	to	the	middle	zone	25 
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in	OA	cartilage	in	a	targeted	study	(21).	We	also	identify	BMP1	as	up-regulated	at	the	RNA	

level,	suggesting	dysregulation	of	bone	morphogenetic	protein	pathways	in	OA.	

	

Among	the	209	proteins	with	evidence	of	differential	abundance	in	the	proteomics	data,	31	

were	also	included	in	the	set	of	genes	identified	as	differentially	expressed	at	the	RNA	level	5 

(hypergeometric	p=5.3e-7,	Figure	1b).	Of	these,	26	genes	showed	concordant	directions	of	

effect	between	diseased	and	healthy	samples	(binomial	p=0.0002),	while	the	direction	

differed	for	5	genes	(COL4A2,	CXCL12,	FGF10,	HTRA3	and	WNT5B).	In	all	five	cases	the	gene	

was	found	to	be	over-expressed	at	the	RNA	level	and	less	abundant	at	the	protein	level	in	

the	diseased	tissue.	Using	annotations	from	the	Human	Protein	Atlas	(22)	we	found	that	all	10 

five	proteins	encoded	by	these	genes	are	annotated	as	predicted	secreted	proteins,	

suggesting	these	proteins	might	be	increasingly	released	or	secreted	in	OA.	In	agreement	

with	this,	several	collagens	are	more	abundantly	released	into	the	culture	media	from	

diseased	tissue	than	from	healthy	tissue	(13).	These	proteins	have	potential	value	as	

biomarkers	of	OA.		15 

	

DNA	methylation	

We	used	the	Illumina	450k	methylation	array	to	assay	~480k	CpG	sites	across	the	genome.	

We	first	performed	a	probe	level	analysis	and	identified	9,896	differentially	methylated	

probes	(DMPs)	at	5%	FDR	(Supplementary	Table	4).	CpG	methylation	is	regionally	correlated	20 

and	we	also	sought	to	identify	differentially	methylated	regions	(DMRs)	that	may	have	more	

biological	relevance.	This	analysis	yielded	271	DMRs,	associated	with	296	unique	overlapping	

genes	(Supplementary	Table	5).	Sixteen	of	the	genes	with	an	associated	DMR	were	also	

among	the	list	of	differentially	transcribed	genes,	including	2	members	of	the	ADAMTS	

family:	ADAMTS2	and	ADAMTS4.	Both	genes	are	up-regulated	in	diseased	samples	based	on	25 

the	RNA	sequencing	data,	and	were	consistently	associated	with	hypo-methylated	DMRs.	
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We	also	identified	several	other	members	of	this	family	to	be	either	transcriptionally	up-

regulated	(ADAMTS12	and	ADAMTS14)	or	associated	with	a	hypo-methylated	DMR	

(ADAMTS17).	We	found	no	evidence	for	differential	abundance	of	the	associated	proteins,	

possibly	because	they	would	have	been	secreted	into	the	matrix.	These	genes	encode	

peptidases	that	catabolise	components	of	the	extracellular	matrix,	including	aggrecan,	which	5 

was	the	most	down-regulated	protein	in	diseased	samples.	Previous	studies	have	implicated	

this	gene	family	in	OA	(23)	and	have	suggested	that	ADAMTS4-mediated	aggrecan	

degradation	may	be	an	important	process	(24).	Accordingly,	aggrecan	is	more	abundant	in	

OA	synovial	fluid	(16).	

	10 

Integrative	analyses	

To	investigate	the	concordance	between	the	transcriptome	and	proteome	assays,	we	

computed	the	global	correlation	in	all	samples	irrespective	of	tissue	status,	comparing	the	

RNA	fragments	per	kilobase	of	transcript	per	million	fragments	mapped	(FPKM)	(25)	to	

normalised	peptide	spectral	counts	(Supplementary	Figure	5a).	We	found	a	significant	15 

positive	correlation	(Spearman’s	rho=0.29,	p<2.2e-16)	between	RNA	expression	levels	and	

protein	abundance.	To	establish	if	there	were	also	concordant	differences	in	RNA	and	

protein	abundance	according	to	tissue	grade,	we	computed	the	correlations	between	RNA	

and	protein	ratios	between	diseased	and	healthy	samples	(Figure	2a).	When	considering	all	

genes	with	data	obtained	from	both	assays,	we	identified	a	significant,	but	small,	positive	20 

correlation	(Pearson’s	r=0.17,	p<2.2e-16).	The	magnitude	of	correlation	became	

substantially	stronger	when	we	only	considered	the	31	genes	that	were	expressed	

differentially	in	both	datasets	(Pearson’s	r=0.43,	p=0.01).	

	

To	investigate	the	concordance	between	the	methylome	and	transcriptome	data,	we	25 

compared	the	aggregate	methylation	status	of	promoter	region	CpG	probes	with	
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transcription	levels	in	all	samples	irrespective	of	tissue	grade	(Methods,	Supplementary	

Table	6)	and	found	the	expected	negative	correlation	between	promoter	region	methylation	

and	gene	expression	(Spearman’s	rho=-0.43,	p<2.2e-16,	Supplementary	Figure	5b).	

Comparison	of	the	changes	in	RNA	expression	to	the	differences	in	promoter-region	

methylation	values	when	comparing	samples	according	to	tissue	grade	demonstrated	a	5 

small	but	significant	correlation	(Pearson’s	r=-0.08,	p<2.2.e-16,	Figure	2b).	Taking	only	those	

genes	called	as	significantly	changing	at	both	the	methylome	and	transcriptome	level,	the	

correlation	increased	in	magnitude	(Pearson’s	r=-0.48,	p=0.002).	

	

We	identified	49	genes	with	evidence	of	differential	regulation	in	chondrocytes	extracted	10 

from	diseased	vs	healthy	cartilage	from	at	least	two	of	the	three	omics	analyses	

(Supplementary	Table	7).	We	identify	three	genes	consistently	across	all	3	approaches:	AQP1,	

COL1A1	and	CLEC3B	(Figure	1b).	All	3	genes	were	identified	as	up-regulated	in	diseased	

tissue	in	both	the	RNA-seq	and	proteomics	analyses	(Figure	2a),	and	as	having	associated	

DMRs.	AQP1	and	COL1A1	showed	a	consistent	decrease	in	methylation	of	all	CpG	probes	in	15 

their	associated	DMRs,	commensurate	with	an	increase	in	transcription,	while	the	DMR	

associated	with	CLEC3B	showed	evidence	of	increased	methylation	(Supplementary	Table	5).	

Using	IHC	we	independently	confirmed	the	presence	of	all	3	proteins	within	the	

chondrocytes	in	cartilage	samples	(Supplementary	Figure	4).	These	three	genes	have	

previously	been	implicated	in	OA.	AQP1,	encoding	aquaporin-1,	is	a	member	of	a	family	of	20 

proteins	that	facilitate	water	transport	across	biological	membranes.	Chondrocyte	swelling	

and	increased	cartilage	hydration	has	been	suggested	as	an	important	mechanism	in	OA	(26).	

Accordingly,	AQP1	has	been	observed	as	over-expressed	in	a	rat	model	of	knee	OA	(27),	and	

there	is	one	previous	report	of	transcriptional	over-expression	in	knee	OA	in	humans	(28).	

