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Abstract 

Analysis of coupled variables is a core concept of cell biological inference, with co-localization 

of two molecules as a proxy for protein interaction being a ubiquitous example. However, 

external effectors may influence the observed co-localization independently from the local 

interaction of two proteins. Such global bias, although biologically meaningful, is often 

neglected when interpreting co-localization. Here, we describe DeBias, a computational method 

to quantify and decouple global bias from local interactions between variables by modeling the 

observed co-localization as the cumulative contribution of a global and a local component. We 

showcase four applications of DeBias in different areas of cell biology, and demonstrate that the 

global bias encapsulates fundamental mechanistic information of cellular behavior. The DeBias 

software package is freely accessible online via a web-server at https://debias.biohpc.swmed.edu. 
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Introduction 

Interpretation of the relations of coupled variables is a classic problem that appears in many 

flavors of cell biology. One example is the spatiotemporal co-localization of molecules – a 

critical clue to interactions between molecular components; another example is alignment of 

molecular structures, such as filamentous networks. However, co-localization or alignment may 

also occur because the observed components are associated with external effectors. For example, 

the internal components of a polarized cell are organized along the polarization axis, making it 

difficult to quantify how much of the observed alignment between two filamentous networks is 

related to common organizational constraints imposed by the polarity cue, and how much of it is 

indeed caused by direct interaction between the filaments. Another example is introduced with 

protein co-localization, where their intensities distributions may be heavily biased to specific 

levels regulated by the cell state. The combined effects of any global bias with local interactions 

are manifested in the joint distribution of the spatially coupled variables. The contribution of 

global bias to this joint distribution can be recognized from the deviation of the marginal 

distributions of each of the two variables from an (un-biased) uniform distribution.  

Although global bias can significantly mislead the interpretation of co-localization and co-

orientation measurements, most studies do not account for this effect (Adler and Parmryd, 2010; 

Bolte and Cordelieres, 2006; Costes et al., 2004; Das et al., 2015; Dunn et al., 2011; Kalaidzidis 

et al., 2015; Rizk et al., 2014; Serra-Picamal et al., 2012; Tambe et al., 2011). Previous 

approaches indirectly assessed spatial correlations (e.g., (Drew et al., 2015; Karlon et al., 1999)), 

variants of mutual information (e.g., (Krishnaswamy et al., 2014; Reshef et al., 2011)) or spatial 

biases (Helmuth et al., 2010) but did not explicitly quantify the contribution of the global bias to 

the observed joint distribution. These methods approach the global bias as a confounding factor 
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(VanderWeele and Shpitser, 2013) that must be eliminated to enable better assessment of the true 

local interaction, but ignore the possibility that the global bias encapsulates fundamental 

information that by-itself can provide mechanistic insight to cell behavior.  

Here, we present DeBias as a method to decouple the global bias (represented by a global index) 

from the bona fide local interaction (represented by a local index) in co-localization and co-

orientation of two independently-measured spatial variables. The decoupling enables 

simultaneous investigation of mechanisms that drive global bias and local interactions between 

spatially-matched variables. Our method is dubbed DeBias because it Decouples the global Bias 

from local interactions between two variables.  

To highlight its capabilities, DeBias was applied to data from four different areas in cell biology, 

ranging in scale from macromolecular to multicellular: (1) alignment of vimentin fibers and 

microtubules in the context of polarized cells; (2) alignment of cell velocity and traction stress 

during collective migration; (3) fluorescence resonance energy transfer of Protein Kinase C; and 

(4) recruitment of transmembrane receptors to clathrin-coated pits during endocytosis. These 

examples demonstrate the generalization of the method and underline the potential of extracting 

global bias as an independent functional measurement in the analysis of multiplex biological 

variables. 
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Results 

Similarity of observed co-orientation originating from different mechanisms 

The issue of separating contributions from global bias and local interactions is best illustrated 

with the alignment of two sets of variables that carry orientational information. Examples of co-

orientation include the alignment of two filament networks (Drew et al., 2015; Gan et al., 2016; 

Nieuwenhuizen et al., 2015), or the alignment of cell velocity and traction stress, a phenomenon 

referred to as plithotaxis (Das et al., 2015; Tambe et al., 2011; Trepat and Fredberg, 2011). In 

these systems, global bias imposes a preferred axis of orientation on the two variables, which is 

independent of the local interactions between the two variables (Fig. 1A).  

Similar observed alignments may arise from different levels of global bias and local interactions. 

This is demonstrated by simulation of two independent random variables X and Y, representing 

orientations (Fig. 1B, left), from which pairs of samples xi and yi are drawn to form an alignment 

angle θi (Fig. 1B, middle). Then, a local interaction between the two variables is modeled by co-

aligning θi by ζi degrees, resulting in two variables x’i and y’i with an observed alignment θi - ζi 

(Fig. 1B, right). 

We show the joint distribution of X, Y for 4 simulations (Fig. 1C) where X and Y are normally 

distributed with identical means but different standard deviations (𝜎), truncated to (−90°, 90°), 

and different magnitudes of local interactions (ζ). The latter is defined as ζ = αθ (Fig. 1B, α=1 

for perfect alignment). Throughout the simulations both 𝜎 and α are gradually increased (Fig. 

1C, left-to-right), implying that the global bias in the orientational variables is reduced while 

their local interactions are increased. As a result, all simulations display similar observed 

alignments (mean values, 18.9°-19.5°). Fig. 1D visualizes 100 samples from each of the two 
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most distinct scenarios: low 𝜎 and no local interaction (𝜎 = 17°, α  = 0) leads to tendency of X 

and Y to align independently to one direction (left); higher variance together with increased 

interaction (𝜎 = 40°, α = 0.5) leads to more diverse orientations of X and Y (right), while 

maintaining similar mean alignment. This simple example highlights the possibility of observing 

similar alignments arising from different mechanisms of global bias and local interactions. While 

the described properties are well known and many others have used statistical post-processing to 

eliminate such confounding factors for accurate assessment of local interactions, we aim to 

directly quantify the global bias, with the goal of extracting encapsulated information that is 

fundamental to the biological question. 
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Figure 1: Illustration of global bias and local interaction using the alignment of two vectorial variables 

(A) The relation between two variables X, Y can be explained from a combination of direct interactions 

(orange) and a common effector/s. (B) Simulation. Given two distributions X, Y, pairs of coupled 

variables are constructed by drawing sample pairs (xi,yi)  and transforming them to (xi’,yi’) by a 

correction parameter ζi = αθi, which represents the effect of a local interaction. α is constant for each of 

these simulations. (C) Simulated joint distributions. X, Y truncated normal distributions with mean 0 and 

𝜎X = 𝜎Y. Shown are the joint distributions of 4 simulations with reduced global bias (i.e., increased 

standard deviation 𝜎X, 𝜎Y) and increased local interaction (left-to-right), all scenarios have similar 

observed mean alignment of ~19°. (D) Example of 100 draws of coupled vectorial variables from the two 

most extreme scenarios in panel C. Most orientations are aligned with the x-axis when the global bias is 

high and no local interaction exists (left), while the orientations are less aligned with the x-axis but 

maintain the mean alignment between (xi’,yi’) pairs for reduced global bias and increased local interaction 

(right). 
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DeBias: a method to assess the global and local contribution to observed co-

alignment 

DeBias models the observed marginal distributions X’ and Y’ as the sum of the contributions by 

a common effector, i.e., the global bias, and by local interactions that effect the co-alignment of 

the two variables in every data point (Fig. 2A).  

In a scenario without any global bias or local interaction between X’ and Y’, the observed 

alignment would be uniformly distributed (denoted uniform). Hence any deviation from the 

uniform distribution would reflect contributions from both the global bias and the local 

interactions. To extract the contribution of the global bias we constructed a resampled alignment 

distribution (denoted resampled) from independent samples of the marginal distributions X’ and 

Y’, which decouples matched pairs (x’i, y’i), and thus excludes their local interactions. The 

global bias is defined as the dissimilarity between the uniform and resampled distributions and 

accordingly describes to what extent elements of X’ and Y’ are aligned without local interaction 

(Fig. 2B). If a local interaction exists then the distribution of the observed alignment angles will 

differ from independently resampled alignment distribution. Hence, the uniform distribution will 

be less similar to the experimentally observed alignment distribution (denoted observed) than to 

the resampled distribution. Accordingly, the local interaction is defined by the difference of 

dissimilarity between the observed and uniform distributions and dissimilarity between the 

resampled and uniform distributions (Fig. 2B). 
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Figure 2: DeBias algorithm. (A) Underlying assumption: the observed relation between two variables is a 

cumulative process of a global bias and a local interaction component. (B) Quantifying local and global 

indices: sample from the marginal distributions X, Y to construct the resampled distribution. The global 

index (GI) is calculated as the Earth Movers Distance (EMD) between the uniform and the resampled 

distributions. The local index (LI) is calculated as the subtraction of the GI from the EMD between the 

uniform and the observed distribution. (C) Local and global indices calculated for the examples from Fig. 

1C. Black circles represent the (GI,LI) value for the corresponding example in Fig. 1C, bars represent the 

relative contribution of the local (green) and global (red) index to the observed alignment. (D-E) 

Simulation using a constant interaction parameter α = 0.2 and varying standard deviations of X, Y, 𝜎 = 

50° to 5°. (D) Joint distributions. Correlation between X and Y is (subjectively) becoming less obvious 

for increasing global bias (decreasing 𝜎). (E) GI and LI are negatively correlated: decreased 𝜎 enhances 

GI and reduces LI. The change in GI is ~4 fold larger compared to the change in LI indicating that the GI 

has a limited effect on LI values. Inset: stretched LI emphasizes the negative correlation. (F) Both LI and 

GI are needed to discriminate between simulations with different interaction parameters. α = 0.2 (red) or 
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0.25 (cyan), 𝜎 is drawn from a normal distribution (mean = 25°, standard deviation = 4°). Number of 

simulations = 40, for each parameter setting. Inset: stretched LI emphasizes the discrimination. 

