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On Post-Acquisition Motion Compensation for
Prostate Perfusion Analysis

Gert Wollny, Isabel Casanova, Marı́a-J. Ledesma-Carbayo, and Andrés Santos

Abstract—Dynamic Contrast enhance magnetic resonance
imaging has been established as an accurate method to detect and
localize prostate cancer. Time series of three-dimensional datasets
of the prostate are acquired and used to obtain per-voxel signal-
intensity vs. time curves. These are then used to differentiate
cancerous from non-cancerous tissue. However, rectal peristalsis
and patient movement may result in spatial-mismatching of the
serial datasets and therefore, incorrect enhancement curves. In
this work, we discuss and test four methods based on image
registration to compensate for these movements. These methods
include a serial approach that uses the registration of consecutive
images and the accumulation of the obtained transformations,
an all-to one registration approach, an approach that first aligns
a sub-set of images that are already closely aligned, and then
uses synthetic references to register the remaining images, and
an approach that uses independent component analysis (ICA) to
create synthetic references and register the images to these. We
conclude that the method based on ICA does not provide a
viable approach for motion compensation in prostate perfusion
imaging, and that the serial approach fails when motion artifacts
are present in the series. The other two approaches provide
qualitatively pleasing results.

I. PRELIMINARY REMARK

This work is a partial replication of Casanova [1] that has
been done in 2011. Note that on one hand, the redistribution of
the data used is restricted because of privacy laws, and on the
other hand, that the authors no longer have access to this data.
Also note that the implementation of the ICA-based motion
compensation method [2] used in this work has since been
changed in [3] to follow [4]. Nevertheless, since the claims
made in the paper are only of a qualitative nature, it should
still be possible to replicate the results.

II. INTRODUCTION

Prostate cancer (PCa) is currently the most frequently di-
agnosed non-cutaneous cancer and the second most important
reason for cancer mortality in men. With an early diagnosis
a cure can often be achieved. Dynamic Contrast enhance
magnetic resonance imaging (DCE-MRI) has been established
as an accurate method in the detection and localization of
PCa. DCE-MRI is performed by obtaining repeated, fast T1-
weighted images before and up to a few minutes after intra-
venous injection of a gadolinium containing contrast agent.
Three-dimensional datasets of the prostate are acquired every
few seconds that allows obtaining a per-voxel signal-intensity
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vs. time curve. Based on this image series, different phar-
macokinetic parameters are modeled and used to differentiate
between cancerous and non-cancerous tissue.

However, because of the rectal peristalsis and because
patients may move during acquisition, movement may be
present in the image series resulting in incorrect enhancement
curves and pharmacokinetic parameters. Hence, in order to
achieve a proper diagnosis, these movements must be corrected
for before making a diagnosis. In this work we present and
discuss approaches that compensate for this movement and
enable a more reliable and automatic analysis perfusion data.

A. State of the art

Only a few methods have been published that focuse on
motion compensation of prostate perfusion images series.
Breathing motion compensation in myocardial perfusion imag-
ing, on the other hand, is a widely discussed topic. In both
cases, motion compensation phases a similar challenge: A
local movement in an image series needs to be compensated
for and the images exhibit a local intensity change over time
stemming from the perfusion of a contrast agent. However,
certain differences between the two types of perfusion also
have to be considered: In myocardial perfusion, where the
acquisitions times are lower, usually only a movement of the
heart and the surrounding tissue is present, but not a movement
of the whole body as it can be seen in prostate perfusion
series. On the other hand, the intensity changes induced by
the perfusion process poses a larger challenge in myocardial
perfusion, since the change is a lot stronger when the contrast
agent passes through the left and right heart ventricle. In
prostate perfusion images, only the contrast enhancement of
the prostate needs to be taken into account.