CLEC3B	(also	known	as	TNA)	encodes	the	protein	tetranectin,	which	binds	human	tissue	25 

plasminogen	activator	(tPA)	(29).	Previous	studies	have	identified	CLEC3B	as	up-regulated	in	
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human	OA	(30,31),	mediating	extracellular	matrix	destruction	in	cartilage	and	bone	(32),	and	

a	candidate	gene	association	study	found	evidence	of	association	of	a	coding	variant	

(rs13963,	Gly106Ser)	in	CLEC3B	with	OA	(33)	(although	this	association	has	not	been	

replicated	in	subsequent	studies	(34)).	COL1A1	is	one	of	several	collagen	proteins	(including	

COL1A2,	COL3A1,	COL4A2,	COL5A1,	Figure	2a),	which	we	identified	as	differentially	5 

regulated	in	the	diseased	samples	using	both	RNA-seq	and	proteomics.	Collagens	are	the	

main	structural	components	of	cartilage	and	several	studies	have	highlighted	the	importance	

of	collagen	dysregulation	in	OA	(10,35).	A	recent	study	also	identified	up-regulation	of	

COL1A1	and	COL5A1	in	synovium	from	humans	with	end-stage	OA,	in	the	synovium	of	mice	

with	induced	OA,	and	in	human	fibroblasts	stimulated	with	TGF-β	(36).		10 

	

Of	the	49	genes	with	evidence	of	differential	regulation	on	at	least	two	molecular	levels,	19	

genes	(39%)	have	not	previously	been	implicated	in	OA	(Supplementary	Table	7).	Novel	

genes	with	convergent	evidence	include	MAP1A	and	MAP1B,	encoding	microtubule-

associated	proteins,	both	of	which	were	up-regulated	significantly	at	both	the	RNA	and	15 

protein	levels	(Figure	2a).	These	proteins	are	expressed	mostly	in	the	brain	and	are	involved	

in	regulation	of	the	neural	cytoskeleton	(37).	Cytoskeletal	regulation	is	thought	to	be	an	

important	process	in	OA	(38)	and	accordingly,	recent	studies	have	implicated	these	proteins	

in	bone	formation	(39).	The	PXDN	gene	was	up-regulated	at	the	RNA	level	and	associated	

with	2	hypo-methylated	DMRs.	PXDN	encodes	peroxidasin,	which	is	secreted	into	the	20 

extracellular	matrix	and	catalyses	collagen	IV	cross-linking	(40).	We	also	identify	2	sub-units	

of	collagen	IV,	COL4A1	and	COL4A2,	as	differentially	regulated	at	several	levels	

(Supplementary	Table	7).	Although	many	collagens	have	been	found	to	be	differentially	

regulated	in	OA,	COL4A2	has	not	been	reported	previously	in	association	with	OA.	Collagen	

IV	is	the	major	structural	constituent	of	basement	membranes,	but	it	has	also	been	25 

identified	at	the	articulating	surface	of	normal	and	osteoarthritic	articular	cartilage	(41).	
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HTRA3,	up-regulated	at	the	RNA	level,	but	found	at	lower	abundance	at	the	protein	level	

possibly	due	to	increased	secretion,	is	a	member	of	the	HTRA	family	of	serine	proteinases	

involved	in	cartilage	degradation	and	tissue	turnover,	important	processes	in	OA	progression	

(42).	Another	member	of	this	family,	HTRA1,	is	transcriptionally	up-regulated	in	OA	cartilage	

(43)	and	has	also	been	implicated	in	the	alteration	of	chondrocyte	metabolism	by	disrupting	5 

the	pericellular	matrix	(44).	Genes	with	relatively	little	characterization	include	CRTAC1,	

encoding	cartilage	acidic	protein	1	which	is	secreted	by	chondrocytes	(45),	and	PODN,	

encoding	podocan,	which	binds	collagen	in	the	extracellular	matrix	(46)	.	Our	combined	

epigenetic,	transcriptomic	and	proteomic	analysis	has	uncovered	a	substantial	number	of	

genes	associated	with	OA	progression,	some	of	which	have	known	connections	to	cartilage	10 

or	bone-related	processes,	and	others	with	no	links,	whose	detailed	characterization	should	

bring	new	insights	into	the	molecular	mechanisms	of	OA	pathogenesis.	

	

Gene	set	analyses	

We	performed	a	gene	set	enrichment	analysis	on	the	shortlisted	genes	from	each	separate	15 

omics	analysis	and	found	that	several	common	biological	processes	are	highlighted	at	

multiple	levels	(Supplementary	Tables	8	&	9,	Methods).	To	identify	pathways	jointly	affected	

by	genes	identified	at	multiple	molecular	levels,	we	used	the	geometric	mean	of	the	three	

enrichment	p-values	from	each	analysis,	and	calculated	an	empirical	p-value	for	this	statistic	

with	a	permutation	strategy	accounting	for	the	overlap	(Methods).	We	identified	19	20 

enriched	pathways	from	KEGG	&	Reactome	at	a	combined	5%	FDR,	and	30	GO	annotations	

(Supplementary	Tables	8	&	9).	Of	these	enriched	gene	sets,	7	from	KEGG	&	Reactome	and	11	

from	GO	contain	at	least	five	significant	genes	from	each	of	at	least	two	omics	approaches	

(Figure	3,	Supplementary	Figure	7).	

	25 
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A	common	theme	in	the	highlighted	pathways	is	cartilage	matrix	regulation	and	

degeneration,	in	agreement	with	the	notion	that	increased	ECM	turnover	is	a	crucial	

component	in	OA	pathogenesis.	Pathways	including	“extracellular	matrix	organisation”	and	

“collagen	formation”	were	affected	by	genes	identified	by	all	three	omics	analyses,	although	

the	component	genes	do	not	all	overlap	(Figure	3).	Results	from	the	3	analyses	converge	on	5 

shared	mechanisms,	supporting	the	importance	of	utilising	evidence	from	an	integrated	

perspective.	The	GO	term	analysis	uncovered	consistent	evidence	from	all	three	omics	

assays	for	genes	annotated	with	the	terms	“extracellular	matrix	disassembly”	and	“collagen	

catabolic	process”.	In	these	pathways	we	also	find	suggestive	evidence	of	a	link	to	genetic	

OA	risk	loci.	These	signals	would	not	have	been	identified	directly	from	GWAS	data	10 

(Supplementary	Results),	highlighting	the	importance	of	synthesizing	data	at	multiple	

molecular	levels	to	obtain	a	more	powerful	integrated	view.		

	

Further	interesting	pathways	and	biological	processes	enriched	at	multiple	levels	were	

“positive	regulation	of	ERK1/2	cascade”,	“heparin-binding”,	“platelet	activation”,	all	of	which	15 

are	interconnected	through	common	genes.	Several	studies	have	linked	the	extracellular	

signal-regulated	kinase	(ERK)	cascade	to	OA	(8,47-50).	Heparin-binding	growth	factors	have	

also	been	shown	to	be	involved	in	OA	(51-54),	some	in	particular	through	activation	of	the	

ERK	signaling	pathway.	Injection	of	platelet-rich	plasma	in	OA	knees	leads	to	significant	

clinical	improvement	(55,56)	and	there	is	evidence	to	suggest	that	this	effect	is	mediated	via	20 

the	ERK	cascade	(57).	Our	findings	provide	strong	evidence	supporting	a	role	for	this	

pathway	in	OA	pathogenesis.	