  

The Earth Mover's Distance (EMD) (Peleg et al., 1989; Rubner et al., 2000) was used to 

calculate dissimilarities between distributions. The EMD of 1-dimensional distributions is 

defined as the minimal 'cost' to transform one distribution into the other (Kantorovich and 

Rubinstein, 1958). This cost is proportional to the minimal accumulated number of moving 

observations to adjacent histogram bins needed to complete the transformation. Formally, we 

calculate 𝐸𝑀𝐷(𝐴, 𝐵) = ∑ | ∑ 𝑎𝑗𝑗=1,…,𝑖 − ∑ 𝑏𝑗𝑗=1,…,𝑖 |𝑖=1,..,𝐾 , with a straightforward 

implementation for 1-dimensional distributions. Introducing the EMD defines scalar values for 

the dissimilarities and allows us to define the EMD between resampled and uniform alignment 

distributions as the global index (GI) and the difference of EMD between observed and uniform 

and the GI as the local index (LI). Fig. 2C, demonstrates how the GI and LI recognize the global 

bias and local interactions between the matched variable pairs (x’i, y’i) established in Fig. 1C. 

For a scenario with no local interaction (α  = 0) DeBias correctly reports LI~0 and GI~3. For a 

scenario with gradually wider distributions X,Y, i.e., less global bias, and gradually stronger 

local interactions (α > 0), the LI increases while the GI decreases.  

In the previous illustration, changes in spread of the distributions X and Y were compensated by 

changes in the local interactions. When leaving the interaction parameter α constant while 

changing the spread of X and Y an intrinsically negative correlation between LI and GI becomes 

apparent (Fig. 2D-E).  Thus, while DeBias can correctly distinguish scenarios with substantial 

shifts from global bias to local interactions, the precise numerical values estimating the 

contribution of LI varies between scenarios with a low versus high global bias. To address this 

issue we propose to exploit the variation between experiments for modeling the relation between 
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LI and GI. This is demonstrated by comparing two distinct values of the interaction parameter, α, 

emulating different experimental settings (Fig. 2F). Within experiments variation was 

obtained by drawing multiple values of 𝜎 from a normal distribution. Due to the negative 

correlation between LI and GI the experimental patterns can only be discriminated by combining 

LI and GI into a two-dimensional descriptor (Fig. 2F). This point will be further demonstrated in 

one of the following case studies and in the Discussion. 

Theoretical results and limiting cases 

To obtain intuition on the properties of the DeBias approach we used theoretical statistical 

reasoning. The first limiting case is set by the case in which observations from X and Y are 

independent. The expected values of the observed and resampled alignments are identical; 

accordingly, LI converges to 0 for large N (Supplementary Data S1, Theorem 1). The second 

limiting case is set by the case in which X and Y are both uniform. The corresponding resampled 

alignment is also uniform; accordingly, GI converges to 0 for a large N (Supplementary Data S1, 

Theorem 2). The third limiting case occurs with perfect alignment, i.e., xi = yi for all i. In this 

case the observed alignment distribution is concentrated in the bin containing θ = 0. We examine 

two scenarios of perfect alignment: (1) When all the local matched measurements are identical 

(xi = yj for all i, j), the resampled distribution is also concentrated in the bin θ = 0 implying that 

LI = 0 and GI has maximal possible value: 𝐺𝐼 =
1

𝐾
∑ (𝑖 − 1) =𝑖=1,..,𝐾

𝐾−1

2
, where K is the number 

of quantization bins (Supplementary Data S1, Theorem 3.I). (2) When X, Y are uniform (and xi 

= yi for all i), the resampled distribution is uniform, thus GI = 0 and LI reaches its maximum 

value: 𝐿𝐼 =
1

𝐾
∑ (𝑖 − 1) =𝑖=1,..,𝐾

𝐾−1

2
, Supplementary Data S1, Theorem 3.II). Generalizing this 

case, we prove that LI is a lower bound for the actual contribution of the local interaction to the 
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observed alignment (Supplementary Data S1, Theorem 4). Complementarily, GI is an upper 

bound for the contribution of the global bias to the observed alignment.  

Last, we show that when X and Y are truncated normal distributions, or when the alignment 

distribution is truncated normal, GI reduces to a limit of 0 as 𝜎  ∞, when 𝜎 is the standard 

deviation of the normal distribution before truncation (Supplementary Data S1, Theorem 5).  

Simulations complement this result demonstrating that 𝜎 and GI are negatively associated, i.e., 

GI decreases with increasing 𝜎 (Fig. 2E). This final property is intuitive, because resampling 

from more biased distributions (smaller 𝜎) tends to generate high agreement between (xi, yi) 

leading to reduced alignment angles and increased GI. 

The modeling of the observed alignment as the sum of GI and LI allowed us to assess the 

performance of DeBias from synthetic data. By using a constant local interaction parameter ζ (ζ 

= c), we were able to retrieve the portion of the observed alignment that is attributed to the local 

interaction and to compare it with the true predefined ζ (Supplementary Data S2, Supplementary 

Fig. S1). These simulations demonstrated again the need for a GI-dependent interpretation of LI 

(first shown in Fig. 2E-F). Simulations were also performed to assess how the choice of the 

quantization parameter K (i.e., number of histogram bins) and number of observations N affect 

GI and LI (Supplementary Data S2, Supplementary Figs. S2-S3). In summary, by combining 

theoretical considerations and simulations we demonstrated the properties and limiting cases of 

DeBias in decoupling paired matching variables from orientation data. 

Local alignment of Vimentin and Microtubule filaments   

We applied DeBias to investigate the degree of alignment between vimentin intermediate 

filaments and microtubules in polarized cells. Recent work using genome-edited Retinal Pigment 
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Epithelial (RPE) cells with endogenous levels of fluorescently tagged vimentin and α-tubulin 

showed that vimentin provides a structural template for microtubule growth, and through this 

maintains cell polarity (Gan et al., 2016). The effect was strongest in cells at the wound front 

where both vimentin and microtubule networks collaboratively align with the direction of 

migration (Fig. 3A-B). An open question remains as to how much of this alignment is caused by 

the extrinsic directional bias associated with the general migration of cells into the wound as 

opposed to a local interaction between the two cytoskeleton systems.  

Analysis of the GI and LI revealed that most of the discrepancy in vimentin-microtubule 

alignment originated from a shift in the global bias (Fig. 3C), suggesting that the local interaction 

between the two cytoskeletons is unaffected by the cell position or knock-down of vimentin. 

Instead, the reduced alignment between the two cytoskeletons is caused by a loss of cell polarity 

in cells away from the wound edge, probably associated with the reduced geometric constraints 

imposed by the wound edge. In a similar fashion, reduction of vimentin expression relaxes global 

cell polarity cues that tend to impose alignment.  
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Figure 3: Alignment of microtubule and vimentin intermediate filaments in the context of cell polarity. 

(A) RPE cells expressing TagRFP α-tubulin (MT) and mEmerald-vimentin (VIM) at endogenous levels. 

Right-most column, computer segmented filaments of both cytoskeleton systems. Top row, cells located 

at the wound edge (‘Front’); Middle row, cells located 2-3 rows away from the wound edge (’Back’); 

Bottom row, cells located at the wound edge partially with shRNA knock-down of vimentin. Scale bar 10 

𝜇m. (B) Orientation distribution of microtubules (left) and vimentin filaments (middle). Vimentin-

microtubule alignment distributions (right). (C) Scatterplot of GI versus LI derived by DeBias. The GI is 

significantly higher in WT cells at the wound edge (‘Front’, n = 12) compared to cells inside the 

monolayer (‘Back’, n = 12, fold change = 4.8, p-value < 0.0001); or compared to vimentin-depleted cells 

at the wound edge (‘VIM KD’, n = 7, fold change = 5.2, p-value < 0.0001). Statistics based on Wilcoxon 

rank sum test. (D) Polarization of RPE cells at the wound edge at different time points after scratching. 

Scale bar 10 𝜇m. (E) Representative experiment showing the progression of LI and GI as function of time 

after scratching (see color code). Correlation between GI and time ~0.90, p-value < 10
-30

 (n time points = 

83). N = 5 independent experiments were conducted of which 4 experiments showed a gradual increase in 

GI with increased observed polarity.  
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To corroborate our conclusion that the global state of cell polarity is encoded by the GI, we 

performed a live cell imaging experiment, in which single cells at the edge of a freshly inflicted 

wound in a RPE monolayer were monitored for 80 minutes after scratching. DeBias was applied 

to calculate a time sequence of LI and GI. Cells at the wound edge tended to gradually increase 

their polarity and started migrating during the imaging time frame (Fig. 3D, Supplementary 

Video S1). Accordingly, the GI increased over time (Fig. 3E). This demonstrates the capacity of 

DeBias to distinguish fundamentally different effectors of cytoskeleton alignment.  

