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Abstract  

The evolution of a cancer system consisting of cancer clones and normal cells is a complex dynamic process 

with multiple interacting factors including clonal expansion, somatic mutation, and sequential selection. As a 

typical example, in patients with chronic lymphocytic leukemia (CLL), a monoclonal population of transformed 

B cells expands to dominate the B cell population in the peripheral blood and bone marrow. This expansion of 

transformed B cells suggests that they might evolve through processes distinct from those of normal B cells. 

Recent advances in next generation sequencing enable the high-throughput identification and tracking of 

individual B cell clones through sequencing of the V-D-J junction segments of the immunoglobulin heavy chain 

(IGH). Here we developed a statistical approach to modeling cellular evolution of the immune repertoire.   

Adapting the infinitely many alleles model from population genetics, we studied abnormalities occurring in the 

immune repertoire of patients as substantial deviations from the null model. The Ewens sampling test (EST) 

distinguished the immune repertoires of CLL patients with imminent relapse from healthy controls and patients 

in sustained remission. Extensive simulations based on sequencing data showed that EST is sensitive in 

detecting cancer-related derangements of the IGH repertoire. In addition, we suggest two potentially useful 

parameters: the rate at which donor’s B cell clones enter the circulation and the average time to regenerate a 

transplanted immune repertoire, both of which help to distinguish relapsing CLL patients from those in 

sustained remission and provide additional information about the dynamics of immune reconstitution in the 

latter patients. We anticipate that our models and statistics will be useful in diagnosis and prognosis of 

leukemia, and may be adapted for application to other diseases related to adaptive immunity.  
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Introduction  

Since the 1970s, cancer has been known to be a complex cellular evolutionary process [1-3]. In a cellular 

system with cancer (cancer system, for short), cancer cells evolve through processes distinct from normal cells. 

Analogously to the evolution of human populations, a cancer system may experience clonal expansion, somatic 

mutations, selection pressure, competition between cancer clones and normal cells, as well as bottleneck effects 

caused by treatment [1-3]. Evolution of cancer systems has recently become a focus of research, as it holds the 

potential for uncovering cellular disease mechanisms and for developing effective therapies for cancer patients. 

However, few studies to date have applied evolutionary theory to cancer biology for diagnosis and prognosis of 

cancer patients [2-5]. Here we apply evolutionary models and genetic statistics to understand the dynamics of 

cell development and evolution in a cancer system. This analysis may potentially aid in cancer diagnosis and 

prognosis.  

 

In this study, we focus on chronic lymphocytic leukemia (CLL) as an example of a blood cancer system. CLL is 

a malignancy of mature B cells, where a monoclonal population of transformed B cells dominates the B cell 

population in a patient. It is the most common adult leukemia in the United States with approximately 15,500 

new cases and 4,400 deaths per year [6]. Conventional immuno-chemotherapy may prolong survival, but is not 

curative. Allogeneic hematopoietic cell transplantation (allo-HCT) can provide long-term remission, and 

possible cure, for roughly half of patients with high-risk CLL [7-8]. Unfortunately, about 40 percent of CLL 

transplant patients ultimately relapse [9-11]. Quantification of minimal residual disease (MRD) after 

chemotherapy or transplantation tracks the frequency of cancer clones in a patient’s immune repertoire, and 

allows clinicians to monitor the efficacy of treatment by providing early detection of CLL progression at the 

molecular level [9-11].   

 

The immune repertoire of an individual is the collection of antigen receptors of B or T cells in the peripheral 
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blood at a given time [12-20]. In the B cell compartment, each antigen receptor gene is generated through 

rearrangement of the variable (V), diversity (D), and joining (J) gene segments of the immunoglobulin heavy 

chain (IGH) locus and V-J rearrangement of the kappa or lambda light chain loci. Due to recombination of V, D 

and J gene segments and random nucleotide changes at the junction of those gene segments, the number of 

potential antigen receptors is enormous. The immune repertoire of healthy subjects is generally quite diverse, 

while loss of immune repertoire diversity has been found to be associated with aging and various diseases 

including cancer [21-24].  

 

Next generation sequencing (NGS) provides a cost-effective opportunity to sequence the V-D-J gene segments 

of individual B cells [5,18,25-27]. As each V-D-J sequence is a unique identifier for each B cell, NGS allows us 

to monitor B cell evolution in an immune repertoire and enables investigation of methods for detecting rapid 

clonal expansion of malignant B cells at the expense of the normally diverse B cell repertoire. This approach 

may ultimately improve cancer diagnosis and prognosis; however, the lack of sophisticated statistical and 

computational approaches for interpreting such NGS data currently limits its use in clinical decision-making.  

