
A comparison of ancestral state reconstruction methods for

quantitative characters

Manuela Royer-Carenzi and Gilles Didier
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Abstract

Choosing an ancestral state reconstruction method among the alternatives available for quantita-
tive characters may be puzzling. We present here a comparison of five of them, namely the maximum
likelihood, restricted maximum likelihood, generalized least squares, phylogenetic independent con-
trasts and squared parsimony methods.

A review of the relations between these methods shows that the first three ones infer the same
ancestral states and can only be distinguished by the distributions accounting for the reconstruction
uncertainty which they provide.

The respective accuracy of the methods is assessed over character evolution simulated under a
Brownian motion with (and without) drift. We start by giving the general form of ancestral state
distributions conditioned on leaf states under the simulation model.

Ancestral distributions are used first, to give a theoretical lower bound of the expected recon-
struction error, and second, to develop an original evaluation scheme which is more efficient than
comparing the reconstructed and the simulated states.

Our simulations show that: (i) the methods do not perform well as the evolution drift increases;
(ii) the maximum likelihood method is generally the most accurate and (iii) not all the distributions
of the reconstruction uncertainty provided by the methods are equally relevant.
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Introduction

Besides being essential to understand the process of character evolution, ancestral state reconstruction
plays an important role in the study of ecological diversification and comparative analysis. Though it
may concern more or less complex traits (either ecological, phenotypic, or biogeographic), we focus here
on quantitative characters, i.e. measured as continuous variables such as weight, size etc.

From a methodological point of view, ancestral state reconstruction is a challenging problem which
has been addressed by several approaches. The general question can be stated as follows. Taking as
inputs the phylogeny of a set of organisms (given as a tree with branch lengths) and their character states,
a reconstruction method has to infer - as accurately as possible - the character states of the ancestral
organisms. The reconstruction approaches fall into two major classes: methods based on the parsimony
principle (Fitch 1971; Swofford and Maddison 1987; Maddison 1991; Collins et al. 1994), whose general
idea is to impute the missing values of the tree by minimizing the sum of distances between ancestors and
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their direct descendant characters, and methods based on stochastic models of character evolution, mainly
Brownian motion for continuous traits (Schluter et al. 1997; Pagel 1999; Huelsenbeck and Ronquist 2001;
Nielsen 2002). Several authors discuss the advantages of stochastic approaches over parsimonious ones
(Schluter et al. 1997; Mooers and Schluter 1999; Pagel 1999; Nielsen 2002; Huelsenbeck et al. 2003). An
important point is that stochastic approaches take into account divergence times (branch lengths) while
parsimonious methods do not. Moreover, stochastic approaches may provide probability distributions
of the reconstructed ancestral states, accounting for their uncertainty and which can be used to develop
hypothesis testing and confidence intervals.

In our study, we focus on five widely-used reconstruction methods, namely the maximum likelihood,
restricted maximum likelihood, generalized least squares, phylogenetic independent contrasts and squared
parsimony methods. Before comparing their accuracy, we review the methods and their relationship to
each other. It turns out that the first three ones reconstruct the same ancestral states. These three
methods may still be distinguished, and to some extent compared, since they provide different probability
distributions of their uncertainty.

Evaluating the respective performances of these methods is a natural and important question. Works
aiming at answering this question proceed by comparing the reconstructed states with reference “trusted”
ones. Such reference values for ancestral states may be obtained either by considering fossil character
states or by simulating, via a stochastic model, artificial evolution of the character and by keeping track
of the ancestral states observed during simulations (Martins 1999). Webster and Purvis (2002) and
Oakley and Cunningham (2000) assess several reconstruction methods with regard to measurements on
fossils. They both observe that the methods are confounded by an evolutionary trend toward increasing
size.

Our comparison of the five methods is based on artificial evolution simulated under Brownian motions
with and without drift. The artificial evolution runs on the phylogenetic tree of Pleistocene planktic
Foraminifera (Webster and Purvis 2002). Besides the fact that we consider evolution models with drift,
a noticeable difference with previous works is that the reconstructed states are compared with regard
to the ancestral state distributions conditioned on the simulated leaves, rather than with the simulated
ancestral states as it is done usually. Intuitively, in this way, we compare the reconstructed state with
all the possible realizations of the evolution process with the given simulated leaf states. Moreover the
ancestral distribution conditioned on the leaves does reflect the uncertainty inherent to the stochastic
character of evolution as modeled in simulations. In particular, it allows us to determine a lower bound
of the expected reconstruction error as well as the reconstructed state achieving this lower bound. This
can be seen as a transposition of ideas of (Steel and Székely 1999) and (Royer-Carenzi et al. 2013).

Another motivation of this work is to assess the relevance of the distributions provided by the methods
for the reconstruction uncertainty. These distributions are expected to provide a greater amount of
information than single values for ancestral states (Schluter et al. 1997; Polly 2001). Altogether with
our new comparison scheme, we compare the conditional ancestral distributions given the leaves with
the distributions provided by the methods. A distance between distributions, called the Energy distance
offers us a consistent framework to compare both reconstructed states and reconstructed probability
distributions, with ancestral state distributions conditioned on leaves (Székely and Rizzo 2013). The
Energy distance is strongly related to the absolute bias.

Finally, we provide exact, matrix-based, implementations of some of the methods which were formerly
based on numerical optimization algorithms. Our R-scripts have been incorporated into the reconstruct
function of the ape R-package since version 3.2 (Paradis et al. 2004, https://cran.r-project.org/
web/packages/ape/index.html).