Identifying molecular factors in alignment of cell velocity and mechanical 

forces during collective cell migration 

Collective cell migration requires intercellular coordination, achieved by mechanical and 

chemical information transfer between cells. One mechanism for cell-cell communication is 

plithotaxis, the tendency of individual cells to align their velocity with the maximum principal 

stress orientation (He et al., 2015; Tambe et al., 2011; Zaritsky et al., 2015). As in the previous 

example of vimentin and microtubule interaction, much of this alignment is associated with a 

general directionality of velocity and stress field parallel to the axis of collective migration 

(Zaritsky et al., 2015).   
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Figure 4: Alignment of stress orientation and velocity direction during collective cell migration. (A) 

Assay illustration. Wound healing assay of MDCK cells. Particle image velocimetry was applied to 

calculate velocity vectors (red) and monolayer stress microscopy to reconstruct stresses (blue). Alignment 

of velocity direction and stress orientation was assessed. (B) Mini-screen that includes depletion of 11 

tight-junction proteins and Merlin. Shown are GI and LI values, legend is sorted by the LI values (control 

is ranked 6
th
, pointed by the black arrow). Each dot was calculated from accumulation of 3 independent 

experiments (N = 925-1539 for each condition). Three groups of tight junction proteins are highlighted by 

dashed rectangles: red - low LI and GI compared to control, purple – different GI but similar LI, orange – 

high LI. Data from (Das et al., 2015), where effective depletion was demonstrated. (C) Pair-wise 

statistical significance for LI values. P-values were calculated via a permutation-test on the velocity and 

stress data (Methods). Red – none significant (p ≥ 0.05) change in LI values, blue – highly significant (< 

0.01) change in LI values. Conditions color coding as in panel B. (D) Highlighted hits: Claudin1, 

Claudin2, Merlin and ZO1. Top: Distribution of stress orientation (top), velocity direction (middle) and 

motion-stress alignment (bottom). Bottom: table of mean alignment angle, LI and GI. Claudin1 and 

Claudin2 have similar mechanisms for transforming stress to aligned velocity. ZO1 depletion enhances 

alignment of velocity by stress.  
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Using a wound healing assay, Das et al. (Das et al., 2015) screened 11 tight-junction proteins to 

identify pathways that promote motion-stress alignment (Fig. 4A). Knockdown of Merlin, 

Claudin1, Patj and Angiomotin (Amot) reduced the alignment of velocity direction and stress 

orientation (Das et al., 2015). Further inspection of these hits showed that the stress orientation 

remained stable upon depletion of these proteins, but the velocity direction distribution was 

much less biased towards the wound edge (Zaritsky et al., 2015). Here, we further analyze this 

data to demonstrate the capacity of DeBias to pinpoint tight-junction proteins that alter 

specifically the global or local components that induce velocity-stress alignment. 

By distinguishing GI and LI we generated a refined annotation of the functional alteration that 

depletion of these tight-junction components caused in mechanical coordination of collectively 

migrating cells (Fig. 4B-C). First, we confirmed that the four hits reported by (Das et al., 2015) 

massively reduced the GI, consistent with the notion that absence of these proteins diminished 

the general alignment of velocity to the direction induced by the migrating sheet (Fig. 4B, red 

dashed rectangle). Merlin, Patj and Angiomotin reduced the LI to values close to 0, suggesting 

that the local dependency between stress orientation and velocity direction was lost. Depletion of 

Claudin1, or of its paralog Claudin2, which was not reported as a hit in the Das et al. screen, 

reduced the LI to a lesser extent, similarly for both proteins, but had very different effects on the 

GI  (Fig. 4B, purple dashed rectangle). This suggested that the analysis by (Das et al., 2015) 

missed effects that do not alter the general alignment of stress or motion, and implied the 

existence of a local velocity-stress alignment mechanism that does not immediately change the 

collective aspect of cell migration but may have implications on the mechanical interaction 

between individual cells. 
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When assessing the marginal distributions of stress orientation and velocity direction we 

observed that depletion of Claudin1 reduced the organization of stress orientations and of 

velocity direction, while Claudin2 reduced only the latter while maintaining similar LI (Fig. 4D). 

Merlin depletion is characterized by an even lower LI and marginal distributions with aligned 

stress orientation and almost uniform alignment distribution (Fig. 4D). Since we think that 

aligned stress is transformed to aligned motion (He et al., 2015; Zaritsky et al., 2015), we 

speculate that the LI quantifies the effect of local mechanical communication on parallelizing the 

velocity among neighboring cells. Thus we suggest that this stress-motion transmission 

mechanism is impaired to a similar extent by reduction of Claudin1 and Claudin2, albeit less 

than by reduction of Merlin.  

Using LI as a discriminative measure also allowed us to identify a group of new hits (Fig. 4C). 

ZO1, ZO2, ZO3, Occludin and ZONAB are all characterized by small reductions in GI but a 

substantial increase in LI relative to control (Fig. 4B, orange dashed rectangle). A quantitative 

comparison of control and ZO1 depleted cells provides a good example for the type of 

information DeBias can extract: both conditions yield similar observed alignment distributions 

with nearly identical means, yet ZO1 depletion has an 83% increase in LI and 8% reduction in 

GI, i.e., the mild loss in the marginal alignment of velocity or stress is compensated by enhanced 

local alignment in ZO1 depleted cells (Fig. 4D). This might point to a mechanism in which stress 

orientation is reduced by tight-junction depletion, but enhanced by transmission of stress 

orientation into motion orientation, leading to comparable alignment. Notably, all paralogs, ZO1, 

ZO2 and ZO3 fall into the same cluster of elevated LI and slightly reduced GI relative to control 

experiments. This phenotype is in agreement with the outcomes of a screen that found ZO1 

depletion to increase both motility and cell-junctional forces (Bazellières et al., 2015). 
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Using DeBias to assess protein-protein co-localization 

Protein-protein co-localization is another ubiquitous example of correlating spatially matched 

variables in cell biology. To quantify GI and LI for protein-protein co-localization, we 

normalized each channel to intensity values between 0 and 1. The 'alignment' θi of matched 

observations (xi,yi) was replaced by the difference in normalized fluorescent intensities xi - yi 

(Methods). While LI could serve as a measure to assess co-localization, the interpretation of GI 

is less intuitive. In the following, we present two examples of applying DeBias for protein-

protein co-localization, and demonstrate the type of information that can be extracted from GI 

and LI.  

PKC FRET: a simple example of pixel-based protein-protein co-localization  

To test the potential of DeBias in quantification of pixel-based co-localization, we analyzed the 

effect of fluorescence resonance energy transfer (FRET) in the C kinase activity reporter 

(CKAR), which reversibly responds to PKC activation and deactivation (Violin et al., 2003). 

Reduced PKC activity leads to energy transfer from CFP to YFPCFP, resulting in reduced FRET 

ratio (
𝐶𝐹𝑃

𝑌𝐹𝑃𝐶𝐹𝑃
) (Fig. 5A). Assuming that the CFP signal is dominant (CFP > YFPCFP), this 

alteration should reduce the difference between the CFP and YFPCFP channels, which would in 

DeBias yield an increased LI (Fig. 5A, Methods). 

To test this we labeled hTERT-RPE-1 cells with CKAR and imaged CFP and YFPCFP channels 

before and after specific inhibition of PKC with HA-100 dihydrochloride (Fig. 5B, Methods), 

leading to reduced pixel differences in their normalized fluorescent intensities (Fig. 5C). As 

expected, the 
𝐶𝐹𝑃

𝑌𝐹𝑃𝐶𝐹𝑃
 ratio decreased (Fig. 5D), LI values increased (Fig. 5E) and seemed more 

sensitive to the FRET. Surprisingly, DeBias indicated a shift in the GI values (Fig. 5F), reflected 
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in a more homogeneous marginal distribution of both channels before inhibition (Fig. 5G). 

Control experiments with cytoplasmic GFP and mCherry expression did not show the shifts 

observed in LI or GI (Fig. 5H). Thus, we conclude that PKC inhibition changes the localization 

of PKC towards a more random, or heterogeneous, spatial distribution. One possible mechanism 

for this behavior is that deactivation releases the kinase from the substrate. This example 

illustrates DeBias’ capabilities to simultaneously quantify changes in local interaction and global 

bias in pixel-based co-localization. 
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Figure 5: PKC inhibition alters LI and GI. (A) PKC inhibition is expected to lead to elevated LI for cells 

with dominant CFP signal (CFP > YFPCFP). Upon FRET, CFP signal is locally transferred to YFPCFP, 

reducing the difference in normalized intensity between the two channels, which increases LI. (B) 

hTERT-RPE-1 cells imaged with the CKAR reporter. A cell before (top) and after (bottom) PKC 
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inhibition. Region of interest was manually annotated and the ratio  
CFP

YFPCFP
 was calculated within it. (C) 

Pixel distribution of differences in normalized fluorescent intensities CFP
norm

 - YFP
norm

CFP before and 

after PKC inhibition for the cell from panel B. PKC inhibition shifted the average absolute difference 

from 0.054 to 0.042 and the LI from 2.25 to 2.84. (D-F) PKC inhibition experiment. N = 8 cells. Statistics 

based on Wilcoxon sign-rank test. (D) The FRET ratio 
CFP

YFPCFP
 decreased (p-value < 0.008), (E) LI 

increased (p-value < 0.008), and (F) GI decreased (p-value < 0.008) after PKC inhibition. (G) Marginal 

distribution of CFP and YFPCFP before (top) and after (bottom) PKC inhibition. (H) Control experiment. 

N = 7 cells. hTERT-RPE-1 cells expressing cytoplasmic GFP and mCherry before and after PKC 

inhibition. No significant change in LI or GI was observed. 

 

Inferring co-localization and predicting dynamics from fixed cells during 

clathrin-mediated endocytosis 

Clathrin-mediated endocytosis (CME) is the major pathway for entry of cargo receptors into 

eukaryotic cells. Cargo receptor composition plays an important role in regulating clathrin-

coated pit (CCP) initiation and maturation (Liu et al., 2010; Loerke et al., 2009). The clustering 

of transferrin receptors (TfnR), the classic cargo receptor used to study CME, promotes CCP 

initiation, in concert with clathrin and adaptor proteins (Liu et al., 2010). Recent evidence 

suggests a diversity of mechanisms regulating endocytic trafficking, including cross-talks 

between signaling receptors and components of the endocytic machinery (Di Fiore and von 

Zastrow, 2014). For example, the oncogenic protein kinase, Akt has been shown to play an 

important role in mediating CME in cancer cells (Liberali et al., 2014; Reis et al., 2015), but not 

in normal epithelial cells (Reis et al., 2015). Here we tested how the decoupling by DeBias of 

global and local contributions to the overall intensity alignment of clathrin and TfnR, can be used 

to simultaneously investigate co-localization and predict CCP dynamics, using fixed cell 

fluorescence imaging.   