 

In this study, we develop a statistical approach to modeling the cellular evolution of the immune repertoire. This 

approach adapts the infinitely many alleles model from classical population genetics theory [28-30].  The null 

model describes the variability of a healthy immune repertoire in the absence of antigen stimulation, and 

deviations from this null model may reveal disequilibrium or abnormality in an immune repertoire, indicating 

potential risk of disease. The Ewens sampling test (EST) [28,29,31] can be applied to identify deviations from 

the null model. We performed simulations to demonstrate that EST can detect irregularity in the immune 

repertoire with relatively high sensitivity. We then applied EST to our IGH V-D-J sequencing data from CLL 

patients [27] and showed that EST distinguished the immune repertoires of CLL patients with active or 

imminent relapse from those of healthy individuals and patients in long-term remissions (i.e., lasting well 

beyond the period covered by our sequencing study). Additionally, we estimated two parameters of interest for 

patients undergoing allo-HCT: the rate at which donor novel B cells enter the circulation and the average time 
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to reconstruct the transplanted immune repertoire after transplant. These characterize the evolutionary 

trajectories of the immune repertoire following allo-HCT. As the approach is able to detect deviations of an 

immune repertoire from normal, we anticipate that it can be applied to other types of B cell or T cell cancers as 

well as other diseases related to adaptive immunity. 

 

Results 

In order to distinguish the cellular evolutionary pattern of patients with CLL from controls, it is essential to first 

model the evolution of healthy immune repertoires and then to use this as a null model to develop statistical 

tests. In examining the frequency spectra of V and J gene rearrangements from CLL patient and donor samples 

[27], we observed high diversity in healthy donors (Fig 1(A)) and a highly skewed frequency distribution, 

usually with one dominant clone, in CLL patients (Fig 1(B)). We modeled evolution of the immune repertoire 

with the Moran infinitely many alleles model assuming a constant population size (see below for justification), 

and applied the Ewens sampling test to detect CLL as a significant deviation from the normal pattern. We also 

estimated the incorporation rate of novel B cells into the immune repertoire as an indicator of disease status. 

Next we modeled the development of the transplanted immune repertoire (the fraction of the recipient’s B cell 

repertoire derived from the transplanted donor cells), whose size varies over time, using a linear birth process 

with immigration to relax the assumption of constant population size in the infinitely many alleles model. Based 

on this process, we estimated the average time to generate the observed transplanted immune repertoire and 

used it as a measure of expansion or shrinkage of the transplanted repertoire. 

 

I. Modeling cellular evolution in the immune repertoire 

Motivated by the distinct diversity patterns of CLL and donor samples, and to understand MRD and immune 

reconstitution after allo-HCT, we adapted an evolutionary stochastic process, the infinitely many alleles model 

[28-30], to model the generation and elimination of B cells. The Moran version of this model describes a 

neutrally evolving population in which alleles are created or lost through a birth and death process.  To apply 
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this model, we made a simplifying assumption that after novel B cells acquire VDJ rearranged antigen receptors 

and mature in bone marrow or lymph nodes, they enter the circulation and proliferate independently and 

spontaneously in the absence of antigen stimulation, as illustrated in Fig 2 (A). Some of the original B cells in 

the population may be eliminated, some may remain unchanged, and others may proliferate. Since mature B 

cells’ half-life is approximately 5-6 weeks [32], when looking backward, the immune repertoire pattern at any 

given instant is assumed to have been generated from B cells entering the circulation within the prior three 

months. 

 

To simplify the modeling of B cell development in allo-HCT patients, we made several additional assumptions. 

First, we assumed a constant population size of B cells in an immune repertoire, since the number of B cells is 

generally stable in the human circulation (a normal B-cell count is between 50 and 500 per microliter [33]). 