The rest of the paper is organized as follows. In Section 1, we present two standard models of
quantitative character evolution. Section 2 briefly describes the reconstruction methods and shows how
they are related. Section 3 is devoted to our assessment protocol. We provide the form of the ancestral
distributions conditioned on the leaf states under the simulation. These ancestral distributions are next
used to define our evaluation protocol and to give a lower bound of the expected reconstruction error.
In its final version, the protocol is based on the Energy distance between probability distributions, both
for assessing the reconstructed states and the distribution provided by the methods. The results of our
simulations are finally presented and discussed in Section 4.
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1 Models of evolution for quantitative characters

1.1 Phylogenetic trees - Notations

In the standard ancestral character reconstruction problem, one assumes that the evolutionary history
of the species is known and given as a rooted phylogenetic tree with branch lengths. Our typical tree
contains n + 1 nodes (including leaves), among which r are internal nodes (excluding the root). By
convention, the nodes are indexed in the following way:

• index 0 for the root,

• indices 1 to r for the other internal nodes,

• indices r + 1 to n for the leaves.

The nodes are numbered in such a way that if a node j descends from a node i then j > i. For
any non-root node j, we put p(j) for the index of its direct ancestor and τj for the length of the branch
relying p(j) to j.

Let X be a random variable. We put fX for its density function and IE(X) for its expectation.

1.2 Models of evolution

We make the standard assumptions that character evolves independently along the branches of the
phylogenetic tree and that its evolution is homogeneous both through time and lineages. In order to
actually model the evolution of a character, we first need to define an initial probability density fZ0

for
the state of the root. In the simulation models, fZ0

is the degenerate density at a given value z0, i.e. our
simulations all start from a given root state z0 which is a parameter of the model. The reconstruction
methods assume an improper flat density as initial probability density fZ0 (i.e. fZ0(x) = 1 for all x).

1.2.1 Brownian motion model

The Brownian motion (BM) model is the simplest stochastic process able to model the evolution of
a quantitative character (Felsenstein 1985; Schluter et al. 1997). Under this model, evolution is neutral
and governed by a rate parameter σ which accounts for its diffusion. Formally, along a branch of the
tree, the stochastic process (Xt) accounting for the character state has the form:

dXt = σdBt, X0 = x0,

where (Bt) denotes the standard Brownian motion, defined as a centered Gaussian process with stationary
and independent increments, and Bt ∼ N (0, t), where N (µ, σ2) is the Gaussian distribution of mean µ
and variance σ2. Thus increments (Xt+s −Xt) are independent with law N

(
0, σ2s

)
.

1.2.2 Arithmetic Brownian motion model

Biological evolution is not always assumed to be neutral. For instance, Cope’s rule states that species
tend to increase in body size over time (Kingsolver and Pfennig 2004; Van Valkenburgh et al. 2004; Hone
and Benton 2005). In Webster and Purvis (2002), fossil evidence suggests that a neutral process cannot
model the evolution of Pleistocene planktic Foraminifera size since it tends to increase with time. A
similar observation is made by Oakley and Cunningham (2000).

The Arithmetic Brownian motion (ABM), sometimes called Brownian motion with drift, yields to
model a linear drift µ, which can be either positive or negative. Along a branch of the tree, the stochastic
process (Xt) of the character state now has the form:

dXt = µdt+ σdBt, X0 = x0.

The increments (Xt+s −Xt) are independent with law N
(
µs, σ2s

)
.

Note that these two models are basically embedded: a BM is nothing but an ABM with drift-
parameter µ = 0.
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1.3 Likelihood of a character evolution

Let us consider a particular realization of the evolution process, which is known only through the
vector (z0, z1, · · · , zn) of the character states at the nodes of the tree (i.e. entry zi is the character state
at node i). The increments of the character state between nodes and their children give us a natural
expression of the likelihood of such a vector. Let us put φ(., θ2) for the density of a centered normal law
with variance θ2:

φ(x, θ2) =
1√

2πθ2
e
−x2

2θ2 .

Under the BM model with parameter σ2 and root probability density fZ0 , the likelihood of a real-
ization (z0, z1, · · · , zn) is

Vσ2(z0, z1, · · · , zn) = fZ0(z0)
n∏
j=1

φ(zj − zp(j), σ2τj).

The corresponding log-likelihood is

log (Vσ2(z0, z1, · · · , zn)) = log (fZ0
(z0))− n

2
log(2π)− 1

2

n∑
j=1

log(τj)− n log(σ)

−
n∑
j=1

(
zj − zp(j)

)2
2σ2τj

.

(1)

2 Reconstruction methods

2.1 Presentation

2.1.1 Brownian-based methods

We present here four methods all relying on the assumption that the character evolves following
a BM model with an improper flat distribution for the root state. Their current implementations
return not only a reconstructed state for each internal node j but also a probability distribution of this
quantity. Therefore, the reconstructed state may be seen as a random variable Y Ri , which accounts for
the reconstruction uncertainty. Hereafter, we give a brief description of these four methods:

• The Maximum Likelihood method (ML) infers the ancestral states which maximize their joint
likelihood under a BM model with an improper flat distribution for the root state (Schluter et al.
1997). This maximum likelihood estimation is simultaneously performed on the ancestral states
and on the variance of the BM model. For any internal node j, ML returns the reconstructed state
yRj which is also the mean of Y Rj and its standard deviation σRj . Schluter et al. (1997) showed that
Y Rj −y

R
j

σRj
follows a t-distribution with r + 1 degrees of freedom. Namely, its density is:

fY Rj (x) =
1

σRj
tr+1

(
x− yRj
σRj

)
,

where tr+1 denotes the density of a t-distribution with r + 1 degrees of freedom:

tr+1(x) =
1√

(r + 1)π

Γ
(
r+2

2

)
Γ
(
r+1

2

) (1 +
x2

r + 1

)− r+2
2

,

and Γ is the gamma function.
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• As it is implemented in the ape R-package (Paradis et al. 2004), the Restricted Maximum Likelihood
method (REML) reconstructs the ancestral states in a very similar way as ML. It first estimates
the variance of the BM model. Next, the reconstructed ancestral states are those maximizing the
likelihood under the BM model with the estimated variance. The relationship between ML and

REML reconstructions is discussed in more details below. As for ML,
Y Rj −y

R
j

σRj
follows a t-distribution

with r + 1 degrees of freedom.