We used fluorescence images of fixed non‐small lung cancer cells (H1299) or untransformed 

human retinal pigment epithelial cells (ARPE-19) expressing clathrin light chain A fused to 
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eGFP (eGFP-CLCa) as a CCP marker (Fig. 6A-B). Cells were either treated with DMSO or with 

an AKT inhibitor (Akt inhibitor X, ‘ten’), and imaged by Total Internal Reflection Fluorescence 

Microscopy (TIRFM). CCPs were reported in the eGFP-CLCa channel and TfnR was visualized 

by immunofluorescence in a second channel (Methods). For single cells, the location of 

fluorescent signals of CLCa and TfnR were recorded and the data were pooled and processed by 

DeBias (Methods). 
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Figure 6: AKT inhibition differentially alters recruitment of TfnR to CCPs during CME for different cell 

lines. (A) H1299 cells expressing CLCa and TfnR ligands. Top row, representative WT cell (TfnR ligand, 

GI = 4.6, LI = 1.6). Bottom row, representative AKT-inhibited cell (TfnR ligand, GI = 6.0, LI = 0.3). 

Scale bar 10 𝜇m. (B) ARPE-19 cells. Top row, representative WT cell (TfnR ligand, GI = 4.3, LI = 0.8). 

Bottom row, representative AKT-inhibited cell (TfnR ligand, GI = 4.6, LI = 1.6). (C-D) LI and GI of 

CLCa-TfnR co-localization for Ctrl (red) and Akt
inh.

 cells (cyan). Every data point represents a single cell. 

Statistics with Wilcoxon rank-sign test. (C) H1299: N number of cells Ctrl = 30, Akt
inh.

 = 30; number of 

CCPs per cell: Ctrl = 455.5, Akt
inh.

 = 179.5. GI p-value < 0.0001, LI p-value < 0.0001. (D) ARPE-19: N 

number of cells Ctrl = 30, Akt
inh.

 = 20; number of CCPs per cell: Ctrl = 958.8, Akt
inh.

 = 1138.2. GI p-value 

< 0.002, LI p-value < 0.008. (E-F) ROC curves. Black – LI, orange – (GI,LI). Statistics via permutation 

test (Methods). (E) AUC: Ctrl = 0.96 versus Akt
inh.

 = 0.88, p-value ≤ 0.003. (F) AUC: Ctrl = 0.83 versus 

Akt
inh.

 = 0.72, p-value ≤ 0.048. (G-H) Joint distributions of CLCa (x-axis) and TfnR (y-axis) for H1299 

(G) and ARPE-19 (H) cells. (I-J) Marginal distributions of CLCa (left) and TfnR (right) for H1299 (I) and 

ARPE-19 (J) cells. (K-L) Combined CCP lifetime distribution for 50 Ctrl (red) and Akt
inh.

 (cyan) cells. 

Statistics with Wilcoxon rank-sign test (Methods). (K) H1299: p-value < 0.006 (mean EMD: Ctrl = 29.3 

versus Akt
inh.

 = 43.6); number of cells: 50 (Ctrl), 11 (Akt
inh.

). (L) H1299: p-value n.s. (mean EMD: Ctrl = 

36.1 versus Akt
inh.

 = 38.0); number of cells: 12 (Ctrl), 12 (Akt
inh.

). (M-N) Percentage of TfnR uptake: Ctrl 

versus Akt
inh.

 (whiskers - standard deviation). Statistics via two-tailed Student’s t-test. (M) H1299: p-

value < 0.005; N = 3 independent experiments. (N) ARPE-19: p-value n.s.; N = 3 independent 

experiments.  

 

LI values, indicative of the co-localization between TfnR and CLCa, were significantly lower in 

Akt-inhibited H1299 compared to control cells (Fig. 6C). In contrast, Akt inhibition increased 

the LI values in ARPE-19 cells but this effect was less prominent than (Fig. 6D). Akt inhibition 

resulted in increased GI values for both cell lines, to a much greater degree in H1299 cells than 

in ARPE-19 cells (Fig. 6C-D). To test whether GI enhances the ability to distinguish between 

control and Akt-inhibited cells, we applied Linear Discriminative Analysis (LDA) classification 

to calculate the true positive rate versus the false positive rate for LI alone (black lines, Fig. 6E-

F) or the pair (GI, LI), (orange lines, Fig 6E-F). The area under these curves (AUC) provided a 

direct measure of the ability of each method to accurately classify the experimental condition of 

single cells. AUC for the (GI, LI) representation was superior to using LI alone for both cell lines 

(H1299: 0.96 versus 0.88, Fig. 6E; ARPE-19: 0.83 versus 0.72, Fig. 6F). Such improved 

discrimination shows that the GI and LI contain orthogonal information indicative of distinct 

molecular processes that were altered upon Akt inhibition. 
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To interpret the increased GI values for Akt-inhibited cells, we examined the joint and marginal 

distributions of CLCa and TfnR. Upon Akt-inhibition, the joint distributions were more biased 

toward regions of low TfnR intensities (Fig. 6G-H). This was clearly observed in the marginal 

distributions (Fig. 6I-J). Hence, although the CLCa distribution appeared not to change upon 

AKT inhibition, the frequency of CCPs with fewer TfnRs increased. Given the association 

between TfnR cargo quantities and CCPs maturation (Loerke et al., 2009), we wondered whether 

the increased frequencies of CCPs containing less TfnR might alter CCPs dynamics. Indeed, 

live-imaging of H1299 cells showed a higher frequency of CCPs with shorter lifetimes upon 

Akt-inhibition, which was not seen in normal ARPE-19 cells (Fig. 6K-L, Methods). It has 

previously been shown that Akt inhibition reduces the rate of TfnR CME uptake in H1299 cells, 

but not in ARPE-19 cells ((Reis et al., 2015), see also Fig. 6M-N); therefore, these findings 

indicate that the reduced levels of TfnR in CCPs upon Akt inhibition results in an increase in 

short-lived, most likely abortive events, and hence a decrease in CME efficiency. 

Altogether, DeBias could distinguish alterations in the regulation of CME between two cell 

types. The decoupling to GI and LI indicated that upon Akt inhibition, both untransformed and 

cancer cells showed a global bias towards CCPs with lowered TfnR intensities. This conclusion 

could not have been reached by considering only the LI, which increased for normal and 

decreased for transformed cell lines. 
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Discussion 

We introduce DeBias as a new method to assess global bias and local interactions between 

coupled cellular variables. Although the method is generic, we show here specific examples of 

DeBias analysis in co-orientation and co-localization studies. A software package is publically 

available via a web-based platform, https://debias.biohpc.swmed.edu. The website also provides 

detailed instructions for the operation of the user interface.  

DeBias defines a generalizable framework for eliminating confounding factors in the analysis of 

interacting variables. Our examples demonstrate that the distinction of global and local 

contributions to the level of variable coupling can unearth in the form of global bias mechanisms 

with potentially dominant contributions that are missed by a single parameter analysis (Figs. 1-

2). In the example of vimentin-microtubule alignment (Fig. 3), the significant decrease in GI as 

opposed to the LI upon partial vimentin knock-down indicated that the reduction in alignment 

between the two cytoskeleton systems is associated with a reduction of cell polarity as the global 

cue. In the example of stress-velocity alignment (Fig. 4), depletion of some tight junction 

proteins increased LI, suggestive of enhanced local stress-motion transmission; knock-down of 

others decreased GI indicating an overall impaired alignment of velocity in the direction of 

wound closure. In the example of FRET experiments (Fig. 5), PKC inhibition lead to increased 

LI, validating the FRET response, while a reduced GI was indicative of a more random 

(heterogeneous) spatial distribution, probably due to weaker interactions of the inactivated kinase 

with its substrates. In the example of receptor co-localization with CCPs during CME (Fig. 6), 

the increased GI in response to Akt inhibition related to a higher fraction of CCPs containing less 

TfnR. Moreover, Akt inhibition induced opposite shifts in LI for normal and cancer cells, 

reflecting differential alterations in co-localization between cell types. Thus, DeBias provided 
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insight of novel mechanisms of the regulation of cargo-pit association by kinase activity that 

depended on a proper deconvolution of local and global effects on the interaction of the clathrin 

and receptor signal. We then validated our conclusions by further analyses of the marginal 

distributions, live-imaging and uptake assays (Fig. 6).  

Other approaches have been used to address global confounders for assessment of local 

interactions between biological variables. For object-based co-localization, Helmuth et al. 

simulated the spatial distribution of objects in the absence of local interactions to calibrate co-

localization measurement (Helmuth et al., 2010). An important step in revealing local 

interactions masked by global biases was recently made by (Krishnaswamy et al., 2014) for 

applications to single cell mass cytometry data. The authors developed a measure referred to as 

conditional-Density Resampled Estimate of Mutual Information (DREMI) to quantify the 

influence of a protein X on protein Y based on the conditional probability P(Y|X). DREMI takes 

advantage of the abundant mass cytometry data to equally weigh data at different intervals along 

the range of X values using >10,000 cells per experimental condition. This approach is less 

reliable when limited data is available, because of the low confidence in the conditional 

probability of observations with low data abundance. Thus, DREMI is not well suited for image 

data, which typically has fewer observations. Moreover, both alternatives to DeBias presented 

above focus on defining local interactions unbiased by confounders, whereas DeBias uses local 

interactions and global bias simultaneously as a comprehensive two-dimensional descriptor of 

pairwise interactions.  
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Methods  

DeBias procedure 

The DeBias procedure is depicted in Fig. 2A. The marginal distributions X and Y are estimated 

from the experimental data, ∀𝑖, 𝑥𝑖 , 𝑦𝑖 ∈ [0,90°] . The experimentally observed alignment 

distribution (denoted observed) is calculated from the alignment angles θi of matched (xi,yi) 

paired variables, for all i. 