All methods to compensate motion in image series that we
will disscuss are based on image registration. Image registra-
tion aims at transforming a study image S with respect to a
reference image R, so that structures at the same coordinates in
both images finally represent the same object. Most modern
registration approaches use measures that are directly based
on the voxel intensities to describe correspondence between
the structures in both images. Considering that the rectal
peristalsis movement is only a local phenomena, any motion
compensation algorithm should allow local, and hence, non-
linear transformations as compared to linear and hence global
transformations. If only rigid transformations are allowed, then
a region of interest around the prostate must be extracted in
order to allow the proper compensation of movement that
occurs only locally.
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One of the main challenges in voxel based image registra-
tion is the establishment of a proper mapping of voxel inten-
sities to tissues that allows to map corresponding anatomical
structures in the images correctly onto each other. Since in
perfusion imaging these intensities change locally over time,
the following general approaches for motion compensation
may be considered: Either one registers images from different
perfusion phases onto each other and takes the intensity
change into account by using a voxel similarity measure that
accounts for differences in the tissue-intensity mapping, or one
establishes a method to create motion-free synthetic image that
exhibit a similar tissue-intensity mapping as its corresponding
original image and can, therefore, serve as references in image
registration. In such a setting the difficulties of dealing with
varying tissue-intensity mappings can be avoided.

In the first approach, image from different time points of
the perfusion series, are be registered directly. For example,
L udemann et al. [5] used normalized mutual information
and Breeuwer et al. [6] relied on cross correlation (CC)
to achive motion compensation in perfusion image series.
However, these statistical measures still expect a globally
consistent material-intensity mapping but the intensity change
due to perfusion happens locally, and because of the cancer
perfusion may happen at different rates in different areas
of the prostate the statistics may not model the intensity-
tissue relation properly. To reduce the impact of the intensity
change one may also register only images of the series that
are in direct temporal succession and then accumulate the
obtained transformations to achieve full motion compensation
with respect to a reference frame [7], [8]. However, with
this method small registration errors may accumulate and if
one registration fails, e.g. because an erroneous frame was
recorded due to the patient movement, then it is impossible to
achieve a motion compensation for the full series.

The alternative to registering images from different per-
fusion phases – the creation of synthetic references – was,
for example, presented by Milles et al. [9]. They used a
three component independent component analysis to obtain
feature images and a mixing matrix of a myocardial perfusion
series. By recombining these images, motion-free synthetic
references were obtained that exhibit similar intensities like
the original images making it possible to optimize the sum of
squared differences (SSD) cost measure to achieve registration.
While their approach only made use of linear registration its
extension to non-linear registration is straightforward.

Another approach that uses synthetic references was pre-
sented by Li et al. [10]. In their work they use prior knowledge
to estimate a pseudo ground truth (PGT) as a reference for
non-linear registration to reduce motion. Running this two-
step scheme of PGT estimation and image registration in a
multi-pass fashion eventually lead to full motion compensa-
tion. Amongst other properties the PGT estimation assumes
that in the optimal case of motion compensation the time-
intensity curves are quite smooth and hence their second order
derivatives low. However, because of the noise present in the
images the creation this smoothness is not well reflected when
the time-intensity curve is evaluated pixel wise. Therefore,
the generation of a PGT by also smoothing over time may

overcompensate resulting in reference images that do not
present the level of detail required for proper motion compen-
sation. The method was later extended to guide registration
by a segmentation of the left heart ventricle [11] making the
algorithm less generic, i.e. not directly applicable to motion
compensation in prostate perfusion date.

The approach of Wollny et al. [12] can be seen as a hybrid
to the use of complex registration criteria and the creation of
synthetic references. First, they selected a subset of images
distributed over the whole series that had a high similarity
pointing to images that are already well aligned, and these
images were then registered to one global reference optimizing
a image similarity criterion based on normalized gradient
fields (NGF). Then, linear interpolation was used to create
synthetic references corresponding to their time index and
the corresponding images were registered to these images by
optimizing the SSD. This method was also applied to prostate
perfusion images [13].