• PIC is based on the Felsenstein’s Phylogenetic Independent Contrasts method (Felsenstein 1985).
It recursively reconstructs the states of the ancestral nodes by averaging those of their children with
weights depending on branch lengths. With PIC , the reconstructed state of a node only depends
on those of its descendants. The confidence intervals are computed by using the expected variances
under the model. They only rely on the tree (not on the leaf states). For any internal node j,
PIC provides a reconstructed state yRj , which also stands for the mean of Y Rj , and the standard

deviation σRj of Y Rj . The random variable
Y Rj −y

R
j

σRj
follows a standard Gaussian distribution.

• GLS stands for Generalized Least Squares method (Martins and Hansen 1997; Cunningham et al.
1998; Martins 1999). GLS reconstructs an ancestral state as a linear combination of those of the
extant leaves according to the state variance-covariance structure under a given evolution model.
By construction, GLS provides the best linear unbiased prediction of the ancestral states of a
character evolving under this model (Martins and Hansen 1997). We consider only GLS based
on the variance-covariance arising from a BM model. Here again, the confidence intervals are
computed by using the expected variances under the model, thus only depend on the tree. For any

internal node j, the random quantity
Y Rj −y

R
j

σRj
follows a standard Gaussian distribution and Y R0 has

the degenerate distribution at the reconstructed state of the root.

2.1.2 Parsimony-based methods

There are two main kinds of parsimonious approaches dealing with quantitative characters: linear
parsimony (Swofford and Maddison 1987; Maddison and Maddison 1992) and squared parsimony (SP)
(Maddison 1991). The first one reconstructs the unknown states of the character by minimizing the sum
of the absolute differences between the state of a node and that of its direct ancestor. The second one
proceeds in the same way but it considers squared differences in place of absolute ones. Since, according
to Butler and Losos (1997), linear parsimony often results in many equally parsimonious reconstructions
and squared parsimony gives more relevant results, we keep only SP for our study. Unlike the methods
of Section 2.1.1, SP does not provide any probability distribution for the reconstructed states.

2.2 Relations between methods

All these reconstruction methods are strongly related to the Maximum Likelihood reconstruction, thus
one with another. These relations were already stated here and there, sometimes without justification.
We recall them and give references or elements of proofs.

2.2.1 SP

Minimizing the squared parsimony cost is equivalent to maximizing the log-likelihood under a BM
model with a flat initial distribution for the root state and with all the branch lengths set to any constant
value, see (Schluter et al. 1997; Maddison 1991) or Equation (1). It follows that any function computing
ML may be used to compute SP . One just needs to make all the branch lengths equal before calling it.

2.2.2 REML

Methods ML and REML only differ in the fact that the variance of the BM model and the ancestor
states are simultaneously estimated by maximum likelihood with ML, while REML first estimates the
variance of the BM model and next the ancestral states. If the root state follows an improper flat
distribution then the term “log (fZ0

(z0))” vanishes from Equation (1). Finding the ancestral states
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maximizing the log-likelihood just relies on finding the unknown values of the vector z minimizing∑n
j=1

(zj−zp(j))
2

2σ2τj
. This does not depend on σ. Consequently, ML and REML do provide the same

reconstructed states.

2.2.3 GLS

Martins and Hansen (1997) state that GLS with the Brownian variance-covariance structure recon-
structs the same ancestral states as ML. We provide a detailed proof of this fact in Appendix A.

2.2.4 PIC

Maddison (1991) proved that PIC and ML reconstruct the same state for the root. Note that this
only holds for the root.

2.2.5 Totally equivalent ?

ML, REML and GLS all reconstruct the same ancestral states. Nevertheless, they still have to be
distinguished since they differ in terms of reconstructed distributions. Both ML and REML return t-
distributions with r + 1 degrees of freedom and the same mean but with different variances, while GLS
provides a Gaussian distribution with the same mean as ML and REML but with another variance.

2.3 Implementation

Since former implementations of ML, REML and GLS were based on numerical optimization algo-
rithms, they did not always converge to global optimums. We used Equations (A5) of Appendix A
to reconstruct ancestral states following these methods with exact matrix computations. The resulting
R-function reconstruct is part of the ape R-package since version 3.2.

3 Assessing the performances of the reconstruction methods

We shall study the performances of the methods when the character is under directional evolution.
To this aim, we assume that it evolves following an ABM model with variance σ2, drift µ and with the
degenerate probability density at a given value z0 for the root state. We start this section by giving the
conditional law of an internal state given those of the leaves under such a model. Next we propose an
evaluation protocol using this conditional law. The Energy distance is strongly related to this protocol
and allows us to compare between distributions and/or single values in a consistent way. Finally, we
show that the conditional expectation of an ancestral state given the leaves is, in a sense, the best
reconstruction possible and we study its relation with the state inferred by ML/REML/GLS .

3.1 Ancestral distributions conditioned on the leaf states

Let us assume here that the character evolution follows an ABM model (z0, σ
2, µ). We put Zi for the

random variable of the state i and Z, Z(a) and Z(l) for the random vectors t(Z1, · · · , Zn), t(Z1, . . . , Zr)
and t(Zr+1, . . . , Zn), corresponding to all the nodes except the root, the internal nodes excluding root,
and the leaves, respectively. A set of node states z0, . . . , zn is organized as vectors z, z(a) and z(l)

accordingly.
Let U = t(U1, U2, · · · , Un) be the random vector of increments (i.e. Ui = Zi − Zp(i)). Under the

ABM model (z0, σ
2, µ), the vector U is Gaussian with density:

fU (u) =
1

(2π)n/2(detΣU )1/2
e−

1
2
t(u−mU )Σ−1

U (u−mU ) ,

where mU is the expectation vector of U and ΣU its variance-covariance matrix which is diagonal since
the coordinates of U are independent. We have IE(Ui) = µτi and var(Ui) = σ2τi for all i ∈ {1, . . . , n}.
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In order to compute the joint law of the nodes, i.e. the law of the random vector Z = t(Z1, · · · , Zn),
we remark that the vector Z is obtained from a linear transformation of U :

Z = CU + z01,

where C is a non-singular matrix. Since all its coordinates are affine combinations of the increments Uj ,
which are independent Gaussian variables, the vector Z is still a Gaussian vector with density:

fZ(z) =
1

(2π)n/2(detΣZ)1/2
e−

1
2
t(z−mZ)Σ−1

Z (z−mZ),

where mZ is the expectation vector of Z and ΣZ its variance-covariance matrix, namely

mZ = CmU + z01 and

ΣZ = CΣU
tC.