Second, the process of generating a B cell includes multiple transitional states, progenitor B cell, pro-B cell, 

pre-B cell, transitional B cell, naive B cell, plasma blast, and memory B cell. Also the majority of B cells in the 

blood are naïve B cells [34]. Here we reduce this process to two states according to their location, inside and 

outside the circulation. Third, in our context, a novel B cell represents a normal B cell with a distinct IGH V-J 

combination since it is difficult to reliably determine the D gene segment due to its short length in some cases 

(it is straightforward to generalize this model to V-D-J combinations or even clonotypes if these can be 

accurately identified). Fourth, we assumed that a new V-J combination is randomly generated from 288 

combinations of 48 functional V and six J gene segments. Although the total number of possible V-J 

combinations, 288, is finite, we assumed that it is sufficiently large in a population of 15,000 B cells to 

approximate the generation of previously unseen mutant alleles (new clones), as assumed in the infinitely many 

alleles model [28-30]. Last, the unit of time for this system is assumed to be the average time interval between 

two consecutive proliferation events of a B cell. 

 

The evolution of B cells in the immune repertoire in the absence of antigen stimulation is very similar to the 

genetic drift of alleles in a constant-size neutral population. Novel B cells enter the circulation following 
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maturation outside the circulation (i.e., in the bone marrow or lymph nodes). This is analogous to the process of 

introducing new allelic mutants into the population. Due to allelic exclusion, each B cell carries only one 

functional copy of the IGH gene [35], so for M cells there are M copies of the gene. We then model the 

evolution of the immune repertoire with the Moran infinitely many alleles model, where alleles are generated or 

lost through a birth and death process [29,36,37]. Theoretically, there exists a stationary distribution of allelic 

configurations for this model, which is the Ewens sampling distribution (ESD) [29,36]. The rate at which novel 

B cells enter the circulation is equivalent to the mutation rate of alleles, denoted by . We let θ=2N, where N 

is the constant B cell population size in an immune repertoire. θ/2 can be interpreted as the expected number of 

novel B cells entering the circulation per unit of time. Henceforth, we refer to θ as the incorporation rate of 

novel B cells in the circulation. 

 

To examine whether this model reflects evolution of the immune repertoire, we performed forward simulations 

to evaluate whether the Ewens distribution fits the clonal frequencies of an empirically determined immune 

repertoire. We simulated B cell clones following the modified Polya urn model [38] with different values of the 

incorporation rate θ, as ESD arises naturally from the modified Polya urn model (see Methods section III). 

When θ is large, e.g. 40 (S1 Fig (B)), which means 20 novel B cells are expected to enter the circulation each 

unit of time, the frequency spectrum of V-J combinations resembles that of the normal immune repertoire with 

relatively high diversity (Figs 1 (A) and 2 (B) normal). As θ decreases, the diversity decreases substantially. 

When θ is 1 (S1 Fig (A)), the frequency pattern is very close to that of the CLL repertoire at diagnosis with a 

low diversity (Fig 1 (B)). We repeated the simulation 100 times for each value of θ and estimated the observed 

homozygosity for each simulation. Fig 2 (B) shows that the distribution of observed homozygosity for 

simulations with θ=1 overlaps that of cancer (CLL) samples and the distribution of homozygosity simulated 

with θ=40 covers that of donor samples. This simulation shows the consistency of our model with the biology 

of lymphocytes. When the incorporation rate θ of novel B cells is low, a higher fraction of identical cancer B 

cells are generated in the system. When θ is high, the majority of B cells entering the circulation are novel, 

leading to high diversity in the immune repertoire. The simulation suggests that our model may be a reasonable 
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description of B cell evolution in the immune repertoire. 

 

II. Application of Ewens sampling test  
The stationary allelic configuration distribution of this infinitely many alleles model in the absence of any 

selective process, namely the Ewens sampling distribution [29,36], can describe the V-J combination frequency 

spectrum in a snapshot of a healthy immune repertoire. When cancer clones rapidly expand to dominate the 

repertoire, the diversity is substantially reduced and the pattern of variation in the repertoire diverges from that 

expected from the ESD. This led us to apply the Ewens sampling test [29,36] to detect whether the V-J 

combination frequency spectra of CLL patient immune repertoires differ from normal.  

 

In a previous study [27], we sequenced IGH variable regions in serial samples of six CLL patients up to two 

years (740 days) after transplantation (Stanford Patient Numbers SPN4077, SPN3860, SPN3751, SPN3873, 

SPN3740, and SPN3975), and six corresponding donor samples (see Methods section V). Of these patients, 

SPN3740 and SPN3975 experienced early CLL relapse at 182 and 210 days following allo-HCT, respectively. 