 𝜃𝑖 = {
   |𝑥𝑖 − 𝑦𝑖|                    |𝑥𝑖 − 𝑦𝑖| ≤ 90      

180 − |𝑥𝑖 − 𝑦𝑖|        |𝑥𝑖 − 𝑦𝑖| > 90    
 

The resampled alignment distribution (denoted resampled) is constructed by independent 

sampling from X and Y. N random observations (where N = |X| is the original sample size) from 

X and Y are independently sampled with replacement, arbitrarily matched and their alignment 

angles calculated to define the resampled alignment. This type of resampling precludes the local 

dependencies between the originally matched (xi,yi) paired variables. 

The uniform alignment distribution (denoted uniform) is used as a baseline for comparison 

between distributions. This is the expected alignment distribution when neither global bias 

(reflected by uniform X, Y distributions) nor local interactions exist. The Earth Mover's Distance 

(EMD) (Peleg et al., 1989; Rubner et al., 2000) was used as a distance metric between alignment 

distributions. The EMD for two distributions, A and B, is defined as follows: 

𝐸𝑀𝐷(𝐴, 𝐵) = ∑ | ∑ 𝑎𝑗𝑗=1,…,𝑖 − ∑ 𝑏𝑗𝑗=1,…,𝑖 |𝑖=1,..,𝐾 , where 𝑎𝑗  and 𝑏𝑗  are the frequencies of 

observations in bins 𝑗 of the histograms of distributions A and B, respectively, each containing K 

bins. 
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The global index (GI) is defined as the EMD between the uniform distribution and the resampled 

alignment: 

GI = EMD(uniform,resampled) 

The local index is determined by subtraction of the global index from the EMD between the 

uniform distribution and the experimentally observed alignment distribution: 

LI = EMD(uniform,observed) - global index 

DeBias for protein-protein co-localization: The following adjustments to this procedure are 

implemented to allow DeBias to quantify protein-protein co-localization: 

1. Levels of fluorescence are not comparable between different channels due to different 

expression levels and imaging parameters. Thus, each channel is normalized to [0,1] by 

the 5
th

 and 95
th

 percentiles of the corresponding fluorescence intensities.   

2. The alignment angle θi of the matched observation (xi,yi) is calculated as the difference in 

normalized fluorescence intensities xi - yi and the alignment distribution is thus defined 

on the interval [-1,1]. 

The number of histogram bins used to represent the marginal distributions was 89 for angular 

data, 10 for PKC and 39 for CME co-localization data. The corresponding number of histogram 

bins for the alignment distributions (observed, resampled and uniform) was 15, 19 and 39, 

respectively. 

 

Simulating synthetic data 
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Let us define 𝑋  and 𝑌  as the angular probability distribution functions, with angle instances 

denoted 𝑥𝑖 and 𝑦𝑖, respectively. When simulating local relations, for each pair of angles, one of 

the angles will be shifted towards the other by 𝜁 degrees, unless |𝑥𝑖 − 𝑦𝑖| < 𝜁, in which case it 

will be shifted by |𝑥𝑖 − 𝑦𝑖| degrees. The angle to be shifted (either 𝑥𝑖  or 𝑦𝑖 ) is chosen by a 

Bernoulli random variable, 𝑝, with probability 0.5. The observed angles for pixel 𝑖 will therefore 

be  

  𝑥𝑖
′ = {

𝑥𝑖                   𝑝 = 1

max(𝑥𝑖 − 𝜁, 𝑦𝑖)        𝑦𝑖 ≤ 𝑥𝑖 ∧ 𝑝 = 0

min(𝑥𝑖 + 𝜁, 𝑦𝑖)         𝑦𝑖 > 𝑥𝑖 ∧ 𝑝 = 0
 

and 

  𝑦𝑖
′ = {

𝑦𝑖
′                  𝑝 = 0

max(𝑦𝑖 − 𝜁, 𝑥𝑖)        𝑥𝑖 ≤ 𝑦𝑖 ∧ 𝑝 = 1

min(𝑦𝑖 + 𝜁, 𝑥𝑖)         𝑥𝑖 > 𝑦𝑖 ∧ 𝑝 = 1

 

The alignment of angles at pixel 𝑖 will be: 

 𝜃𝑖 = {
   |𝑥𝑖

′ − 𝑦𝑖
′|                    |𝑥𝑖

′ − 𝑦𝑖
′| ≤ 90      

180 − |𝑥𝑖
′ − 𝑦𝑖

′|        |𝑥𝑖
′ − 𝑦𝑖

′| > 90    
 

For example, for our simulations we choose 𝑋, 𝑌  to be truncated normal distributions on 

(−90,90) with 𝜇 = 0 and varying values of 𝜎.  

𝜁 is modeled in two ways: either as a constant value, e.g. 𝜁 = 5° (Supplementary Figs. S1-S3), or 

as a varying value dependent on |𝑥𝑖 − 𝑦𝑖| (Figs. 1-2). For the latter, 𝜁 it is defined as a fraction 

0 < 𝛼 < 1 from |𝑥𝑖 − 𝑦𝑖| for each pair of observations; namely, 𝜁𝑖 = 𝛼|𝑥𝑖 − 𝑦𝑖| (see Fig. 1B). 

Note, that the observed marginal distributions X’, Y’ may be slightly different from X, Y. 
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Vimentin and Microtubule filaments experiments and analysis  

Cell model: hTERT-RPE-1 cells were TALEN-genome edited to endogenously label vimentin 

with mEmerald and α-tubulin with mTagRFPt, and validated for protein expression levels (Gan 

et al., 2016). Cells were stably transfected with shRNA against vimentin to knock down vimentin 

and the knockdown efficiency was validated as ~75% (Gan et al., 2016). 

Fixed cell imaging: hTERT-RPE-1 mEmerald-vimentin/mTagRFPt-α-tubulin cells expressing 

shRNA-VIM or scrambled control shRNA Scr were plated into MatTek (Ashland, MA) 35 mm 

glass-bottom dishes (P35G-0-20-C) coated with 5 µg/mL fibronectin. Cells were incubated 

overnight to allow them to adhere and form monolayers. Monolayers were scratched with a 

pipette tip to form a wound.  Cells were incubated for 90 minutes, washed briefly and fixed with 

methanol at -20°C for 15 minutes. Cells were imaged at the wound edge (denoted “front” cells), 

and at 2-3 cell rows from the wound edge (denoted “back” cells, only for control condition). 

Images were acquired using a Nikon Eclipse Ti microscope, equipped with a Nikon Plan Apo 

Lambda 100x/1.45 N.A. objective. Images were recorded with a Hamamatsu ORCA Flash 4.0 

with 6.45 μm pixel size (physical pixel size: 0.0645 x 0.0645 μm). All microscope components 

were controlled by Micro-manager software.  

Live cell imaging: hTERT-RPE-1 mEmerald-vimentin/mTagRFPt-α-tubulin cells expressing 

scrambled control shRNA Scr were plated into MatTek (Ashland, MA) 35 mm glass-bottom 

dishes (P35G-0-20-C) coated with 5 µg/mL fibronectin. Cells were incubated overnight to allow 

them to adhere and form monolayers. Monolayers were scratched with a pipette tip to form a 

wound. Imaging started 30 minutes after scratching with an Andor Revolution XD spinning disk 

microscope mounted on a Nikon Eclipse Ti stand equipped with Perfect Focus, a Nikon Apo 60x 

1.49 N.A. oil objective and a 1.5x optovar for further magnification. Images were recorded with 
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an Andor IXON Ultra EMCCD camera with 16 μm pixel size (physical pixel size: 0.16 x 0.16 

μm). Lasers with 488 nm and 561 nm light emission were used for exciting mEmerald and 

mTagRFPt, respectively. The output powers of the 488 nm and 561 nm lasers were set to 10% 

and 20% of the maximal output (37 mW and 23 mW, respectively). The exposure time was 300 

ms per frame for both channels and images were collected at a frame rate of 1 frame per minute. 

During acquisition, cells were kept in an onboard environmental control chamber. All 

microscope components were controlled by Metamorph software. 

Filaments extraction and spatial matching: We applied the filament reconstruction algorithm 

reported in (Gan et al., 2016). Briefly, multi-scale steerable filtering is used to enhance 

curvilinear image structures, centerlines of candidate filament fragments are detected, clustered 

to high and low confidence sets and iterative graph matching is applied to connect fragments into 

complete filaments. Each filament is represented by an ordered chain of pixels and the local 

filament orientation derived from the steerable filter response. Spatial matching was performed 

as follows: each pixel belonging to a filament detected in the MT channel is recorded to the 

closest pixel that belongs to a filament in the VIM channel. If the distance between the two 

pixels is less than 20 pixels, then the pair of VIM and MT orientations at this pixel is recorded 

for analysis. The same process is repeated to record matched pixels from VIM to MT filaments.   

 

Collective cell migration experiments and analysis   

Coupled measurements of velocity direction and stress orientation were taken from the data 

originally published by Tamal Das et al. (Das et al., 2015). Particle image velocimetry (PIV) was 

applied to calculate velocity vectors, and monolayer stress microscopy (Tambe et al., 2011) was 
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used to extract stress orientations. Velocity and stress measurements were recorded 3 hours after 

collective migration was induced by lifting off the culture-insert in which the cells have grown to 

confluence. Validated siRNAs were used for gene screening. Detailed experimental settings can 

be found in (Das et al., 2015). 

Statistical test: We devised a permutation test to determine statistical significance of differences 

in LI values between experiments (conditions) (Fig. 4C). For every pair of conditions (i,j), the 

following procedure was repeated for 100 iterations. 50% of the velocity-stress observations 

were randomly selected for each condition and the LI (and GI) were calculated from this 

subsampling. Without loss of generality, for LIi < LIj (based on Fig. 4B) the p-value was 

recorded as the fraction of iterations in which the subsampled LI value for condition i was 

greater than the LI value for condition j.  A fraction of 0 thus implies p-value < 0.01.  