The matrix C is lower triangular (thanks to the nodes numbering) with diagonal entries all equal to
1 and other entries either equal to 0 or 1 :

C =

 1 · · · 0
...

. . .
...

Cn,1 · · · 1


where Ci,j =

{
1 if i ≥ j and nodes i and j belong to a same lineage,
0 otherwise.

Putting Ti for the time from root to node i, we have

IE(Zi) = µTi + z0. (2)

Since ABM models lead to Gaussian processes, the state distributions of all the nodes are multivariate
normal. Let us compute the conditional joint law of the internal nodes given the leaf states z(l), namely
the law of Y = t(Y1, · · · , Yr) = (Z(a)|Z(l) = z(l)). Let ma be the expectation vector of Z(a) and ml that
of Z(l). Since the vector Z is a linear combination of the independent Gaussian increments Ui, then any
density fZ , fZ(l) or f(Z(a)|Z(l)=z(l)) is multivariate Gaussian.

The variance-covariance matrix ΣZ of Z can be split according to Z(a) and Z(l):

ΣZ =

(
Σa,a Σa,l
Σl,a Σl,l

)
where Σa,a is the variance-covariance matrix of Z(a), Σa,l is the covariance matrix between Z(a) and Z(l)

and so on. The matrix ΣZ has the form σ2K where entry Ki,j is the time between the root and the
most recent common ancestor of nodes i and j (Felsenstein 1973). We put 1 (resp. 1a and 1l) for the
n-dimensional (resp. r- and (n− r)-dimensional) vector with all coordinates equal to 1.

With the decomposition of matrix ΣZ , the random vector Y is Gaussian with density N (mY ,ΣY ),
where

mY = ma + Σa,lΣ
−1
l,l (zl −ml),

ΣY = Σa,a − Σa,lΣ
−1
l,l Σl,a (Schur complement).

(3)

Remark 1. There exists a matrix M only depending on the tree such that ΣY = σ2M .

Proof. From its definition, the remark holds for the matrix ΣU . It straightforwardly follows that it holds
for ΣZ , thus for both Σa,a, Σa,l, Σl,l ,Σl,a and finally for ΣY .

In order to compute the conditional law of an ancestral state i given the leaves, we have to sum over
all the other internal states. Since the marginals of a Gaussian vector are still Gaussian, we eventually
get that Yi = (Zi|Zr+1 = zr+1, · · · , Zn = zn) follows an univariate Gaussian distribution N (yTi , σ

2
i ),

where yTi is the ith coordinate of vector mY and σ2
i is the ith diagonal entry of the variance-covariance

matrix ΣY .
Below, we use the ancestral distribution of the ancestral state i given the leaves as reference when

comparing with its reconstructions. This conditional distribution is referred to as the theoretical distri-
bution of state i. We put Y Ti for the corresponding random variable.
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3.2 Evaluation protocol

3.2.1 For reconstructed states – Absolute bias

In a simulation context, the relevance of a reconstructed state is generally assessed by measuring its
distance from the corresponding simulated ancestral state (Butler and Losos 1997; Martins 1999; Oakley
and Cunningham 2000; Webster and Purvis 2002). This distance accounts for the reconstruction error.
Remark that, in order to make sense, the distances between the reconstructed and simulated states have
to be averaged over a large number of simulations.

The theoretical distributions derived in the previous section may be used to improve the assessment of
reconstructed states. Let us consider an evolution z simulated under an ABM model. A reconstruction
method only takes into account the leaf states zr+1, · · · , zn. On the other hand, Section 3.1 gives us the
conditional distribution of an ancestral state i given zr+1, · · · , zn under the simulation model. Intuitively,
this distribution would be asymptotically observed by running an infinite number of simulations and
by keeping only those with leaf states zr+1, · · · , zn. The distance expectation between Y Ti and the
reconstructed state is exactly the conditional expectation of the reconstruction error on state i given the
leaf states.

This suggests to replace the standard evaluation procedure by the following protocol. Being given a
distance d,

1. simulate an evolution z under an ABM model;

2. retain only the leaf states zr+1, · · · , zn;

3. for all nodes i, compute from zr+1, · · · , zn:

• the reconstructed state yRi ,

• the conditional distribution of state i given zr+1, · · · , zn under the simulation model (i.e. the
distribution of Y Ti );

4. for all nodes i, compute IE
(
d(yRi , Y

T
i )
)
.

This protocol ensures that the leaf states are well sampled from their probability distribution under
the simulation model. It follows that averaging IE

(
d(yRi , Y

T
i )
)
, which is conditioned on the leaf states,

over all the simulations do converge to the expected reconstruction error on state i under the simulation
model.

In the standard evaluation scheme, the distance d between a reconstructed state yRi and the corre-
sponding simulated state ySi is generally measured in terms of bias (ySi − yRi ), absolute bias |ySi − yRi |
or squared bias (ySi − yRi )2. Let us compute the expectations of these distances between a reconstructed
state and the random variable Y Ti following the theoretical distribution N (yTi , σ

2
i ). They are

IE
(
Y Ti − yRi

)
= yTi − yRi ,

IE
(
|Y Ti − yRi |

)
= σi

√
2

π
e
− (yTi −y

R
i )2

2σ2
i + |yTi − yRi |IP

(
|W | ≤ |y

T
i − yRi |
σi

)
and

IE
(
(Y Ti − yRi )2

)
= (yTi − yRi )2 + σ2

i .