	

We	also	found	enrichment	of	genes	involved	in	the	regulation	of	angiogenesis	at	multiple	

levels.	The	growth	of	blood	vessels	and	nerves	are	closely	linked	processes	that	share	25 

regulatory	mechanisms,	including	the	ERK	cascade	and	heparin-binding	proteins	mentioned	
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above	(58).	Accordingly,	pathways	like	NCAM	signaling	for	neurite	outgrowth	and	PDGF	

signaling	that	play	a	significant	role	in	blood	vessel	and	nervous	system	formation	were	

highlighted	by	the	pathway	analysis.		To	investigate	this	further	we	used	the	Human	Protein	

Atlas	to	annotate	the	protein-coding	genes	identified	in	the	RNA-seq	and	proteomics	

experiments,	and	found	a	significant	enrichment	in	plasma	proteins	(RNA-seq	5 

hypergeometric	p=6.9e-11,	proteomics	p=1.8e-5).	This	supports	a	role	for	angiogenesis	and	

nerve	growth	in	OA	progression	(58,59).	Indeed,	histological	examination	within	the	samples	

we	investigated	showed	greater	blood	vessel	ingrowth	in	tissues	with	more	advanced	OA	

(Supplementary	Figure	1).	Results	from	the	three	molecular	analyses	converge	on	shared	

biological	mechanisms	that	are	relevant	to	the	pathogenesis	of	OA,	supporting	the	10 

importance	of	utilizing	evidence	from	an	integrated	perspective.	These	data	should	be	useful	

in	pinpointing	candidate	targets	to	help	improve	therapeutic	intervention.	

	

In	silico	screen	for	new	OA	modifying	drugs	

The	molecular	signatures	highlighted	above	provide	novel	investigative	candidates	as	15 

prognostic	biomarkers	for	OA	and	point	to	novel	therapeutic	opportunities.	To	identify	

existing	drugs	that	could	be	applied	to	OA,	we	searched	Drugbank	(60)	using	the	49	

differentially	regulated	genes	identified	by	at	least	two	of	the	functional	genomics	

approaches.	We	uncovered	29	compounds	with	investigational	or	established	actions	on	the	

corresponding	proteins.	After	filtering	to	include	only	agents	with	current	Food	and	Drug	20 

Administration	Marketing	Authorization	for	use	in	humans,	we	identified	ten	agents	with	

actions	on	nine	of	the	dysregulated	proteins	(Table	1).	These	agents	cover	a	broad	range	of	

mechanisms	of	action	and	represent	novel	investigational	targets	for	‘first	in	disease’	studies	

of	OA	progression.	These	drugs	have	established	safety	profiles	and	pharmacokinetic	data	

for	use	in	man,	which	would	shorten	the	investigative	pipeline	to	clinical	use	in	OA.	One	of	25 

the	identified	group	of	ten	agents,	those	active	against	prostacyclin	synthase	(NSAIDs),	
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already	have	marketing	authorization	for	the	symptomatic	treatment	of	OA.		Another	drug	

identified	in	this	search	was	phylloquinone	(vitamin	K1),	an	agonist	of	osteocalcin	(BGLAP).	

Periostin,	a	protein	with	elevated	expression	in	OA,	in	this	study	and	others	(13,18,61),	is	a	

vitamin	K-dependent	protein	that	induces	cartilage	degeneration	(62).	Interestingly,	a	recent	

study	has	associated	sub-clinical	vitamin	K	deficiency	with	knee	OA	incidence	(63),	5 

warranting	further	investigation	of	this	compound	as	a	disease-modifying	agent	in	OA.	Thus,	

our	work	could	help	prioritize	the	repurposing	of	existing	drugs	for	the	treatment	of	OA.	
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DISCUSSION	

Although	previous	studies	have	individually	investigated	methylation	(64-66),	transcription	

(31,67),	and	protein	expression	(7,68)	in	OA	tissue,	these	results	provide	the	first	integrated,	

systematic	and	hypothesis-free	analysis	of	the	biological	changes	involved	in	human	OA	

progression	at	all	three	molecular	levels.	Using	this	multi-level	functional	genomics	approach,	5 

we	have	provided	a	first	integrated	view	of	the	molecular	alterations	that	accompany	

cartilage	changes	resulting	in	debilitating	joint	disease.	We	also	highlight	the	clinical	

translation	implications	for	drug	repurposing	to	slow	OA	progression.	Here	we	have	focused	

on	OA	and	demonstrate	the	potential	of	multi-omics	approaches	using	a	relatively	small	

sample	set.	Larger	sample	sizes	will	be	required	for	a	more	powerful	characterisation	of	the	10 

disease	progression-related	molecular	landscape	changes.	The	integrative	functional	

genomics	approach	illustrated	here	offers	an	opportunity	to	identify	molecular	signatures	in	

disease-relevant	tissues,	thereby	gaining	insights	into	disease	mechanism,	identifying	

potential	biomarkers,	and	discovering	druggable	targets	for	intervention.	A	key	future	

challenge	will	be	the	development	of	powerful	statistical	approaches	for	the	integration	of	15 

high-dimensional	molecular	traits	in	the	context	of	complex	diseases.	All	data	arising	from	

the	experiments	described	here	are	freely	available	to	researchers	in	the	appropriate	online	

repositories.	

	

	 	20 
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METHODS	

Patient	consent	&	study	approval	

All	subjects	provided	written,	informed	consent	prior	to	participation	in	the	study.	Tissue	

samples	were	collected	between	October	2013	and	February	2014	under	Human	Tissue	

Authority	license	12182,	Sheffield	Musculoskeletal	Biobank,	University	of	Sheffield,	UK.	All	5 

samples	were	collected	from	patients	undergoing	total	knee	replacement	for	primary	

osteoarthritis.	Patients	with	diagnosis	other	than	osteoarthritis	were	excluded	from	the	

study.	The	study	was	approved	by	Oxford	NHS	REC	C	(10/H0606/20).	

	

Sample	processing	10 

Extraction	of	chondrocytes	from	osteochondral	tissue	taken	at	knee	replacement	

Osteochondral	samples	were	transported	in	Dulbecco's	modified	Eagle's	medium	(DMEM)/F-

12	(1:1)	(Life	Technologies)	supplemented	with	2mM	glutamine	(Life	Technologies),	100	

U/ml	penicillin,	100	μg/ml	streptomycin	(Life	Technologies),	2.5	µg/ml	amphotericin	B	

(Sigma-Aldrich)	and	50	μg/ml	ascorbic	acid	(Sigma-Aldrich)	(serum	free	media).	Half	of	each	15 

sample	was	taken	for	chondrocyte	extraction	and	the	remaining	tissue	was	fixed	in	10%	

neutral	buffered	formalin,	decalcified	in	surgipath	decalcifier	(Leica)	and	embedded	to	

paraffin	wax	for	histological	and	immunohistochemical	analysis.	Chondrocytes	were	directly	

extracted	from	each	paired	macroscopic	control	and	OA	grade	cartilage	in	order	to	remove	

the	extracellular	matrix	allowing	a	higher	yield	of	cells	to	be	loaded	onto	the	Qiagen	column.		20 

	

Cartilage	was	removed	from	the	bone,	dissected	and	washed	twice	in	1xPBS.	Tissue	was	

digested	in	3	mg/ml	collagenase	type	I	(Sigma-Aldrich)	in	serum	free	media	overnight	at	37°C	

on	a	flatbed	shaker.	The	resulting	cell	suspension	was	passed	through	a	70	µm	cell	strainer	

(Fisher	Scientific)	and	centrifuged	at	400g	for	10	minutes;	the	cell	pellet	was	then	washed	25 

twice	in	serum	free	media,	followed	by	centrifugation	at	400g	for	10	minutes.	The	resulting	
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cell	pellet	was	resuspended	in	serum	free	media.	Cells	were	counted	and	the	viability	

checked	using	trypan	blue	exclusion	and	the	Countess	cell	counter	(Invitrogen).	The	optimal	

cell	number	for	Qiagen	column	extraction	from	cells	is	between	4x106	and	1x107.	Cells	were	

pelleted	at	400g	for	10	minutes	and	homogenized	in	Qiagen	RLT	buffer	containing	β-

Mercaptoethanol	and	using	the	QIAshredder	column	and	DNA,	RNA	and	protein	extractions	5 

were	performed	as	outlined	for	tissue	extraction.	RNA,	DNA	and	protein	were	quantified	

using	a	Nanodrop.		