 

PKC FRET experiments 

hTERT-RPE-1 cells (ATCC) expressing GFP and mCherry (for the control experiment) or C 

kinase activity reporter (CKAR, for the PKC activation experiment) (Violin et al., 2003) were 

plated with DMEM/F12 medium containing 10% fetal bovine serum and 1% penicillin-

streptomycin in fibronectin-coated 35 mm MatTek plates (P35G-0-10-c). Cells were incubated 

overnight and imaged with a custom-built DeltaVision OMX widefield microscope (GE 

healthcare life sciences) equipped with an Olympus PLAN 60x 1.42 N.A. oil objective and 

CoolSNAP HQ2 interline CCD cameras. FRET experiments were performed with a 445 nm 

laser, and control experiments were performed with 488 and 561 nm lasers. 478/35, 541/22, 

528/48 and 609/37 emission bandpass filters were used for the CFP, YFP, GFP and mCherry 
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channels, respectively. The output powers of the lasers were set to 10% the maximal output (100 

mW). The exposure time was 200 ms per frame for both channels. 10 µM of the PKC inhibitor 

HA-100 dihydrochloride (Santa Cruz Biotechnology) was added to the media after the first 

image was recorded and a second image was recorded 20 minutes later. 

Single cells were manually selected for analysis.  In particular, cells with higher intensities in the 

CFP channel were found to provide reproducible changes in their FRET intensity. Each cell was 

manually annotated and analyzed with the Biosensor Processing Software 2.1 to produce the 

ratio images (Hodgson et al., 2010). Briefly, the field of view was corrected for uneven 

illumination, background was subtracted, the image was masked with the single cell annotation, 

and the ratio image was calculated as CFP/YFPCFP. Statistics was determined using the non-

parametric Wilcoxon signed-rank test. 

 

Clathrin mediated endocytosis experiments  

Cells, cell culture and chemicals: ARPE-19 (retinal pigment epithelial cells) stably expressing 

eGFP-CLCa were grown under 5% CO2 at 37°C in DMEM high glucose medium (Life 

Technologies), supplemented with 20 mM HEPES, 10 mg/ml streptomycin, 66 ug/ml penicillin 

and 10% (v/v) fetal calf serum (FCS, HyClone). H1299 (non-small cell lung carcinoma) stably 

expressing eGFP-CLCa were grown under 5% CO2 at 37
o
C in RPMI, supplemented with 20 mM 

HEPES, 10 mg/ml streptomycin, 66 ug/ml penicillin and 5% (v/v) fetal calf serum (FCS, 

HyClone). The AKT inhibitor (Akt inhibitor X, ‘ten’) was purchased from Calbiochem. 

Transferrin receptor internalization: TfnR uptake was measured by an ‘in-cell’ ELISA assay 

using the anti-TfnR monoclonal antibody, HTR-D65, as ligand, exactly as previously described 
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(Reis et al., 2015). Internalized D65 was expressed as the percentage of the total surface-bound 

D65 at 4°C (i.e., without acid wash step), measured in parallel.  

Fixed cell imaging: Transferrin receptor (TfnR) surface levels were measured using the anti-

TfnR mAb (HTR-D65). ARPE-19 and H1299 cells (1.5 × 105 cells per well in a 6-well plate) 

were grown overnight on glass cover slips and further pre-incubated with 4 ug/ml of D65 in 

TfnR assay buffer (PBS4+: PBS supplemented with 1 mM MgCl2, 1 mM CaCl2, 5 mM glucose 

and 0.2% bovine serum albumin) at 4°C for 30 min. After being washed with PBS
4+

, cells were 

fixed in 4% PFA for 30 min at 37
o
C, permeabilized with 0.1% Triton X-100 for 5 min and 

further blocked with Q-PBS (2% BSA, 0.1% lysine, pH 7.4) for 30 min. After 3 washes with 

PBS, cells were incubated with a 1:500 dilution of goat anti-mouse Alexa-568 labelled secondary 

antibody (Life Technologies) for 30 min, washed an additional three times with PBS before 

TIRFM imaging using a 100 × 1.49 NA Apo TIRF objective (Nikon) mounted on a Ti-Eclipse 

inverted microscope equipped with the Perfect Focus System (Nikon). Images were acquired 

with an exposure time of 150 ms for both channels using a pco-edge 5.5 sCMOS camera with 6.5 

um pixel size. For inhibition studies, cells were initially pre-incubated in the presence of Akt 

inhibitor X (10 uM) for 30 min at 37°C, followed by pre-incubation with 4 ug/ml of D65 at 4°C 

for 30 min, in continued presence of the inhibitor.  

Live-cell imaging and analysis: During TIRFM imaging, cells were maintained in DMEM 

lacking phenol red and supplemented with 2.5% fetal calf serum. Time-lapse image sequences 

were acquired at a frame rate of 1 frame/s with exposure time of 150 ms using a pco-edge 5.5 

sCMOS camera with 6.5 um pixel size. CCP detection, tracking and construction of life-time 

distributions were performed with the custom CME analysis software described in (Aguet et al., 

2013). Lifetime distribution was defined at the resolution of 1 second and limited to 160 seconds. 
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Longer CCP trajectories were excluded from the analysis. To compare lifetime distributions for 

single field of views (FOVs) between WT and AKT-inhibited cells we measured the 

heterogeneity as the EMD distance to the uniform distribution. FOV’s score were compared 

between the different experimental conditions using the non-parametric Wilcoxon signed-rank 

test. 

Image analysis for fixed cells experiments: Single cell masks were manually annotated in each 

FOV. We applied the approach described in (Aguet et al., 2013) to automatically detect CCPs 

from the CLC channel. Briefly, CLC fluorescence was modeled as a two-dimensional Gaussian 

approximation of the microscope PSF above a spatially varying local background. CCP 

candidates were first detected via filtering, followed by a model-fitting for sub-pixel localization. 

The fluorescent intensity of the CLC and any other acquired channel were recorded in the 

detection coordinates to define the matched observations for DeBias. GI and LI were calculated 

independently for each single cell. Linear Discriminant Analysis (LDA) classification (Fisher, 

1936) was applied to assess single cell classification accuracy. Every cell constituted an 

observation, a label was assigned based on the experimental condition and the representation was 

either the LI or the pair (GI,LI). The LDA classifier was trained on a labeled dataset consisting 

of WT and AKT-inhibition for H1299 or ARPE19 cells. The area under the Receiver Operating 

Characteristic ROC curve was recorded to assess and compare the discriminative accuracy of 

different measures. Statistical significance for comparing classification performance of LDA 

classifiers that were trained for scalar measures with or without the GI was calculated by 

bootstrapping (Fig. 6E-F). The following process was repeated 1000 times and the frequency for 

which the scalar-based classifier outperformed the classifier trained on pairs of measures was 

reported as the p-value. Random resampling with replacement was performed to obtain a sample 
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size identical to that of the observed dataset. The area under the curve (AUC) of the competing 

pre-trained LDA classifiers was assessed for this resampled dataset and recorded when the model 

that was trained without the GI predicted better. 

Webserver 

The DeBias code was implemented in Matlab, compiled with Matlab complier SDK and 

transferred to a web-based platform to allow public access for all users at 

https://debias.biohpc.swmed.edu. The graphical user interface (GUI) was designed to be simple 

and easy to use. The user uploads one or more datasets to the DeBias webserver, selects “angles 

data” checkbox if the variables are angles and presses the “process” data. GI and LI values are 

displayed and the results can be downloaded or emailed to the user once the calculation is 

completed. The software’s flow chart and a detailed user manual are available in online user 

manual. Source code is publically available, 

https://git.biohpc.swmed.edu/ydu/debias/tree/master. 
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Supplementary information 

 Supplementary figures  

o Supplementary Figure S1: Simulations of global bias and local interaction 

parameters 

o Supplementary Figure S2: Simulations of quantization parameter K 

o Supplementary Figure S3: Simulations of number of observations N 

 Supplementary Data: 

o Supplementary Data S1: Theoretical results 

o Supplementary Data S2: Simulations with constant ζ 

 Supplementary videos legends 

o Supplementary Video S1: Polarization of RPE cells at the monolayer edge over 

time 
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Supplementary figures 

 

Figure S1: Simulations for X, Y normal distributions with different 𝜎x, 𝜎y and constant ζ = 0°, 5°, 10°, 

15°. (A) 45° - θmean reflecting the cumulative effect of the global bias and the local interaction between X, 

Y (θmean is the mean observed alignment). Lower variance and higher ζ correspond to better alignment. 

(B) Global index. ζ has a small effect on GI. (C) Local index. ζ has a major effect on LI. (D) Relative 
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contribution of LI to the observed alignment increases as function of ζ. (E) Retrieved estimated ζ 

calculated as the relative contribution of LI to the observed alignment (panel D) times the cumulative 

effect of the global bias and the local interaction (panel A). (F) Accuracy of estimated ζ grows with ζ and 

with lower 𝜎x, 𝜎y.  Note, that this estimation is a lower bound for the true ζ (Supplementary Data S1, 

Theorem 4). Accuracy cannot be measured for ζ = 0° hence the empty panel. 