(4)

where W stands for the standard Gaussian variable. Although all these measures are suitable to compare
the random variable Y Ti with the reconstructed state yRi , they do not take into account the same amount
of information from the distribution of Y Ti . The bias is only based on its mean, the squared bias uses its
mean and variance while the absolute bias takes into account both its mean, variance and the normality
of the distribution. This point somehow supports the choice of this last distance.

3.2.2 For reconstructed distributions – Energy distance

Assessing the relevance of the uncertainty distributions provided by the reconstruction methods could
also be done by considering the simulated ancestral states. But one expects more efficiency by considering
the theoretical distributions. Adapting the above protocol to this case could be done by considering, for
all nodes i, the expectation IE

(
d(Y Ri , Y

T
i )
)
, where Y Ri follows the distribution provided by the method
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for i, which is also conditioned on the leaf states. A major drawback here is that the above expectation
is not a good measure of the similarity between two probability distributions. In particular, it is not
equal to zero when Y Ri and Y Ti are identically distributed (and not degenerate).

On the other hand, there exist various distances for comparing two probability distributions. Among
them, the so-called Energy distance is strongly related to the evaluation protocol when d is the absolute
bias. We will see that it offers us a consistent framework to compare states versus states, states versus
distributions and distributions versus distributions.

Let A and B be two random variables and FA and FB their respective cumulative distribution
functions. For convenience reasons, we write the distance between two distributions as the distance
between two random variables following them. There are two equivalent ways to define the Energy
distance (E-distance) between A and B (Székely and Rizzo 2013):

dNRG(A,B) = 2‖FA − FB‖2L2 = 2

∫ ∞
−∞
|FA(x)− FB(x)|2dx (5)

and
dNRG(A,B) = 2IE(|A−B|)− IE(|A−A′|)− IE(|B −B′|), (6)

where A′ and B′ are independent and identically distributed copies of A and B respectively.
A distance between distributions can be used for comparing a single value against a distribution (or

even two single values), just by considering the degenerate distribution(s) at the single value(s).
Let us start by checking the behavior of the E-distance when comparing two single values. Assuming

that A and B follow degenerate distributions at a and b respectively, we have that

dNRG(A,B) = 2|a− b|.

In plain English, the E-distance between two degenerate distributions is twice the absolute bias between
the corresponding values.

Now if A follows the degenerate distribution at a and B follows a Gaussian distribution with variance
σ2
B , we have to compute the expected absolute value of Gaussian variables, whose formula is recalled in

Appendix B, Equation (B1). Thus the E-distance becomes:

dNRG(A,B) = 2IE (|a−B|)− IE (|B −B′|)

= 2IE (|a−B|)− 2σB√
π
. (7)

The E-distance between a reconstructed state and the corresponding theoretical distribution is twice
the expectation of the absolute bias between the state and a random variable following the theoretical
distribution, minus a correcting term. Up to this term, averaging the E-distances between the recon-
structed states and the theoretical distributions is the same as applying the evolution protocol with the
absolute bias.

Finally, Equation (6) shows that the Energy distance between two random variables following general
distributions is twice the expectation of the absolute bias between them, minus two terms which somehow
accounts for their respective dispersions.

In conclusion, the E-distance is strongly related to the protocol of Section 3.2.1 when evaluating
reconstructed states or reconstructed distributions with the absolute bias.

The protocol eventually used in our comparisons is that of Section 3.2.1 with the 4th step replaced by

4. for all nodes i, compute dNRG(X,Y Ti ).

where X is either the degenerate random variable of the reconstructed state at i or a random variable
following the uncertainty distribution provided by the method under evaluation.

We show how to compute the E-distance of pairs of distributions involved in a theoretical vs re-
constructed distributions comparison, i.e. Gaussian versus degenerate, Gaussian versus Gaussian and
Gaussian versus Student, in Appendix B (R-scripts available on request).

The more usual Kolmogorov-Smirnov distance is actually harder to interpret when degenerate dis-
tributions are involved. In particular the Kolmogorov-Smirnov distance between two degenerate distri-
butions is always 1 except if they are equal (Suppementary material). Supplementary Figures S3 and
S4 display the Kolmogorov-Smirnov distances. Their general behavior is the same as with the Energy
distance (Figures S1 and S2).
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3.3 Optimal reconstruction

Let us assume that the character follows an ABM model (z0, σ
2, µ). Being given a set of leaf states

and under the model, reconstructing the state of i with the mean yTi of its theoretical distribution leads
to the smallest expectation error in terms of any standard distance (Equation 4) and of E-distance
(Equation 7). The argument is similar as that of (Steel and Székely 1999). Namely, reconstructing with

yTi leads to expectations of bias, absolute bias and squared bias equal to 0, σj

√
2
π and σ2

i respectively,

and to E-distance 2σj
√

2−1√
π

. The mean yTi will be referred to as the optimal reconstruction of the state

i. Remark that computing yTi requires to know the parameters of the model of evolution. The optimal
reconstruction can be determined in a simulation context but unfortunately not in a practical situation.

In the particular case of a BM model, the optimal reconstruction is strongly related to the state
reconstructed by ML/REML/GLS . Indeed, let us consider a BM starting at the grand mean ẑ0, given
by the first formula of Equation (A5) in Appendix A. By considering Equation (2) with µ = 0, the partial
mean vectors ma and ml are equal to ẑ01a and ẑ01l respectively. It follows that the second equation
of (A5), which gives the ancestral reconstructed states, and the first equation of (3), which gives the
conditional means, are identical. In short, if ML/REML/GLS infers the “real” state of the root, it
reconstructs the whole tree in an optimal way.