Finally, methods for motion compensation in myocardial
perfusion have been proposed that require a segmentation of
the left heart ventricle. These methods usually rely on prior
knowledge of the heart anatomy that obviously can not be
applied to prostate images and are, therefore, not considered
here.

B. Our contribution

In this paper we will analyze the applicability of a subset
of the methods described above to motion compensation in
prostate perfusion imaging. We present results of motion
compensation achieved by running serial registrations, all-to-
one registrations, the use of pre-aligned subsets, and the use
of ICA. In this work, we only put the focus on an qualitative
analysis ofthe registration analysis based on visual inspection
of time-profiles and videos. In addition, we provide a free and
open source implementation of all the tested methods [3].

III. METHODS

A. Non-linear registration

Given a d-dimensional domain Ω ⊂ Rd and a space of
images I = {I|I : Ω → R}, and given a study image S ∈ I
and a reference image R ∈ I, registration aims at transforming
the study image S with respect to the reference image R, so
that structures at the same coordinates in both images represent
the same object. In practice, this is achieved by finding a
transformation Treg ∈ T that minimizes a given cost function
Fcost : I × I → R, while constraining the transformation
through the joint minimization of an energy term E : T→ R:

Treg := arg min
T∈T

(Fcost(ST , R) + κE(T )) . (1)

The cost function Fcost accounts for the mapping of similar
structures. E(T ) ensures topology preservation, which is nec-
essary to maintain structural integrity in the study image, and it
thus introduces a smoothness constraint on the transformation
T . The parameter κ is a weighting factor that balances
registration accuracy and transformation smoothness.

In nonrigid registration, the transformation T needs only
to be neighborhood preserving, a restriction that is enforced
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by the selection of a proper term E. In our application, the
cost function F is derived from a so-called voxel-similarity
measure that takes into account the intensities of the whole
image domain. As a consequence, the driving force of the
registration is calculated directly from the given image data.

Specifically, we employ two image similarity measures:
SSD

FSSD(S,R) :=
1

2

∫
Ω

(S(x)−R(x))
2
dx. (2)

and the formulation of NGF that was given in [12],

FNGF(S,R) :=
1

2

∫
Ω

(
‖nε(R)‖2 − 〈nε(R),nε(S)〉2

‖nε(R)‖‖nε(S)‖

)2

dx,

(3)
with d the number of image dimensions

nε(I,x) :=
∇I(x)√∑d

i=1 (∇I(x))
2
i + ε2

. (4)

SSD is used when study and reference image exhibit similar
intensity distributions – i.e. when synthetic references are used,
and NGF is used otherwise. Here, NGF has an advantage
over statistical measures like MI or CC, since it is a truly
local similarity measure that can accommodate local intensity
change. In addition it is fairly easy to implement and as a low
computational cost.

The transformation space T we use is restricted to trans-
formations that can be described by a B-splines based model
[14], and we base the regularization on the separate norms
of the second derivative of each of the deformation compo-
nents [15]. The balance between smoothness of the resulting
transformation and the amount of non-rigidly that allows
for the registration of smaller features can be fine tuned by
selecting the B-spline coefficient rate crate and the weighting
factor κ. For both parameters, higher values result in smoother
transformations that preserve the per-voxel volume better but
come at the cost of a reduced ability to register small features.

B. Motion compensation schemes
The following motion compensation schemes were consid-

ered and implemented by using the a freely available toolkit
for gray scale image processing [3]:

a) Serial:: Here, only images in temporal succession are
registered and then the transformations are applied accumu-
lated. As registration criterion we used a weighted combination
of NGF and SSD as proposed in [8].

b) AllToOne:: With this method we register all images
to one global reference by using NGF as registration criterion.

c) PreAlign:: The algorithm implements the method
proposed in [12] where first a pre-aligned subset of images
is estimated. Then, these images are registered non-linearly to
a reference picked out of the same subset. Finally, by linearly
combining these pre-aligned images synthetic references are
created and the remaining images are registered to their
synthetic counterparts by optimizing SSD.

d) ICARefs:: Here we took Milles et al. [9] ICA based
approach as a blue print and extended by non-linear regis-
tration and an alternative method to select the number of
independent components as described in [2]. Other then the
above algorithms, this algorithm is run in a multi-pass scheme.