 

 

Figure S2: Simulations for different values of K, the number of bins in the alignment distribution. X, Y 

normal distributions with different 𝜎x, 𝜎y and constant ζ = 15°. K = 4, 7, 11, 15, 22 were examined. (A-B) 

Global (A) and local (B) indices grow with K. (C-E) Relative contribution of LI to the observed 

alignment (C), Retrieved estimated ζ (D) and accuracy of estimated ζ (E) stabilizes for K ≥ 11. 
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Figure S3: Simulations for different N, the number of observations. N = 100, 200, 400, 800, 16000 were 

examined. X, Y normal distributions with different 𝜎x, 𝜎y and constant ζ = 15°. All measures provide 

similar information but are noisier for lower N. (A) Global index. (B) Local index. (C) Relative 

contribution of LI to the observed alignment. (D) Retrieved estimated ζ. (E) Accuracy of estimated ζ. 
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Supplementary Data S1: Theoretical results for co-orientation data 

Terms and definitions: Let X, Y be the distribution functions of two random variables 

representing angles on [−90°, 90°]. Spatially matched random variables from these distributions 

are denoted 𝑥𝑖  and 𝑦𝑖 , 𝑖 = 1,2 … 𝑁 , where 𝑁  is the number of observations. 𝑥𝑖
∗  and 𝑦𝑖

∗  are 

random variables sampled from X and Y independently (without considering the spatial 

matching). The observed and resampled alignment distributions are denoted 𝐴  and 𝐴∗ , 

respectively. The alignment distributions represent angles on [0°, 90°], and are functions of 𝑋, 𝑌, 

the interaction between 𝑋 and 𝑌, and 𝑁. Random variables from 𝐴 are denoted 𝜃𝑖, 𝑖 = 1,2 … 𝑁. 

Random variables from 𝐴∗ are denoted 𝜃𝑖
∗ . Let 𝐾  be the number of bins in the alignment 

histogram. Histogram bins are denoted 𝑏𝑖𝑛𝑖 , 𝑖 = 0, … , 𝐾 − 1  where 𝑏𝑖𝑛0  contains the lowest 

values (including 0°) and 𝑏𝑖𝑛𝑘−1  the highest values (including 90°). 𝑈 denotes the uniform 

distribution on [0°, 90°]with the same K bins as 𝐴, 𝐴∗. 

 

Theorem 1: Local index of independent variables  

If 𝑋, 𝑌 are independent, then 𝐸(𝐿𝐼(𝑋, 𝑌)) = 0 

Proof: 

 𝐸(𝐿𝐼) = 𝐸(𝐸𝑀𝐷(𝐴, 𝑈) − 𝐸𝑀𝐷(𝐴∗, 𝑈))

= 𝐸(𝐸𝑀𝐷(𝐴, 𝑈)) − 𝐸(𝐸𝑀𝐷(𝐴∗, 𝑈)) =⏟
∗

𝐸(𝐸𝑀𝐷(𝐴, 𝑈)) − 𝐸(𝐸𝑀𝐷(𝐴, 𝑈)) = 0 

* Resampling does not change the expectation of the difference of two independent variables. 

 

Theorem 2: Global index of uniform distributions  
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Let 𝑋, 𝑌 be uniform distributions, then lim𝑁→∞ 𝐺𝐼 = 0. 

Proof:  

Since 𝑋  and 𝑌  are uniform distributions, the density of the resampled distributions are    

𝑓𝑥𝑖
∗(𝜔) = 𝑓𝑦𝑖

∗(𝜔) =
1

180
, −90 < 𝜔 < 90. We can compute the distribution of the difference by 

𝑓𝑥𝑖
∗−𝑦𝑖

∗(𝜔) = ∫ 𝑓𝑥𝑖
∗(𝑥)𝑓𝑦𝑖

∗(𝑥 − 𝜔)
∞

−∞
𝑑𝑥 = ∫

1

1802
𝐼𝑥∈(−90,90)𝐼𝑥−𝜔∈(−90,90)

∞

−∞
𝑑𝑥 =

{

1

1802 ∫ 1
90+𝜔

−90
𝑑𝑥        0 < 𝜔 < 180

1

1802 ∫ 1
90

−90+𝜔
𝑑𝑥        0 < 𝜔 < 180

= {

1

1802
(180 + 𝜃)    − 180 < 𝜔 < 0

1

1802 (180 − 𝜃)       0 < 𝜔 < 180
 

We conclude that the distribution of the difference is  

 𝑓𝑥𝑖
∗−𝑦𝑖

∗(𝜔) = {

1

180
(1 +

𝜔

180
)    − 180 < 𝜔 < 0

1

180
(1 −

𝜔

180
)         0 < 𝜔 < 180

 

 

Therefore, when taking the absolute value of the angle difference we get: 

𝑓|𝑥𝑖
∗−𝑦𝑖

∗|(𝜔) = {
1

90
(1 −

𝜔

180
)  𝜔 ≥ 0

0                     𝜔 < 0

 

Finally, since the alignment is limited to [0°, 90°] we apply the function 

𝑔(𝜔) = {
180 − 𝜔         90 < 𝜔 ≤ 180

𝜔                     0 ≤ 𝜔 ≤ 90
 so that  

𝑓𝑔(|𝑥𝑖
∗−𝑦𝑖

∗|)(𝜔) = {
1

90
(1 −

𝜔

180
) +

1

90
(1 −

180 − 𝜔

180
)    0 ≤ 𝜔 ≤ 90

0                                                                 𝑒𝑙𝑠𝑒

 

= {
1

90
      0 ≤ 𝜔 ≤ 90

0            𝑒𝑙𝑠𝑒        
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Therefore 𝑓
𝑔(|𝑥𝑖

∗−𝑦𝑗
∗|)

= 𝐴∗ is a uniform distribution. 

 

For 𝑁 sufficiently large, the histogram has approximately 
1

𝐾
 of the observations in each of the 𝐾 

equally spaced intervals between 0 and 90 and thus lim𝑁→∞ 𝐺𝐼 = lim𝑁→∞ 𝐸𝑀𝐷(𝐴∗, 𝑈) = 0.  

 

Theorem 3: Perfect alignment 

(I)  If ∀𝑖, 𝑗, 𝑥𝑖 = 𝑦𝑗   then 𝐺𝐼 =
(𝐾−1)

2
, 𝐿𝐼 = 0  

(II) If 𝑋 and 𝑌 are uniform distributions, and ∀𝑖, 𝑥𝑖 = 𝑦𝑖 then 𝐺𝐼 = 0, 𝐿𝐼 =
(𝐾−1)

2
  

 

Proof:  

(I) 

𝐴 = 𝐴∗ because ∀𝑖, 𝑗 𝑎𝑖 =  𝑎𝑗
∗ = 0. For large 𝑁 the random variable drawn from the alignment 

distribution 𝐴 will be approximately: 

 𝜃𝑖 = {
 1    𝜃𝑖 ∈ 𝑏𝑖𝑛0 
0           𝑒𝑙𝑠𝑒 

, ∀𝑖.  

The EMD of the alignment from the uniform distribution is therefore simply 'moving' 
1

𝐾
 

observations from 𝑏𝑖𝑛0 to every other bin, which sums up to  

lim
𝑁→∞

𝐸𝑀𝐷(𝐴, 𝑈) =
1

𝐾
∗ 1 +

1

𝐾
∗ 2 + ⋯ +

1

𝐾
∗ (𝐾 − 1) =

1

𝐾
∗ (𝐾 − 1) ∗

1 + 𝐾 − 1

2
=

𝐾 − 1

2
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Therefore, for large N 𝐿𝐼 = 𝐸𝑀𝐷(𝐴, 𝑈) − 𝐸𝑀𝐷(𝐴∗, 𝑈) = 0, 𝐺𝐼 = 𝐸𝑀𝐷(𝐴∗, 𝑈) =
𝐾−1

2
. 

(II) 

Since ∀𝑖, 𝑥𝑖 = 𝑦𝑖 we get that, similarly to part (I), 𝐸𝑀𝐷(𝐴, 𝑈) =
𝐾−1

2
.  

On the other hand, since 𝑋  and 𝑌  are uniform distributions, we get from theorem 2 that 

lim𝑁→∞ 𝐸𝑀𝐷(𝐴∗, 𝑈) = 0.  

Therefore, for infinite observations, 𝐿𝐼 =
𝐾−1

2
, 𝐺𝐼 = 0.  

 

Theorem 4: 𝑳𝑰 is a lower bound for the local contribution to the observed alignment 

Assuming that the observed alignment distribution 𝐴 is cumulatively explained by a global bias 

and a local interaction, we construct a new alignment distribution 𝐴−𝜁  encoding the true 

cumulative local contribution to the observed alignment and demonstrate that 

𝐿𝐼 ≤ 𝐸𝑀𝐷(𝑈, 𝐴−𝜁) − 𝐺𝐼 to conclude that LI is a lower bound for the local contribution to the 

observed alignment.  

Proof:  

We first define 𝐴−, the alignment distribution corresponding to 𝐴 that does not include any local 

interaction. Thus, 𝐴−, can be interpreted as an alignment distribution constructed from 𝑋−and 

𝑌− , denoting 𝑋  and 𝑌  after elimination of the (unknown) alignment correction due to local 

interactions between the observations (𝑥𝑖, 𝑦𝑖) . The construction of 𝐴−𝜁  is based on the 

corresponding matching pairs (𝑥𝑖
− ∈ 𝑋−, 𝑦𝑖

− ∈ 𝑌−)  with alignment correction by the local 

interaction 𝜁𝑖  (see Fig. 1B for as a schematic depiction). Such local interaction exists in our 
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model (although it might not be explicitly known) and can be represented as a vector  𝜁 ∈

ℝ𝑁 , 𝜁𝑖 ≥ 0 ∀𝑖. Note, that this construction supports different 𝜁𝑖  values for every observation 𝑖 

and thus can provide a more detailed platform than the single measure LI that DeBias outputs 

(which assumes 𝜁𝑖 = 𝜁𝑗  ∀𝑖, 𝑗). Also note, that when 𝜁𝑖 >  𝜃𝑖
− (𝜃𝑖

− is the alignment angle between 

(𝑥𝑖
−, 𝑦𝑖

−)), then the observed alignment 𝜃𝑖
− − 𝜁𝑖 < 0. 