	

Histological	examination	

Four	micron	sections	of	paraffin-embedded	cartilage	tissue	were	mounted	onto	positively	10 

charged	slides.	Sections	were	dewaxed	in	Sub-X,	rehydrated	in	IMS,	washed	in	distilled	water,	

stained	in	1%	w/v	Alcian	blue/glacial	acetic	acid	(pH	2.4)	for	15	minutes,	counter	stained	in	

1%	w/v	aqueous	neutral	red	for	1	minute	or	stained	with	Masson	Trichrome	(Leica)	

according	to	the	manufacturer’s	instructions.	Sections	were	dehydrated	and	mounted.	

Cartilage	tissue	was	graded	using	the	Mankin	Score	(0-14)	with	additional	scores	for	15 

abnormal	features	(0-4)	and	cartilage	thickness	(0-4)	based	on	the	OARSI	scoring	system	

(11,12).	The	total	scores	were	used	to	determine	the	overall	grade	of	the	cartilage	as	low-

grade	(median:	4.5;	IOR:	3-5.5;	n=12)	which	we	define	as	‘healthy’,	or	high	grade	degenerate	

(median:	14;	IOR:	11.75-18;	n=12),	which	we	define	as	‘diseased’.			

	20 

Proteomics	

Protein	Digestion	and	TMT	Labeling	

The	protein	content	of	each	sample	was	precipitated	by	the	addition	of	30	μL	TCA	8	M	at	

4	°C	for	30	min.	The	protein	pellets	were	washed	twice	with	ice	cold	acetone	and	finally	re-

suspended	in	40	μL	0.1	M	triethylammonium	bicarbonate,	0.05%	SDS	with	pulsed	probe	25 

sonication.	Protein	concentration	was	measured	with	Quick	Start	Bradford	Protein	Assay	
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(Bio-Rad)	according	to	manufacturer’s	instructions.	Aliquots	containing	30	μg	of	total	protein	

were	prepared	for	trypsin	digestion.	Cysteine	disulfide	bonds	were	reduced	by	the	addition	

of	2	μL	50	mM	tris-2-carboxymethyl	phosphine	(TCEP)	followed	by	1	h	incubation	in	heating	

block	at	60	°C.	Cysteine	residues	were	blocked	by	the	addition	of	1	μL	200	mM	freshly	

prepared	Iodoacetamide	(IAA)	solution	and	30	min	incubation	at	room	temperature	in	dark.	5 

Trypsin	(Pierce,	MS	grade)	solution	was	added	at	a	final	concentration	70	ng/μL	to	each	

sample	for	overnight	digestion.	After	proteolysis	the	peptide	samples	were	diluted	up	to	100	

μL	with	0.1	M	TEAB	buffer.	A	41	μL	volume	of	anhydrous	acetonitrile	was	added	to	each	TMT	

6-plex	reagent	(Thermo	Scientific)	vial	and	after	vortex	mixing	the	content	of	each	TMT	vial	

was	transferred	to	each	sample	tube.	Labeling	reaction	was	quenched	with	8	μL	5%	10 

hydroxylamine	for	15	min	after	1	h	incubation	at	room	temperature.	Samples	were	pooled	

and	the	mixture	was	dried	with	speedvac	concentrator	and	stored	at	-20	°C	until	the	high-pH	

Reverse	Phase	(RP)	fractionation.		

	

Peptide	fractionation		15 

Offline	peptide	fractionation	based	on	high	pH	Reverse	Phase	(RP)	chromatography	was	

performed	using	the	Waters,	XBridge	C18	column	(2.1	x	150	mm,	3.5	μm,	120	Å)	on	a	Dionex	

Ultimate	3000	HPLC	system	equipped	with	autosampler.	Mobile	phase	(A)	was	composed	of	

0.1%	ammonium	hydroxide	and	mobile	phase	(B)	was	composed	of	100%	acetonitrile,	0.1%	

ammonium	hydroxide.	The	TMT	labelled	peptide	mixture	was	reconstituted	in	100	μL	mobile	20 

phase	(A),	centrifuged	and	injected	for	fractionation.	The	multi-step	gradient	elution	method	

at	0.2	mL/min	was	as	follows:	for	5	minutes	isocratic	at	5%	(B),	for	35	min	gradient	to	35%	

(B),	gradient	to	80%	(B)	in	5	min,	isocratic	for	5	minutes	and		re-equilibration	to	5%	(B).	

Signal	was	recorded	at	280	nm	and	fractions	were	collected	in	a	time	dependent	manner	

every	one	minute.	The	collected	fractions	were	dried	with	SpeedVac	concentrator	and	25 

stored	at	-20	°C	until	the	LC-MS	analysis.		
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LC-MS	Analysis			

LC-MS	analysis	was	performed	on	the	Dionex	Ultimate	3000	UHPLC	system	coupled	with	the	

high-resolution	LTQ	Orbitrap	Velos	mass	spectrometer	(Thermo	Scientific).	Each	peptide	

fraction	was	reconstituted	in	40	μL	0.1%	formic	acid	and	a	volume	of	10	μL	was	loaded	to	5 

the	Acclaim	PepMap	100,	100	μm	×	2	cm	C18,	5	μm,	100	Ȧ	trapping	column	with	a	user	

modified	injection	method	at	10	μL/min	flow	rate.	The	sample	was	then	subjected	to	a	

multi-step	gradient	elution	on	the	Acclaim	PepMap		RSLC	(75	μm	×	50	cm,	2	μm,	100	Å)	C18	

capillary	column	(Dionex)	retrofitted	to	an	electrospray	emitter	(New	Objective,	FS360-20-

10-N-20-C12)	at	45	°C.	Mobile	phase	(A)	was	composed	of	96%	H2O,	4%	DMSO,	0.1%	formic	10 

acid	and	mobile	phase	(B)	was	composed	of	80%	acetonitrile,	16%	H2O,	4%	DMSO,	0.1%	

formic	acid.	The	gradient	separation	method	at	flow	rate	300	nL/min	was	as	follows:	for	95	

min	gradient	to	45%	B,	for	5	min	up	to	95%	B,	for	8	min	isocratic	at	95%	B,	re-equilibration	to	

5%	B	in	2	min,	for	10	min	isocratic	at	5%	B.		

	15 

The	ten	most	abundant	multiply	charged	precursors	within	380	-1500	m/z	were	selected	

with	FT	mass	resolution	of	30,000	and	isolated	for	HCD	fragmentation	with	isolation	width	

1.2	Th.	Normalized	collision	energy	was	set	at	40	and	the	activation	time	was	0.1	ms	for	one	

microscan.	Tandem	mass	spectra	were	acquired	with	FT	resolution	of	7,500	and	targeted	

precursors	were	dynamically	excluded	for	further	isolation	and	activation	for	40	seconds	20 

with	10	ppm	mass	tolerance.	FT	max	ion	time	for	full	MS	experiments	was	set	at	200	ms	and	

FT	MSn	max	ion	time	was	set	at	100	ms.	The	AGC	target	vales	were	3×10e6	for	full	FTMS	and	

1×10e5	for	MSn	FTMS.	The	DMSO	signal	at	m/z	401.922718	was	used	as	a	lock	mass.		