4 Results and discussion

4.1 Simulation protocol
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Figure 1: Pleistocene planktic Foraminifera phylogeny (Webster and Purvis 2002) on which the simula-
tions runs.
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Although the simulation model of evolution has three parameters (z0, σ
2, µ), we only vary the last

two ones. We keep the root state z0 fixed since it just translates the whole process and does not influence
the methods performance. In order to assess their accuracy, we simulate the evolution of a quantitative
character along the Pleistocene planktic Foraminifera phylogenetic tree (Webster and Purvis 2002), given
in Figure 1, which starts from z0 = 100 at the root and evolves under ABM models with various drifts
and variances (21 values for parameter µ, ranging from −10 to 10 and 15 values for parameter σ, ranging
from 0.01 to 20).

For each parameter set, we run 500 simulations from which we retain only the leaf states. We apply
the evaluation protocol of Section 3.2 on the reconstructed states and on the reconstructed distributions
provided by PIC from the function ace, and by ML, REML, GLS and SP from the function reconstruct

of the ape R-package. The theoretical distribution of each ancestral state under the simulation model
is then compared first, with the reconstructed states and second, with the corresponding reconstructed
distributions, in both cases in terms of E-distance. These distances are finally averaged over all the
simulations in order to compare the performances of the methods.

4.2 Single reconstructed states
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Figure 2: Mean Energy distance between the state reconstructed by PIC , ML/REML/GLS and SP and
the corresponding theoretical distribution from BM models versus the parameter σ for the nodes M and
P.

We first evaluate the methods accuracy with regard to the ancestral states they provide. Since ML,
REML and GLS return the same inferred states, they have the same accuracy which is compared with
that of PIC , SP and with the optimal one.
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4.2.1 Lower bounds of reconstruction errors

Since – except in degenerate cases – there is no unique ancestral states configuration leading to the
leaf states from which we infer, reconstructing an ancestral state with a single value always comes with
a certain probability of error. A counterpart of this fact is that the E-distance between a reconstructed
state and its theoretical distribution is positive. From Section 3.3, the smallest E-distance which can
be obtained with a reconstructed state yRi comes by setting yRi equal to the mean of the theoretical

distribution Y Ti . It leads to a E-distance 2σi
√

2−1√
π

with σi = σMi,i where Mi,i only depends on the

tree (Remark 1), whatever the drift µ and the root state z0. To sum up, being given the parameters
(z0, σ

2, µ) of the model, the optimal reconstruction provides a lower bound for the E-distances which
depends linearly on the variance of the model, but neither on its trend nor on its initial value. It is
represented by red lines in Figures 2 and 3.

Asking whether a method achieves the optimal reconstruction, at least when the character follows
a BM model, is a natural question. ML/REML/GLS sounds like a good candidate for that, since it
reconstructs the optimal state for any node as soon as the inferred root state matches z0 under a BM
model (Section 3.3). We do observe that the states inferred by ML/REML/GLS are indistinguishable
from the optimal ones for nodes A, B, G, J, K, L, M and T but not for the other nodes. These
two situations are shown in Figure 2, which displays the results of nodes M and P. The fact that
ML/REML/GLS are not optimal for some nodes always comes from an inaccurate estimation of the
root state. Remark that despite this inaccurate root estimation, ML/REML/GLS may still be almost
optimal for some of the nodes.

4.2.2 Influence of the simulation parameters

The smaller the parameter σ of a BM model, the more accurate the reconstructions of all the methods
(Figure 2). Basically, as σ decreases, all the states of the tree (both ancestral and tips) get closer to one
another, which makes the reconstruction easier.

Another general observation is that, under an ABM model, all the methods perform better as the
drift µ is close to 0 (Figure 4). This was expected since this situation is close to a BM model which is
the assumption underlying all the methods but SP . The influence of µ is very strong for nodes A, B,
C, D, F, H, I, N, P, Q, R, S and T (E-distances from different µ are far from each other) but is much
less striking for nodes E, G, J, K, L and M for which plots sometimes overlap. Figure 4 displays the
E-distances of the nodes D and J.

4.2.3 Methods comparison

The methods performances are very close to one another for some of the nodes. This is basically
the case for the root for which ML/REML/GLS and PIC infer the same reconstructed state, but this
is also observed for nodes A, B, C, D, H, N, Q and T. For this reason, we add error bars representing
95%-confidence intervals for the mean E-distance in Figure 3. Whenever the error bars do not overlap,
the method corresponding to the lower curve has a significantly better performance than that of the
upper one, according to the Student’s t-test for paired samples with α = 5%.

Under a BM model, corresponding to data simulated with µ = 0, ML/REML/GLS provides the
most accurate reconstruction for the nodes displayed in Figures 2 and 3. This is actually observed for
all the nodes of the tree. Supplementary Figure S1 displays the plots of Figure 3 for all the nodes. Still
under a BM model, the relative ranking of SP and PIC depends on the node. Indeed, for nodes P and
Q, performance ranking of SP and PIC varies with σ, while for nodes A, B, D, F, H, K and S, SP is
more accurate than PIC , the opposite being observed for the remaining nodes. Figure 2 displays an
example where PIC is better than SP and one where the most accurate method changes with σ.

Comparing the methods from data simulated with a significant drift is more puzzling. Though
ML/REML/GLS leads to the smallest E-distance in general, this behavior is not observed with nodes
E, I, J and S for which the minimum E-distance is achieved by PIC and with node F for which it is
achieved by SP .
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Figure 3: Mean Energy distance between the state reconstructed by PIC , ML/REML/GLS and SP
and the corresponding theoretical distribution from ABM models with σ equal to 3 and 10 versus the
parameter µ for the nodes F, G and I.
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Figure 4: Mean Energy distance between the state reconstructed by PIC , ML/REML/GLS and SP
and the corresponding theoretical distribution from ABM models with different values of µ versus the
parameter σ for the nodes D and J.