Accordingly, 𝐴−𝜁 is defined as the alignment distribution of 𝜃𝑖
− − 𝜁𝑖. As described above, 𝐴−𝜁 

can contain negative values for 𝜁𝑖 >  𝜃𝑖
−. A, the experimentally observed alignment, thus can be 

generated from 𝐴−𝜁 as well, by truncating the “saturated” observations (where 𝜁𝑖 >  𝜃𝑖
−) to the 

value 0. More formally, the elements in A are defined by 

𝜃𝑖
− − 𝜁𝑖     𝜃𝑖

− > 𝜁𝑖

0                𝜃𝑖
− ≤ 𝜁𝑖  

 

We can get an upper bound for 𝐸𝑀𝐷(𝐴, 𝐴−) in the form of: 

𝐸𝑀𝐷(𝐴, 𝐴−) ≤ 𝐸𝑀𝐷(𝐴−𝜁 , 𝐴−) ≤ ∑
1

𝑁
⌈

𝜁𝑖

|𝑏𝑖𝑛|
⌉ 𝑁

𝑖=1  . 

Where |𝑏𝑖𝑛| defines the size of the angular interval of a bin in the alignment histogram.  

This equation is intuitively interpreted as every observation i is locally aligned by 𝜁𝑖 , and 

therefore is translocated ⌈
𝜁𝑖

|𝑏𝑖𝑛|
⌉ bins, at most. 

Note that a decreased bin size reduces this bound as close as needed to the value of 

𝐸𝑀𝐷(𝐴−𝜁 , 𝐴−). 

Finally,  

𝐿𝐼 ≤⏟
∗

𝐸𝑀𝐷(𝐴, 𝐴∗) ≈ 𝐸𝑀𝐷(𝐴 , 𝐴−) ≤ 𝐸𝑀𝐷(𝐴−𝜁  , 𝐴−) ≤ ∑
1

𝑁
⌈

𝜁𝑖

|𝑏𝑖𝑛|
⌉ 

𝑁

𝑖=1

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2016. ; https://doi.org/10.1101/038059doi: bioRxiv preprint 

https://doi.org/10.1101/038059
http://creativecommons.org/licenses/by/4.0/


51 
 

Thus the LI is a lower bound on the contribution of the direct interaction between 𝑋 and 𝑌 on the 

alignment distribution. 

Additionally, we get that  

𝐺𝐼 = 𝐸𝑀𝐷(𝐴∗, 𝑈) = 𝐸𝑀𝐷(𝐴, 𝑈) − 𝐿𝐼 ≥⏟
∗

𝐸𝑀𝐷(𝐴, 𝑈) − 𝐸𝑀𝐷(𝐴∗, 𝐴)

≥ 𝐸𝑀𝐷(𝐴, 𝑈) − ∑
1

𝑁
⌈

𝜁𝑖

|𝑏𝑖𝑛|
⌉ 

𝑁

𝑖=1

 

Implying that the GI is an upper bound of the contribution of the global bias. 

* by corollary 2 

Corollary 2: For any alignment distribution A, 𝐿𝐼 ≤ 𝐸𝑀𝐷(𝐴, 𝐴∗) 

Proof: 

Let 𝐴𝑖 , 𝐴𝑖
∗, 𝑈𝑖 denote the relative frequency of observations in 𝑏𝑖𝑛𝑖 , 0 ≤ 𝑖 ≤ 𝑘 − 1 for 𝐴, 𝐴∗, 𝑈, 

respectively. 

𝐸𝑀𝐷(𝐴, 𝐴∗) = ∑   |𝐴𝑖 − 𝐴𝑖
∗|

0≤𝑖≤𝐾−1

= ∑ |𝐴𝑖 − 𝑈𝑖 + 𝑈𝑖 − 𝐴𝑖
∗|

0≤𝑖≤𝐾−1

≥⏟
∗

∑ (|𝐴𝑖 − 𝑈𝑖| − |𝐴𝑖
∗ − 𝑈𝑖|)

0≤𝑖≤𝐾−1

= ∑ |𝐴𝑖 − 𝑈𝑖|

0≤𝑖≤𝐾−1

− ∑ |𝐴𝑖
∗ − 𝑈𝑖|

0≤𝑖≤𝐾−1

= 𝐸𝑀𝐷(𝐴, 𝑈) − 𝐸𝑀𝐷(𝐴∗, 𝑈) = 𝐿𝐼 

 

* triangle inequality 
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Theorem 5: GI limits for highly variant truncated normal distributions 

limσ→∞
𝑁→∞

𝐺𝐼 = 0 for the following scenarios: 

(I) The resampled alignment is a truncated normal distribution with variance parameter 𝜎2. 

(II) 𝑋 and 𝑌 are truncated normal distributions, each with variance parameter 𝜎2.  

Proof: 

(I)  

Let 𝐴𝜎
∗  be the truncated normal resampled alignment distribution, defined by the parameters 

𝜇 = 0, 𝜎, with the support interval (𝑎, 𝑏), such that 𝑎 ≤ 𝜇 ≤ 𝑏. Let 𝜙𝜎(𝑥) be the probability 

density function (PDF) of the truncated normal distribution and 𝑢(𝑥), 𝑈 respectively, the PDF 

and CDF (cumulative distribution function)of the uniform distribution function on (𝑎, 𝑏). The 

PDF and CDF of the normal distribution function is denoted in the standard notation of ϕ and Φ 

respectively. 

First we prove that lim𝜎→∞ ϕσ (𝑥) = 𝑢(𝑥) and use this to conclude that limσ→∞
N→∞

EMD( Aσ
∗ , U) =

limσ→∞
N→∞

GI = 0. 

∀𝑥1, 𝑥2 ∈ (𝑎, 𝑏), lim
𝜎→∞

ϕσ(𝑥1)

ϕσ(𝑥2)
= lim

𝜎→∞

ϕ (
𝑥1

𝜎 )

σ (Φ (
𝑏
𝜎) − Φ (

𝑎
𝜎))

ϕ (
𝑥2

𝜎 )

σ (Φ (
𝑏
𝜎 ) − Φ (

𝑎
𝜎))

= lim
𝜎→∞

ϕ (
𝑥1

𝜎 )

ϕ (
𝑥2

𝜎 )
= lim

𝜎→∞

e
−

𝑥1
2

2𝜎2

e
−

𝑥2
2

2𝜎2

= lim
𝜎→∞

e
𝑥2

2−𝑥1
2

2𝜎2 = 1 
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Therefore, limσ→∞ ϕt
σ (𝑥) = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 . Since the support of ϕt

σ  is (a, b) , the only constant 

satisfying that limσ→∞ ϕt
σ (x)  is a probability distribution is  

1

b−a
= 𝑢(x).  Therefore,  

limσ→∞
N→∞

EMD( Aσ
∗ , U) = limσ→∞

N→∞
GI = 0. 

 (II)  

Let  X, Y be truncated normal distributions. In part (I) we prove that limσ→∞ X = limσ→∞ Y =

u(x). Theorem 2 implies that when X and Y are uniform distributions limσ→∞
N→∞

GI = 0. 
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Supplementary Data S2: Simulations with constant ζ 

To assess the performance of DeBias we tested its ability to retrieve a pre-determined local 

interaction parameter ζ (see Fig. 1B) from simulated synthetic data. X and Y were modeled as 

truncated normal distributions on (-90, 90), with 𝜇=0 and changing 𝜎x, 𝜎y.  Pairs of (xi,yi) were 

sampled from X, Y and shifted towards each other by ζ degrees (similar to Fig. 1B, but with a 

constant cumulative ζ) to construct the observed alignment angles. To avoid confusion we denote 

X, Y, 𝜎x, 𝜎y as the observed values post-simulation. For a given constant ζ, we exhaustively 

explored the 𝜎x, 𝜎y space. For each 𝜎x, 𝜎y, we performed 20 independent simulations with N= 

1600 observations (xi,yi). For each simulation we constructed the resampled distribution 10 times 

based on 400 observations drawn from the marginal X, Y distributions, and used the mean GI, 

LI. The final recorded GI, LI were averaged over the independent simulations.  

The expected mean alignment when neither global bias nor local interactions exist is 45°. We 

begin by examining the deviation of the mean observed alignment from this value (45° - θmean). 

Better alignment is reflected by higher 45° - θmean values implying a larger deviation from the 

unbiased and no-interactions scenario. Low standard deviations 𝜎, correspond to better 

alignment, improving with growing ζ, as expected (Supplementary Fig. S1A). The GI follows a 

similar pattern and remains relatively stable for small changes in ζ (Supplementary Fig. S1B). 

The similar patterns between Fig. S1A and B indicate that the global bias has a prominent role in 

determining the observed alignment.  

The LI grows with ζ (Supplementary Fig. S1C) and its relative contribution to the observed 

alignment grow with increasing ζ (Fig. S1D, quantified by LI/(LI+GI)), as expected. This 

relative contribution can be harnessed to restore an estimated ζ as the corresponding fraction 

from (45° - θmean) (Supplementary Fig. S1E). The estimated ζ is a lower bound for the actual 
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value (Supplementary Data S1, Theorem 4). Estimation is more accurate for larger ζ and for 

large 𝜎 (Supplementary Fig. S1F). These results again highlight the importance of exploiting the 

GI for better interpretation of the LI (first introduced in Fig. 2D-E). 

We also investigated the effect of the choice of the number of bins K, used for sampling and 

computation of the EMD between distributions. Increased K induces linear growth in LI and GI 

values, as expected (Data S1 Theorem 5, Supplementary Fig. S2A-B) and stabilized its accuracy 

in predicting ζ for K ≥ 11 (Supplementary Fig. S2 C-E). Large K will require more observations 

to estimate the true distribution. Using a constant K for a specific application assures fair 

comparison between different cases. Varying N, the number of observations, did not have a 

major effect on these measurements (Supplementary Fig. S3A-D), but increasing N reduced the 

noise which increased the accuracy in predicting ζ (Supplementary Fig. S3E). 
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