Three patients remained in long-term remission until day 1,120 (SPN3751), day 980 (SPN 4077), and day 798 

(SPN3873). SPN 3860 had not relapsed with 1,810 days of follow-up. SPN3740, SPN 3751, SPN3873, and 

SPN4077 received Rituximab at 56, 63, 72, and 79 days post transplantation, which eliminates the vast majority 

of mature B cells in circulation with an average duration of response of six months. Thus, samples collected at 

180 days post HCT are excluded from the analysis, due to the potential confounding effects of Rituximab 

treatments. We acquired roughly 15,000 functional reads from each sample after eliminating non-functional 

alleles (i.e., those with premature stop codons) from our analysis. Henceforth, we assume each functional read 

corresponds to one B cell. 

 

After identifying germline V and J gene segments corresponding to each read, we examined the V, J gene usage 

pattern for each sample. The temporal V-J frequency spectra of patient SPN4077 were shown in Figure 5 of 
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[27] and here in Fig 1. At diagnosis (Fig 1 (B)), the highly skewed frequency distribution with one dominant 

clone suggests heavily reduced diversity of the underlying immune repertoire. Over a period of one year after 

allo-HCT, the proportion of the dominant cancer clones gradually diminished while the nascent clones 

expanded steadily. After one and a half years, the pattern of the recipient’s repertoire was as diverse as that of 

the donor (donor’s repertoire pattern is shown in Fig 1 (A)). Supporting Figure S5 in [27] shows the temporal 

trajectories of the spectra of V-J combinatorial diversity for the other five patients. Among them, the spectra of 

patients SPN3975 and SPN3740 with early relapsed CLL remain highly skewed over time.  

 

We then applied EST to the immune repertoire sequencing data of these patient samples. As illustrated in Fig 3 

(A,B), all the donors’ immune repertoires follow the null distribution with p-values of EST approximately 1, 

and their observed homozygosities (the test statistic of EST) are close to 0, indicating a high diversity (Fig 3 

(C,D)). However, the immune repertoire of CLL patients at diagnosis (SPN4077) or after relapse (SPN3740 and 

SPN3975) reject the null hypothesis (Fig 3 (B)), as they generally have a highly skewed frequency distribution 

of B cell clones. When the patients recover after allo-HCT, their repertoire patterns follow ESD again. For 

patient SPN4077 in Fig 3 (A), the p-value at 56 days post allo-HCT is the same as that at diagnosis, as the 

cancer clone remained dominant although the transplanted B cells began to expand. At one year, novel B cell 

clones dominated SPN4077’s immune repertoire with the observed homozygosity close to 0 and the p-value 

reaching 1. The observed homozygosity of immune repertoire of patients SPN3860 and SPN3751 reaches a 

level similar to healthy donors at 18 months post allo-HCT (Fig 3 (C)) and their p-values are close to 1 (Fig 3 

(A)). The repertoire homozygosity of patient SPN3873 remains higher than donors’ levels, and the p-values are 

significant for the three time points after HCT, implying this patient may be on the verge of relapse. This result 

suggests that this test, based on immune repertoire diversity, can reflect the MRD status of patients, and has the 

potential for prognosis of the allo-HCT treatment for these patients.  

 

We performed simulations to evaluate the sensitivity of our test in this application. We randomly simulated 

data-sets mimicking experiments that spike cancer clones into donor samples with the surrogate cancer clone 
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proportions ranging from 1% to 99% of the whole repertoire (see Methods section IV). As illustrated in Fig 4 

(A), the p-values for EST are close to 1 when the percentages of cancer clones are small. Then the p-values drop 

sharply as the percentages of cancer clones increase to approximately 15%. Though EST is known to be 

conservative it can accurately distinguish normal from abnormal patterns in the immune repertoire. The value of 

 can be estimated from the frequency configurations as shown in Methods section I. The maximum likelihood 

estimate (MLE) of   is denoted by 

   

ˆ q . 

 

III. Estimation of incorporation rate of B cells in immune repertoire 

 
Addition of novel B cells can be viewed as a process of novel B cells migrating into the circulation. These novel 

B cells have an allele frequency distribution characterized by an incorporation parameter θ, which controls the 

dynamical status of the immune repertoire. We assume that in a healthy repertoire, θ /2 novel B cells are 

expected to enter the circulation per unit time of the system. When cancer clones dominate the repertoire, very 

few novel B cells appear in the circulation. Thus incorporation events may be limited and θ becomes relatively 

small suggesting that 

   

ˆ q  can be used to monitor the status of the immune repertoire. θ represents the rate at 

which novel B cells enter the system and the number of different B cell types (different V-J combinations in our 

simplified scenario) in a given immune repertoire is a sufficient statistic for θ [29,36,37].  