4.3 Reconstructed distributions

Let us evaluate the relevance of the distributions provided by the methods for the reconstruction uncer-
tainty. The methods are now assessed with the E-distance between the theoretical distribution and the
reconstructed one which is either Gaussian (PIC and GLS ), Student (ML and REML), or degenerate
(SP and GLS at the root). As some of the methods could possibly provide a reconstructed distribution
matching exactly the theoretical one, we no longer have a lower positive bound of these E-distances
(the counterparts of the “optimal” red lines of Figure 3 are the abscissa axis in Figure 5). Since they
are Student instead of Gaussian, the distributions provided by ML and REML can not perfectly match
the theoretical ones. However, though GLS and PIC could conceivably lead to a perfect match with
the theoretical distribution, their performances are always significantly – we keep plotting errorbars –
overcome by ML and/or REML.

Considering reconstructed distributions rather than single values is expected to change the E-distances.
The most notable difference is that ML, REML and GLS are no longer equivalent and can now be com-
pared one another as well as with PIC and SP . Note that the E-distances are the very same in the case
of SP , since this method only provides a reconstructed state. We observe an improvement on the PIC
plots for node G between Figures 3 and 5. The same can be observed for node M, but the curves are
nearly indistinguishable for all the other nodes. Like in the case of PIC , there is no observable change
for GLS , except for nodes G and M, where its performance is slightly improved. On the contrary, the
distributions provided by ML and REML do lead to lower E-distances than those obtained from the
single reconstructed states. A general observation is that ML is significantly better than all the methods
when the drift µ is close to 0 (i.e. when the model is close to BM). As the drift increases, ML remains
the best method for nodes G, L and M but it tends to be overcome by REML for all the other nodes.
Supplementary Figure S2 shows the plots of Figure 5 for all the nodes of the tree.
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Figure 5: Mean Energy distance between the reconstructed distribution from PIC , ML, REML, GLS
and SP and the corresponding theoretical distribution from ABM models with σ equal to 3 and 10
versus the parameter µ for the nodes F, G and I.
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4.4 Discussion

As expected, we observe that all the methods perform better when the character evolution follows
a BM model. Under an ABM model, the reconstruction accuracy decreases linearly with the drift
intensity. Our simulations show that the reconstruction methods may lead to spurious results if the
character does not evolve under neutrality, like it was observed with fossil data in (Webster and Purvis
2002).

By construction, the theoretical distributions obtained from the simulation model reflect the real
uncertainty of the character reconstruction. Thus one expects from the distributions provided by a
reconstruction method to approach the theoretical ones or, at least, to be more informative that single
reconstructed states. Unfortunately, the reconstructed distributions provided by PIC and GLS are
generally farther from the theoretical ones than the degenerate laws at their reconstructed states. The
way in which they are computed is quite general in the sense that it does not depend on the leaf states.
On the contrary, the distributions provided by ML and REML are actually closer to the theoretical ones
than the degenerate laws at the reconstructed states. This indicates that these distribution may be
relevant with regard to the inherent reconstruction uncertainty.

To summarize the results of our comparison, we observe that ML is the most accurate – or at least
among the most accurate – each time the character evolution is close to neutral. As the drift intensity
increases and although ML and REML still often provide the most accurate reconstructions, they are
sometimes overcome by PIC or even SP . Overall, the methods do not deal well with drift. Their
comparison is inconclusive for characters under directional evolution. This calls for the development of
ancestral state reconstruction methods able to take into account a trend on the character evolution.
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Appendix

A Equivalence between GLS and ML

Let Zi be the random variable of the node state i. We put Z, Z(a) and Z(l) for the random vectors
t(Z1, · · · , Zn), t(Z1, . . . , Zr) and t(Zr+1, . . . , Zn), corresponding to all the nodes except the root, the
internal nodes excluding root, and the leaves, respectively. A set of node states z0, . . . , zn is organized
as vectors z, z(a) and z(l) accordingly.

In order to explain why GLS and ML are equivalent, we shall consider two different expressions of the
likelihood under the assumptions of ML. In particular, ML assumes that the character evolution follows
a BM model with variance σ2. The probability density of a vector z0, . . . , zn can be written either

f(Z0,Z)(z0, z) = fZ0
(z0)fZ(z), (A1)

or
f(Z0,Z)(z0, z) = fZ0

(z0)f(Z(a)|Z(l)=z(l))(z
(a))fZ(l)(z(l)). (A2)

Since the vector Z can be expressed as a linear transformation of the independent Gaussian increments
Zj−Zp(j), both fZ , fZ(l) and f(Z(a)|Z(l)=z(l)) are multivariate Gaussian densities. The variance-covariance

matrix ΣZ of Z can be split according to Z(a) and Z(l):

ΣZ =

(
Σa,a Σa,l
Σl,a Σl,l

)
where Σa,a is the variance-covariance matrix of Z(a), Σa,l is the covariance matrix between Z(a) and Z(l)

and so on. The matrix ΣZ has the form σ2K where entry Ki,j is the time between the root and the
most recent common ancestor of nodes i and j (Felsenstein 1973). We put 1 (resp. 1a and 1l) for the
n-dimensional (resp. r- and (n− r)-dimensional) vector with all coordinates equal to 1. Since Z follows
the multivariate normal distribution N (z01,ΣZ), the marginal and conditional random vectors Z(l) and
(Z(a)|Z(l) = z(l)) follow the multivariate normal distributions N (z01l,Σl,l) and N (z̃, Σ̃a,a) respectively,
where

z̃ = z01a + Σa,lΣ
−1
l,l (z(l) − z01l) and

Σ̃a,a = Σa,a − Σa,lΣ
−1
l,l Σl,a (Schur complement).

Under the ML assumptions, fZ0 is the improper flat density, thus its logarithm just vanishes in the
computation of log(f(Z0,Z)(z0, z)) with Equations (A1) and (A2). On the one hand, from Equation

(A2), the vector of partial derivatives of log(f(Z0,Z)(z0, z)) with respect to the internal states z(a) is
proportional to the vector

z(a) − z01a − Σa,lΣ
−1
l,l (z(l) − z01l).