	

Database	Search	and	Protein	Quantification		25 
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The	acquired	mass	spectra	were	submitted	to	SequestHT	search	engine	implemented	on	the	

Proteome	Discoverer	1.4	software	for	protein	identification	and	quantification.	The	

precursor	mass	tolerance	was	set	at	30	ppm	and	the	fragment	ion	mass	tolerance	was	set	at	

0.02	Da.	TMT6plex	at	N-termimus,	K	and	Carbamidomethyl	at	C	were	defined	as	static	

modifications.	Dynamic	modifications	included	oxidation	of	M	and	Deamidation	of	N,Q.	5 

Maximum	two	different	dynamic	modifications	were	allowed	for	each	peptide	with	

maximum	two	repetitions	each.	Peptide	confidence	was	estimated	with	the	Percolator	node.	

Peptide	FDR	was	set	at	0.01	and	validation	was	based	on	q-value	and	decoy	database	search.	

All	spectra	were	searched	against	a	UniProt	fasta	file	containing	20,190	Human	reviewed	

entries.	The	Reporter	Ion	Quantifier	node	included	a	custom	TMT	6plex	Quantification	10 

Method	with	integration	window	tolerance	20	ppm	and	integration	method	the	Most	

Confident	Centroid.	For	each	identified	protein	a	normalized	spectral	count	value	was	

calculated	for	each	one	of	the	6-plex	experiments	by	dividing	the	number	of	peptide	

spectrum	matches	(PSMs)	of	each	protein	with	the	total	number	of	PSMs.	Median	

normalized	spectral	counts	per	protein	were	computed	across	the	different	multiplex	15 

experiments.		

	

Differential	abundance	

To	identify	those	proteins	with	evidence	of	differential	expression,	we	shortlisted	proteins	

with	absolute	median	abundance	ratios	between	diseased	and	healthy	samples	>=	0.75,	20 

where	the	median	abundance	ratio	was	greater	than	the	standard	deviation	in	all	samples	

with	data,	and	with	evidence	from	at	least	5	patients.	This	analysis	identified	209	proteins	

(Supplementary	Table	1).	

	

Western	blotting	25 
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Sample	pairs	were	adjusted	to	the	same	protein	concentration.	Twenty	micrograms	of	

protein	per	sample	were	electrophoresed	on	4-12%	Bis-Tris	NuPAGE	gels	(Life	Technologies)	

and	transferred	to	nitrocellulose	membranes.	Primary	antibodies	used		were	as	follows:	

ANPEP,	ab108382;	AQP1,	ab168387;	COL1A,	ab14918;	TGFB1,	ab89062;	WNT5B,	ab124818	

(Abcam);	GAPDH,	sc-25778	(Santa	Cruz	Biotechnologies).	Chemiluminescence	detection	was	5 

carried	out	using	ECL	Prime	(GE	Healthcare)	or	ECL	Ultra	(Lumigen)	and	ImageQuant	

LAS1400	(GE	Healthcare).	Densitometry	was	performed	with	ImageQuant	Tool	Box	(GE	

Healthcare).	Intensity	values	were	normalised	to	GAPDH	loading	control	before	ratio	

calculation.	

	10 

Label	free	quantification	of	representative	samples	

For	a	selection	of	four	representative	control	and	disease	samples,	peptide	aliquots	of	500ng	

without	TMT	labelling	were	analysed	on	the	Dionex	Ultimate	3000	UHPLC	system	coupled	

with	the	Orbitrap	Fusion	(Thermo	Scientific)	mass	spectrometer	for	label	free	quantification	

and	validation.	Tandem	mass	spectra	were	acquired	over	duplicate	runs	of	120	min	with	a	15 

top	speed	iontrap	detection	method	and	dynamic	exclusion	at	10	sec	and	MS	R=120,000.	

Database	search	was	performed	on	Proteome	Discoverer	1.4	with	the	SequestHT	engine	and	

normalized	spectral	counts	were	computed	based	on	the	total	number	of	peptide-spectrum	

matches	attributed	to	each	protein	per	sample	divided	by	the	maximum	value	along	the	

different	samples.	With	a	minimum	requirement	of	at	least	total	14	spectra	per	protein	we	20 

found	excellent	agreement	in	the	direction	of	change	between	isobaric	labelling	and	label	

free	quantification	for	at	least	32	proteins	which	is	approximately	90%	of	the	common	

proteins	between	the	TMT	changing	list	and	the	label	free	identified	list	(Supplementary	

Figure	2).		

	25 

RNA-seq		
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RNA	sequencing	

Using	Illumina's	TruSeq	RNA	Sample	Prep	v2	kits,	poly-A	tailed	RNA	(mRNA)	was	purified	

from	total	RNA	using	an	oligo	dT	magnetic	bead	pull-down.	The	mRNA	was	then	fragmented	

using	metal	ion-catalyzed	hydrolysis.	A	random-primed	cDNA	library	was	then	synthesised	

and	this	resulting	double-strand	cDNA	was	used	as	the	input	to	a	standard	Illumina	library	5 

prep:	ends	were	repaired	with	a	combination	of	fill-in	reactions	and	exonuclease	activitiy	to	

produce	blunt	ends.	A-tailing	was	performed,	whereby	an	"A"	base	was	added	to	the	blunt	

ends	followed	by	ligation	to	Illumina	Paired-end	Sequencing	adapters	containing	unique	

index	sequences,	allowing	samples	to	be	pooled.	The	libraries	then	went	through	10	cycles	

of	PCR	amplification	using	KAPA	Hifi	Polymerase	rather	than	the	kit-supplied	Illumina	PCR	10 

Polymerase	due	to	better	performance.	

	

Samples	were	quantified	and	pooled	based	on	a	post-PCR	Agilent	Bioanalyzer,	then	the	pool	

was	size-selected	using	the	LabChip	XT	Caliper.	The	multiplexed	library	was	then	sequenced	

on	the	Illumina	HiSeq	2000,	75bp	paired-end	read	length.	Sequenced	data	was	then	15 

analysed	and	quality	controlled	(QC	and	individual	indexed	library	BAM	files	were	produced.	