IV. EXPERIMENTS

A. Material and Parameters

Figure 1. Upper row: example frames of slice ten of patient B. Lower row:
the corresponding profiles at the locations indicated in Fig 2, left. Note the
motion artifact in the third image which occurs approximately in the middle of
the acquisition of the perfusion series as can also be seen in the time-profiles.

Two data sets were acquired from two patients with biopsy
proved prostate cancer. For image acquisition a 3T MRI
was used in conjunction with a pelvic phased-array coil and
an endorectal coil. In order to suppress peristalsis, 40 mg
of butylscopolamine was administered intramuscular directly
before the MRI scan. The 3D T1-weighted spoiled gradient
echo images were acquired directly before and during an
intravenous bolus injection of 15 ml paramagnetic gadolinium
chelate with an injection rate of 2.5 ml/second followed by a
15 ml saline flush. The series have a temporal resolution of
3 seconds. In one case 110 frames exhibiting perfusion were
acquired (Fig. 2), in the other case 84 frames (Fig. 2). The
spacial resolution of the images were 1.8mm×1.8mm×3mm
the images had a size of 128× 128× 18 voxels each.

Figure 2. Example frame of the tenth slice ten of patient A that indicates the
location of the horizontal and vertical profiles used to assess the quality of
the motion compensation (left) and corresponding time-profiles (middle and
right).

On both series the motion compensation algorithms de-
scribed above were executed and the obtained results were
qualitatively rated by visually observing videos as well as hor-
izontal and vertical profiles through the time-series stack (see
Fig 2, left). The spacial location of these profiles corresponds
to row and column number 64 of the tenth axial slice of the
data sets.

For the algorithms Serial, AllToOne, and PreAlign the same
registration parameters κ = 5 and crate = 16 voxels were
used, and registration was run by using three multi-resolution
levels. Since ICARefs is a multi-pass algorithm we used 2
passed and we selected κ = 10 and crate = 32 in the first
pass and reduced these values by the factor of 1

2 in the second
pass. For Serial a combined weighted registration criterions
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of SSD (0.5) and NGF (1.0) was used. In all other case the
respective registration criterions were weighted by a factor
of 1.0. PreAlign has an automatic method for selecting the
all-over reference frame. To make comparison of the results
easier this frame was then also used as reference with Serial
and AllToOne. ICARefs neither requires the input nor evaluates
a specific reference frame.

In all cases we used the rank-1 method of a shifted limited-
memory variable-metric algorithm [16] for optimization and
the breaking condition were set to an x-tolerance of 0.001, a
relative tolerance of the criterion of 0.001, and a maximum of
300 iteration. Optimisation stopped when one of these criteria
was fulfilled. All registrations were executed on a AMD
Phenom II X6 1035T processor (2.6GHz), Gentoo/Linux 64
bit. The software was compiled with GNU g++ (Gentoo 4.5.2),
and optimization flags -O2 -march=native -mtune=native -
funroll-loops -ftree-vectorize.

V. RESULTS

The per-frame run-time of the used motion compensation
schemes was Serial=14.5s, AllToOne=13.1s, PreAlign=17.8s,
and ICARefs=12.0s. With minor restrictions for PreAlign
where first a subset of the images has to registered, all
registrations can be run in parallel resulting in a near linear
speedup when multiple CPUs are utilized.

The methods Serial, AllToOne, and PreAlign all provided
comparable good results for patient A (Fig. 3).

Figure 3. Time-intensity profiles after motion compensation Patient A,
horizontal (upper row) and vertical (lower row) profiles of slice ten. From left
to right Serial, AllToOne, and PreAlign all provide good motion compensation
for this patient.