On the other hand, from Equation (A1), the partial derivative of log(f(Z0,Z)(z0, z)) with respect to the
root state z0 is proportional to

z0
t1Σ−1

Z 1− t1Σ−1
Z z. (A3)

The maximum likelihood estimates ẑ0, ẑ1, . . . , ẑr of internal states with respect to the vector leaf
states z(l) may basically be obtained by solving the system of linear equations:

z0
t1Σ−1

Z 1− t1Σ−1
Z

(
z(a)

z(l)

)
= 0

z(a) − z01a − Σa,lΣ
−1
l,l (z(l) − z01l) = 1a .

(A4)

Let us get a simpler form for the first equation of (A4). The inversion formula for block matrices
gives us that

Σ−1
Z =

(
Σ̃−1
a,a −Σ̃−1

a,aΣa,lΣ
−1
l,l

−Σ−1
l,l Σl,aΣ̃−1

a,a Σ−1
l,l + Σ−1

l,l Σl,aΣ̃−1
a,aΣa,lΣ

−1
l,l

)
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It follows that Expression (A3) can be rewritten as(
t1aΣ̃−1

a,a1a − t1aΣ̃−1
a,aΣa,lΣ

−1
l,l 1l − t1lΣ

−1
l,l Σl,aΣ̃−1

a,a1a

)
z0

+
(

t1l(Σ
−1
l,l + Σ−1

l,l Σl,aΣ̃−1
a,aΣa,lΣ

−1
l,l )1l

)
z0

− (t1aΣ̃−1
a,a − t1lΣ

−1
l,l Σl,aΣ̃−1

a,a)z(a)

−
(

t1l(Σ
−1
l,l + Σ−1

l,l Σl,aΣ̃−1
a,aΣa,lΣ

−1
l,l )− t1aΣ̃−1

a,aΣa,lΣ
−1
l,l

)
z(l),

in which, substituting z(a) according to the second equation of (A4), leads to

z0
t1lΣ

−1
l,l 1l − t1lΣ

−1
l,l z

(l).

Finally, the estimates ẑ0 and ẑ(a) maximizing the log-likelihood with respect to the vector of leaf
states z(l) satisfy: {

ẑ0 = (t1lΣ
−1
l,l 1l)

−1t1lΣ
−1
l,l z

(l)

ẑ(a) = ẑ01a + Σa,lΣ
−1
l,l (z(l) − ẑ01l).

(A5)

These formula are the same as those computing the GLS reconstruction (Martins and Hansen 1997;
Cunningham et al. 1998; Martins 1999) in which ẑ0 is called the grand mean.

B Energy Distance

Let A and B be two random variables and FA and FB their respective cumulative distributions.

• If both A and B follow degenerate distributions at a and b respectively, then

dNRG(A,B) = 2|a− b|.

• If A follows a normal law N (µA, σ
2
A) and B a degenerate distribution at b, then, since for a standard

Gaussian random variable W

IE(|σW + µ|) = σ

√
2

π
exp

(
− µ2

2σ2

)
+ |µ|IP

(
|W | ≤ |µ|

σ

)
, (B1)

we have

dNRG(A,B) = σA
2√
π

(√
2 exp

(
− (µA − b)2

2σ2
A

)
− 1

)
+ 2|µA − b|IP

(
|W | ≤ |µA − b|

σA

)
.

If µA = b, the Energy distance is equal to 2σA
√

2−1√
π

thus increases with σA. For any fixed σA 6= 0, the

Energy distance goes to infinity as |µA − b| becomes larger while for any fixed distance |µA − b| 6= 0,
it goes from 2|µA − b| to infinity as σA goes from 0 to infinity.

• Let us assume that A and B follow a degenerate distribution at a and a Student law tr+1(µB , σ
2
B)

respectively. For the Student random variable W with (r + 1) degrees of freedom, we have

IE(|σW + µ|) =
2σ√
π

√
r + 1

r

Γ( r+2
2 )

Γ( r+1
2 )

(
1 +

µ2

(r + 1)σ2

)− r2
+ |µ|IP

(
|W | ≤ |µ|

σ

)
.

It is possible to compute directly IE(|A−B|) and IE(|A−A′|), but not IE(|B−B′|) because the difference
between two independent Student variables is not a Student variable. We thus rely on Expression (5)
of the Energy distance:

dNRG(A,B) = 2

∫ ∞
−∞
|FA(x)− FB(x)|2dx.
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with FA(x) =

{
1 if a ≤ x,
0 otherwise.

and FB(x) = FWS

(
x− µB
σB

)
, where FWS is the Student cumu-

lative distribution function with r + 1 degrees of freedom. The integral of (5) is approximated by∫ β
α
|FA(x)−FB(x)|2dx, where α = µB− qr+1σB , β = max(µB + qr+1σB , a) and qr+1 is the 0, 9999683-

quantile for a Student variable with r+ 1 degrees of freedom. The numerical computation of this last
integral is performed by the Wynn’s Epsilon algorithm (Piessens et al. 1983).

• If both A and B are Gaussian variables, we get from Equation (B1) that

dNRG(A,B) =
2√
π

(√
2(σ2

A + σ2
B) exp

(
− (µA − µB)2

2(σ2
A + σ2

B)

)
− (σ2

A + σ2
B)

)
+2|µA − µB |IP

(
|W | ≤ |µA − µB |√

σ2
A + σ2

B

)
.

• Let us finally assume that A and B follow a normal distribution N (µA, σ
2
A) and a Student distribution

tr+1(µB , σ
2
B) respectively. Hence again we have to rely on Expression (5). We approximate the integral

with
∫ β
α
|FA(x)−FB(x)|2dx, where α = min(µA−4σA, µB−qr+1σB), β = max(µA+4σA, µB+qr+1σB)

and qr+1 (resp. 4) is the 0, 9999683-quantile for a Student variable with r+1 degrees of freedom (resp.
for a standard Gaussian variable). The integral is computed via the Wynn’s Epsilon algorithm.
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