	

Read	alignment	

The	resulting	reads	that	passed	QC	were	realigned	to	the	GRCh37	assembly	of	the	human	

genome	using	a	splice-aware	aligner,	bowtie	version	2.2.3	(69),	and	using	a	reference	20 

transcriptome	from	Ensembl	release	75	(70),	using	the	–library-type	option	fr-firststrand	to	

bowtie.	We	limited	the	alignments	to	uniquely	mapping	reads.	We	then	counted	the	number	

of	reads	aligning	to	each	gene	in	the	reference	transcriptome	using	htseq-count	from	the	

HTSeq	package(71)	separately	for	each	sample	to	produce	a	read	count	matrix	counting	the	

number	of	reads	mapping	to	each	gene	in	the	transcriptome	for	each	sample.	To	quantify	25 

absolute	transcript	abundance	we	computed	the	fragments	per	kilobase	of	transcript	per	
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million	fragments	mapped	(FPKM)	(25)	for	each	gene	using	the	total	read	counts	from	this	

matrix,	and	the	exonic	length	of	each	gene	calculated	from	gene	models	from	Ensembl	

release	75.	We	obtained	a	mean	of	49.3	million	uniquely	mapping	reads	from	each	sample	

(range:	39.2	-	71.4	million)	with	a	mean	of	84%	of	reads	mapping	to	genes	(range:	67.9%	-	

90.6%)	which	were	used	for	the	differential	expression	analysis.	5 

	

Differential	expression	analysis	

We	used	edgeR	version	3.0	(72)	to	identify	differentially	expressed	genes	from	the	read	

count	matrix.	We	restricted	the	analysis	to	15,418	genes	with	>1	counts	per	million	in	at	

least	3	samples	(similar	to	the	protocol	described	by	Anders	et	al.	(73)).	We	followed	the	10 

processing	steps	listed	in	the	manual,	using	a	generalised	linear	model	with	tissue	status	

(diseased	or	healthy)	and	individual	ID	as	covariates.	349	genes	were	differentially	expressed	

between	the	diseased	and	healthy	samples	at	5%	FDR	(296	up-,	54	down-regulated	in	

diseased	tissue).	The	genes	differentially	expressed	at	5%	FDR	had	somewhat	higher	exonic	

length	than	the	remaining	genes	(Wilcox-test	p=0.00013;	4804	vs	4153	bases),	hence	we	15 

adjusted	for	gene	length	in	the	randomisations	for	gene	set	analyses.	

	

Methylation	

Illumina	450k	BeadChip	assay	

Sample	submission:	samples	were	tested	for	quality	and	then	quantified	to	50ng/ul	by	the	20 

onsite	sample	management	team	prior	to	submission	to	the	Illumina	Genotyping	pipeline.	

Before	processing	begins,	manifests	for	submitted	samples	are	uploaded	to	Illumina	LIMS	

where	each	sample	plate	is	assigned	an	identification	batch	so	that	it	can	be	tracked	

throughout	the	whole	process	that	follows.	

	25 
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Bisulfite	Conversion:	Before	Pre-Amplification	sample	DNA	requires	bisulfite	conversion	

using	the	Zymo	EZ-96	DNA	Methylation	assay.		This	is	completed	manually	as	per	Zymo	SOP	

guidelines.	

	

Pre-Amplification:		Due	to	the	differences	in	sample	plates	between	the	completed	Zymo	5 

assay	and	the	Illumina	assay,	pre-Amplification	is	performed	manually	following	the	Illumina	

MSA4	SOP.		Once	complete,	sample	and	reagent	barcodes	are	scanned	through	the	Illumina	

LIMS	tracking	software.	Four	micro-litres	(200ng)	of	sample	is	required	(Illumina	guidelines)	

for	the	pre-Amplification	reaction	–	there	is	no	quantification	step	after	the	completion	of	

the	Zymo	assay.	10 

	

Post-Amplification:		Over	three	days,	Post-Amplification	(Fragmentation,	Precipitation,	

Resupension,	Hybrisation	to	beadchip	and	xStaining)	processes	are	completed	as	per	

Illumina	protocol	using	four	Tecan	Freedom	Evos.		Following	the	staining	process,	BeadChips	

are	coated	for	protection	and	dried	completely	under	vacuum	before	scanning	commences	15 

on	five	Illumina	iScans,	four	of	which	are	paired	with	two	Illumina	Autloader	2.Xs.			

	

Image	Beadchip:	The	iScan	Control	software	determines	intensity	values	for	each	bead	type	

on	the	BeadChip	and	creates	data	files	for	each	channel	(.idat).	Genomestudio	uses	this	data	

file	in	conjunction	with	the	beadpool	manifest	(.bpm)	to	analysis	the	data	from	the	assay.	20 

	

QC:		Prior	to	downstream	analysis,	all	samples	undergo	an	initial	QC	to	establish	how	

successful	the	assay	has	performed.		Intensity	graphs	in	Genomestudio’s	Control	Dashboard	

identify	sample	performance	by	measuring	dependent	and	non-dependent	controls	that	are	

manufactured	onto	each	BeadChip	during	production.		25 
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Probe-level	analysis	

The	intensity	files	for	each	sample	were	processed	using	the	ChAMP	package	(74).	Probes	

mapping	to	chromosomes	X	&	Y,	and	those	with	a	detection	p	value	>	0.01	(n=3,064)	were	

excluded.	The	beta	values	for	each	probe	were	quantile-normalised,	accounting	for	the	

design	of	the	array,	using	the	‘dasen’	method	from	the	wateRmelon	package	(75).	We	also	5 

excluded	any	probes	with	a	common	SNP	(minor	allele	frequency	>	5%)	within	2	base	pairs	

of	the	CpG	site,	and	those	predicted	to	map	to	multiple	locations	in	the	genome	(76)	

(n=45,218),	leaving	a	total	of	425,694	probes	for	the	probe-level	differential	methylation	

analysis.	We	annotated	all	probes	with	genomic	position,	gene	and	genic	location	

information	from	the	ChAMP	package.	10 

	

To	identify	probes	with	evidence	of	differential	methylation	we	used	the	CpGassoc	package	

(77)	to	fit	a	linear	model	at	each	probe,	with	tissue	status	and	individual	ID	as	covariates.	

This	analysis	yielded	9,867	differentially	methylated	probes	(DMP)	between	diseased	and	

healthy	samples	at	5%	FDR.	15 

	

To	identify	differentially	methylated	regions,	we	used	custom	software	(available	upon	

request)	to	identify	regions	containing	at	least	3	DMPs	and	no	more	than	3	non-significant	

probes	with	no	more	than	1kb	between	each	constituent	probe,	following	previous	analyses	

(66).	We	used	bedtools	(78)	to	identify	genes	overlapping	each	DMR,	using	gene	annotations	20 

from	Ensembl	release	75,	and	extending	each	gene’s	bound	to	include	1500	basepairs	

upstream	of	the	transcription	start	site	to	include	likely	promoter	regions.	This	analysis	

yielded	271	DMRs	with	a	mean	of	4.04	DMPs	per	region,	and	a	mean	length	of	673	basepairs.	

	

Gene-level	analysis	25 
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We	assigned	probes	in	the	promoter	region	of	each	gene	using	the	probe	annotations	from	

the	ChAMP	package,	and	assigned	to	each	gene	any	probe	with	the	annotation	“TSS1500”,	

“TSS200”,	“5’UTR”	and	“1stExon”	in	order	to	capture	probes	in	likely	promoter	regions.	We	

then	computed	the	mean	normalised	beta	value	of	assigned	probes	for	all	genes	with	at	

least	5	associated	probes	for	each	sample	separately,	to	produce	a	single	methylation	value	5 

for	each	gene	in	each	sample.	We	used	a	paired	t-test	to	identify	genes	with	differential	

promoter-region	methylation	between	diseased	and	healthy	samples,	and	a	5%	FDR	cutoff	

to	call	a	gene’s	promoter	region	as	differentially	methylated.	Note	that	the	paired	t-test	

assumes	an	equivalent	model	to	the	linear	model	used	for	the	probe-level	analysis.	