Since the series of patient B one frame contained a strong
motion artifact (Fig. 1, upper row, middle) it was not possible
to achieve motion compensation by using Serial. With the
reference frame located before the frame containing motion
and because of the accumulation of the transformations used
by this method the information in all frames located after the
frame containing the motion artifact are clobbered (Fig. 4).

AllToOne, and PreAlign again resulted in comparable reg-
istration results (Fig. 5), with PreAlign reducing the motion
at the image boundaries better. This difference between the
algorithms can be attributed to the use of different regis-
tration criterions. While PreAlign used NGF only for some

Figure 4. Time-intensity profiles after motion compensation using Serial,
Patient B. The reference frame is located before the frame exhibiting strong
motion and it is clearly visible that no motion compensation could be achieved
for the frames after this frame.

Figure 5. Time-intensity profiles after motion compensation AllToOne (upper
row), and PreAlign (lower row). Generally, a good registration is achieved for
both methods, but applying AllToOne results in more residual movement close
to the image boundaries.

key frames, PreAlign relies on this criterion for all image
registrations. However, with NGF only gradients contribute
to the all-over cost value and, therefore, more local minima
may be present in the cost function. With SSD on the other
hand, all pixels contribute to the cost value resulting in less
local minima and better registration results.
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Figure 6. Mixing curves obtained for a four component ICA for Patent B.
Note the jumps in the curves motion and perfusion+motion that relate to the
motion component that is fully retained by the ICA. Also note the spike in
the curve labeled error frame that shows how a four component ICA singles
out the frame with the motion artifact as seen in Fig. 1.

With ICARefs it was not possible to achieve motion com-
pensation for neither of both data sets. This is because the
independent component analysis(ICA) retains the motion (see
Fig. 6), which is also the reason for the low registration time
per frame: since the synthetic references that are very similar
to the original images registration is achieved very fast. From
Fig. 6 it is also evident that the motion is not separated
into one single independent component(IC) which makes it
impossible to eliminate the motion in the reference images by
just removing the corresponding IC from the reference image

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 26, 2016. ; https://doi.org/10.1101/037986doi: bioRxiv preprint 

https://doi.org/10.1101/037986
http://creativecommons.org/licenses/by/4.0/


5

creation. Note however, that ICA makes it possible to easily
identify the frames where strong patient movement actually
happens and it also provides information about the intensity
change induced by the perfusion. Both types of information
could prove helpful when devising new algorithms for motion
compensation.

VI. CONCLUSION

Out of the tested methods Serial motion compensation can
be achieved, but only if the images of the perfusion series are
free of artifacts, and ICARefs motion patterns that relocate the
whole imaged body are can not be compensated for.

AllToOne and PreAlign, on the other hand, proved to be
usable for motion compensation of prostate perfusion image
series, even when some frames are acquired with strong
motion artifacts. Because PreAlign needs to evaluate the pre-
aligned subset, AllToOne requires less computational time.

Judging based on the visual inspection of the results Pre-
Align provides better results then AllToOne – most likely,
because for most registrations PreAlign uses SSD a registration
criterion that has less local minimal then the NGF based
measure that is always used with AllToOne. In addition,
PreAlign can be run fully automated, with AllToOne one has
at least to check that the indicated global reference frame is
not actually a frame that was recorded with strong artifacts.

When using PreAlign for motion compensation in myocar-
dial perfusion, Wollny et al. [12] reported difficulties in the
creation of synthetic references because the linear interpolation
used to create synthetic references was not always able to
model the strong intensity changes induced by the contrast
agent passing through the left and right heart ventricle. In
prostate imaging the intensity changes observed are not as
intense, and hence the creation of synthetic references does
not suffer from this problem.

Future work will include the quantitative confirmation of
above results by running a thorough validation based on the
comparison of manually obtained time – intensity curves with
automatically obtained ones. Finally, one may consider the
use of information that can be drawn from an ICA to improve
above algorithms.
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