		10 

Immunohistochemistry	

To	identify	whether	native	chondrocytes	demonstrated	expression	of	the	key	factors	

immunohistochemistry	was	deployed.	Four	micron	sections	were	dewaxed,	rehydrated,	and	

endogenous	peroxidase	blocked	using	3%	hydrogen	peroxide	for	30	minutes.	After	washing	

sections	with	dH2O,	antigens	were	retrieved	in	0.01%	w/v	chymotrypsin/CaCl2	(Sigma,	UK),	15 

for	30	minutes	at	37˚C.	Following	TBS	washing,	nonspecific	binding	sites	were	blocked	at	

room	temperature	for		2	hours	with	either	25%	w/v	goat	serum	or	rabbit	serum	(Abcam,	UK)	

in	1%	w/v	bovine	serum	albumin	(Sigma,	UK)	in	TBS.	Sections	were	incubated	overnight	at	

4˚C	with	either	mouse	monoclonal	primary	antibodies	or	rabbit	polyclonal	antibodies.	

Negative	controls	in	which	rabbit	and	mouse	IgGs	(Abcam,	UK)	replaced	the	primary	20 

antibody	at	an	equal	protein	concentration	were	used.	Slides	were	washed	in	TBS	and	a	

biotinylated	secondary	antibody	was	applied;	either	goat	anti-rabbit	or	rabbit	anti-mouse,	

both	antibodies	were	applied	at	1:400	dilution	in	1%	w/v	BSA/TBS	for	30	minutes	at	room	

temperature.	Binding	of	the	secondary	antibody	was	disclosed	with	streptavidin-biotin	

complex	(Vector	Laboratories,	UK)	technique	with	0.08%	v/v	hydrogen	peroxide	in	0.65	25 

mg/mL	3,3'-diaminobenzidine	tetrahydrochloride	(Sigma,	UK)	in	TBS.	Sections	were	
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counterstained	with	Mayer's	haematoxylin	(Leica,	UK),	dehydrated,	cleared	and	mounted	

with	Pertex	(Leica,	UK).	All	slides	were	visualised	using	an	Olympus	BX60	microscope	and	

images	captured	using	a	digital	camera	and	software	program	QCapture	Pro	v8.0	

(MediaCybernetics,	UK).		

	5 

Protein	atlas	annotation	

We	downloaded	annotations	from	Human	Protein	Atlas	version	13,	and	annotated	each	

protein-coding	gene	from	the	3	experiments	with	the	following	terms	taken	from	the	

annotation	file:	“Predicted	secreted	protein”,	“Predicted	membrane	protein”,	“Plasma	

protein”.	The	secreted	and	membrane	protein	predictions	are	based	on	a	consensus	call	10 

from	multiple	computational	prediction	algorithms,	and	the	plasma	protein	annotations	are	

taken	from	the	Plasma	Protein	Database,	as	detailed	in	Uhlen	et	al.	(22).	

	

Identification	of	previously	reported	OA	genes	

In	order	to	identify	whether	some	of	the	genes	we	highlight	have	previously	been	reported	15 

as	associated	with	OA	we	searched	PubMed	in	June	2015.	We	used	an	“advanced”	search	of	

the	form	“(osteoarthritis)	AND	(<gene_name>)”	where	<gene_name>	was	set	to	each	HGNC	

gene	symbol	and	we	report	the	number	of	citations	returned	for	each	search.	

	

Gene	set	analyses		20 

Individual	datasets	

We	aimed	to	test	whether	particular	biological	gene	sets	were	enriched	among	the	

significant	genes	from	each	of	the	RNA-seq,	methylation,	and	proteomics	datasets.	To	this	

end,	we	downloaded	KEGG	(79)	and	Reactome	(80)	gene	annotations	from	MSigDB	(version	

4)	(81).	We	also	downloaded	Gene	Ontology	(GO)	biological	process	and	molecular	function	25 

gene	annotations	from	QuickGO	(82)	on	4	February	2015.	For	GO,	we	only	considered	
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annotations	with	evidence	codes	IMP,	IPI,	IDA,	IEP,	and	TAS.	Genes	annotated	to	the	same	

term	were	treated	as	a	“pathway”.	KEGG/Reactome	and	GO	annotations	were	analysed	

separately	and	only	pathways	with	20	to	200	genes	were	considered	(555	for	

KEGG/Reactome,	811	for	GO).	Enrichment	was	assessed	using	a	1-sided	hypergeometric	test	

and	only	considering	genes	with	annotations	from	a	particular	resource.	For	example,	5 

among	the	15418	genes	with	RNA	sequencing	data,	4787	genes	had	KEGG/Reactome	

annotations,	and	65	genes	were	annotated	to	“extracellular	matrix	annotation”	in	KEGG.	Of	

the	350	significantly	differentially	expressed	genes,	134	had	KEGG/Reactome	annotations,	

and	12	genes	were	annotated	to	“extracellular	matrix	annotation”.	Consequently,	the	

enrichment	of	“extracellular	matrix	annotation”	genes	among	the	differentially	expressed	10 

genes	was	assessed	by	comparing	12	of	134	to	65	of	4787	genes.	Multiple-testing	was	

accounted	for	by	using	a	5%	FDR	(separately	for	KEGG/Reactome	and	GO,	and	for	RNAseq,	

methylation,	and	protein	expression	data).			

	

Empirical	p-values	for	the	enrichments	were	obtained	from	randomisations	accounting	for	15 

overlap	of	significant	genes	among	the	RNAseq,	methylation,	and	protein	expression	

datasets	(see	below).	

	

Integrative	gene	set	analyses	

We	aimed	to	integrate	the	gene	sets	analyses	for	the	RNAseq,	methylation,	and	protein	20 

expression	datasets.	For	each	gene	set,	we	asked	whether	the	association	across	the	three	

datasets	(calculated	as	geometric	mean	of	the	p-values)	was	higher	than	expected	by	chance.	

To	this	end,	we	obtained	1-sided	empirical	p-values	from	100,000	sets	of	“random	RNAseq	

genes,	random	methylation	genes,	and	random	protein	expression	genes”.	The	“random”	

sets	were	chosen	to	conservatively	match	the	overlap	observed	among	the	significant	genes	25 
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as	follows.	We	performed	the	randomisation	separately	for	KEGG/Reactome	and	for	GO,	as	

we	only	considered	genes	with	at	least	one	annotation	in	the	resource.	

	

To	jointly	construct	one	set	each	of	random	RNAseq	genes,	random	methylation	genes,	and	

random	protein	expression	genes,	we	picked:	5 

1) random	genes	for	the	overlap	of	RNAseq,	methylation,	and	protein	expression	

(KEGG/Reactome:	2;	GO:	3);	

2) additional	random	genes	for	the	overlap	of	RNAseq	and	methylation	

(KEGG/Reactome:	4;	GO:	10);	

3) additional	random	genes	for	the	overlap	of	RNAseq	and	protein	expression	10 

(KEGG/Reactome:	13;	GO:	21);	

4) additional	random	genes	for	the	overlap	of	methylation	and	protein	expression	

(KEGG/Reactome:	2;	GO:	5);	

5) additional	RNAseq	random	genes	(KEGG/Reactome:	115;	GO:	182);	

6) additional	methylation	random	genes	(KEGG/Reactome:	73;	GO:	102);	15 

7) additional	protein	expression	random	genes	(KEGG/Reactome:	62;	GO:	113);	

Random	genes	were	picked	to	account	for	gene	length	as	follows.	In	step	1,	we	subdivided	

all	genes	present	in	the	RNAseq,	methylation,	and	protein	expression	data	into	100	bins	by	

increasing	exonic	length.	If	the	original	significant	genes	in	the	overlap	had	g	genes	in	a	

particular	bin	b,	we	picked	g	random	genes	from	that	same	bin;	this	was	done	for	all	100	20 

bins.	Steps	2	to	7	were	done	analogously.	

	

We	tested	that	100	bins	were	enough:	choosing	50	or	200	bins	gave	very	similar	results	

(Pearson	correlation	>0.99	for	empirical	p-values	in	all	enrichment	analyses).	We	also	

confirmed	that	10,000	random	gene	sets	were	enough:	repeating	the	analysis	gave	very	25 
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similar	results	(Spearman	correlation	>0.99	for	empirical	p-values	in	all	enrichment	analyses).	

To	confirm	the	lower	empirical	p-values,	we	carried	out	100,000	randomisations.	

	

arcOGEN	gene-set	association	analysis	

We	asked	whether	the	18	gene	sets	with	strong	evidence	for	association	from	the	functional	5 

genomics	data	(Figure	4,	Supplementary	Figure	7)	are	also	associated	with	OA	based	on	

GWAS.	To	this	end,	we	used	the	arcOGEN	GWAS,	primarily	the	3498	cases	with	knee	OA	and	

all	11009	controls.	We	assigned	a	SNP	to	a	gene	if	it	was	located	within	the	gene	boundaries	

(Genome	Assembly	GRCh37).	A	SNP	was	assigned	to	a	gene	set	if	it	was	assigned	to	one	of	

the	genes	in	the	given	set.	10 

	

First,	we	asked	whether	the	average	SNP	p-value	in	a	gene	set	was	lower	than	expected	by	

chance.	We	used	the	gene	set	test	in	plink,	filtering	independent	SNPs	at	r2=0.2,	and	10000	

case-control	phenotype	permutations	to	obtain	empirical	one-sided	p-values.	Five	of	the	18	

gene	sets	had	empirical	p-values	significant	at	5%	FDR	(Supplementary	Table	10).	All	of	these	15 

five	gene	sets	were	also	significantly	associated	at	5%	FDR	when	considering	all	7410	knee	

or/and	hip	OA	cases	and	11009	controls	from	arcOGEN,	with	similar	results	when	filtering	

independent	SNPs	at	r2=0.5	(data	not	shown).	

	

Second,	we	asked	whether	the	results	were	confounded	by	population	structure.	To	test	this,	20 

we	repeated	the	analysis	accounting	for	population	structure	by	using	logistic	regression	

with	the	10	first	principal	components	obtained	from	EIGENSTRAT	when	considering	all	7410	

cases	and	11009	controls	together	with	HapMap	release	23a	founder	individuals.	The	results	

were	as	above	(Supplementary	Table	10).	

	25 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 28, 2016. ; https://doi.org/10.1101/038067doi: bioRxiv preprint 

https://doi.org/10.1101/038067


	 30 

Third,	we	asked	whether	the	five	gene	sets	with	association	in	the	first	step	were	also	

associated	compared	to	other	gene	sets,	in	particular,	accounting	for	gene	set	size.	We	

considered	the	250	gene	sets	from	GO,	KEGG,	and	Reactome	with	the	highest	numbers	of	

SNPs	assigned.	For	each	of	the	five	highlighted	gene	sets,	we	chose	100	gene	sets	with	the	

closest	numbers	of	assigned	SNPs.	At	least	one	in	ten	of	the	other	gene	sets	had	empirical	p-5 

values	as	low	as	the	highlighted	gene	set	(Supplementary	Table	10).	

	

arcOGEN	hypothesis-free	gene-set	analysis	

We	also	asked	whether	we	would	have	identified	the	18	gene	sets	if	we	had	only	considered	

the	arcOGEN	knee	OA	GWAS	data	in	a	hypothesis-free	approach.	We	used	two	common	10 

methods	–	a	gene-based	overrepresentation	test	as	analogue	to	the	functional	genomics	

work,	and	a	direct	set-based	test	as	above.	

	

First,	we	asked	whether	the	gene	sets	highlighted	from	the	functional	genomics	work	are	

among	the	gene	sets	over-represented	among	the	25%	genes	with	the	lowest	p-values.	We	15 

calculated	p-values	for	each	gene	using	plink	gene	set	analysis	as	above.	No	gene	set	

enrichment	was	significant	at	5%	FDR	when	considering	all	GO	gene	sets,	and,	separately,	all	

KEGG	and	Reactome	gene	sets.	(When	considering	all	arcOGEN	cases	and	controls,	one	GO	

and	five	KEGG/Reactome	gene	sets	were	significant	at	5%	FDR;	they	do	not	overlap	with	any	

of	the	18	gene	sets	highlighted	from	the	functional	genomics	analyses.)	20 

	

Second,	we	asked	whether	the	gene	sets	highlighted	from	the	functional	genomics	work	

would	have	been	among	the	significant	results	when	all	gene	sets	are	analysed	for	low	

average	SNP	p-values.	Here,	we	used	the	plink	gene	set	test	and	chi-squared	SNP	p-values	as	

above.	Of	the	GO	gene	sets,	26	were	significant	at	5%	FDR,	including	“platelet	activation”	25 

and	“ECM	disassembly”,	two	of	the	largest	gene	sets	highlighted	from	the	functional	
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genomics	work.	Of	the	KEGG/Reactome	gene	sets,	52	were	significant	at	5%	FDR,	including	

“signalling	by	PGDF”.	All	of	these	three	gene	sets	had	q-values	>0.03	and	were	thus	not	

among	the	most	significant	gene	sets	identified.	 	
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FIGURES	
	
Figure	1:	(a)	A	schematic	view	of	the	3	functional	genomics	experiments	identifying	the	
number	of	genes	shortlisted	for	each.	(b)	Venn	diagram	identifying	the	number	of	
overlapping	shortlisted	genes	from	each	individual	experiment.	5 
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Figure	2:	(a)	A	comparison	of	the	fold	changes	between	all	genes	identified	in	both	the	
proteomics	and	RNA-seq	experiments.	Each	gene	is	represented	as	a	single	point,	and	the	
colour	corresponds	to	whether	the	gene	is	identified	as	differentially	expressed	using	edgeR	
in	the	RNA-seq	or	proteomics	experiments,	or	both.	The	trend	lines	are	derived	from	a	linear	
regression	in	each	subset.	Positive	fold	changes	indicate	increased	expression	in	diseased	5 

samples.	(b)	Comparison	of	RNA-seq	fold	change,	and	promoter	region	methylation.	The	
trend	lines	are	derived	from	a	linear	regression	in	each	subset.	
	

	
	10 

	 	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 28, 2016. ; https://doi.org/10.1101/038067doi: bioRxiv preprint 

https://doi.org/10.1101/038067


	 43 

Figure	3:	Significant	gene	set	enrichments	from	KEGG/Reactome	(a)	and	Gene	Ontology	(b).	
The	circos	plots	show	enriched	gene	sets,	with	genes	differentially	regulated	in	at	least	one	
of	the	methylation,	RNA-seq,	or	proteomics	experiments.	Lines	connect	genes	that	occur	in	
several	gene	sets.	The	three	outside	circles	show	boxes	for	genes	with	significantly	higher	
(black)	or	lower	(red)	methylation,	gene,	or	protein	expression	data.	A	red	box	with	black	5 

border	indicated	a	gene	that	overlaps	hyper-	as	well	as	hypo-methylated	DMRs.	
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TABLES	
	
Table	1:	Results	of	Drugbank15	(www.drugbank.ca)	search	for	therapeutic	compounds	with	
current	FDA	marketing	authorization	for	a	clinical	indication	and	a	potential	role	in	OA	
treatment.	The	mechanisms	of	action	and	references	are	taken	from	Drugbank.	5 
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