 

We estimated θ from the simulated data sets and for the six patients using 

   

ˆ q  as described in Methods. The 

variation of 

   

ˆ q  with the abundance of surrogate cancer clones is shown in Figure 4B. We chose an ad-hoc cut-

off of 20 for 

   

ˆ q , which clearly separates the trajectories of patients with imminent relapse from those with 

sustained remission. In patients SPN4077, SPN3860, SPN3751, and SPN3873 (Fig 5 (A)), we observed an 

overall increasing temporal trend of 

   

ˆ q  until it reaches the control level, implying rapid incorporation of B cells 

into the circulation. In contrast, this estimator is substantially lower in patients SPN3740 and SPN3975 (Fig 5 

(B)), who had CLL relapse during the period, probably due to ineffectiveness of allo-HCT or Rituximab and 
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other anti-B cell therapies in these patients. These results suggest that 

   

ˆ q  has the potential to distinguish normal 

samples from the cancer-like ones, and can serve as information supplementary to EST.  

 

IV. Estimation of the average time to reconstitute immune repertoire 

 
We also estimated the average time to generate the transplanted immune repertoire observed at a given time 

after removing any cancer clones and subclones. For the transplanted immune repertoire, we applied a different 

model, the linear birth process with immigration [29,36,37]. The reason for using this model is that the 

infinitely many alleles model assumes a constant population size, which may not apply if the size of the 

transplanted immune repertoire changes over the time. This linear birth process with immigration relaxes the 

assumption of constant population size, and may be appropriate to model the evolution of the transplanted 

immune repertoire.  

 

In this model, we assume that the donor’s B cells with new V-J combinations migrate into the circulation 

according to a continuous time, pure-birth Markov chain with the immigration parameter denoted as 

   

qM . Upon 

migration, each B cell immigrant initiates a clone, the size of which follows a linear birth process with rate 1. 

Different clones evolve independently. Therefore, the population size of all the donor’s B cell clones is 

mathematically formulated as a linear birth process with immigration. Interestingly, the distribution of allelic 

configurations in the stochastic process at any given time is also the Ewens sampling distribution [29,36,37], as 

in the infinitely many alleles model. In the case of successful immune repertoire reconstitution, the donor’s B 

cell population, which starts very small, will grow following this process to a reasonable size—e.g. the normal 

number of B cells in the circulation—after which the population size will become stable with minor random 

fluctuations. In the case of cancer relapse, the donor’s B cell population either remains small or shrinks. 

 

Using this model, we can estimate the expected time to generate a transplanted immune repertoire with a given 

size as shown in Methods section II. This is equivalent to estimating the expected age of the oldest donor-
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derived B cell clone in the repertoire, and is the sum of the expected time intervals between any two consecutive 

events, either immigration or proliferation events. This time parameter is of clinical interest, as it measures the 

expansion or shrinkage rates of the transplanted immune repertoire in the recipient’s circulation and can also be 

used to evaluate the patient’s recovery status after treatments. For our patient data, we estimated this time 

parameter for each sample from the six patients after treatment. Fig 6 shows that this time estimator increases 

monotonically for patients SPN4077, SPN3860, and SPN3873, who remain in remission for more than two 

years following allo-HCT, and decreases substantially for patients SPN3740 and SPN3975 with relapsed CLL 

during the same period, though Rituximab and other treatments likely also contribute to the sharp reduction. An 

exception is seen in patient SPN3751 for whom the estimated time of reconstitution drops sharply at one year, 

probably due to the prolonged effect of Rituximab, which eliminates most B cells over the period of six to nine 

months after allo-HCT; however, this drop is followed by remarkable increases. Generally, the estimated time 

to generate a transplanted repertoire reflects the recovery trend of patients and can be informative at early time 

points. 
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Discussion 

There have been few studies to date that apply molecular evolutionary theories to understand the mechanisms 

underlying cancer systems, although cancer development is indeed an evolutionary process [1-4,39,40]. Maley 

et al. [4] used the Shannon diversity index to predict progression to esophageal adenocarcinoma, which inspired 

our current study. Here we applied the infinitely many alleles model to describe the spontaneous evolution of an 

immune repertoire in the absence of external selection. Any immune repertoire patterns that deviate 

significantly from the equilibrium of allelic configurations predicted by this neutral evolutionary model may be 

a result of the progression of blood cancers such as CLL.  

 

Using IGH high-throughput sequencing data of CLL patient samples, we employed this model to investigate the 

reconstitution of the immune repertoire after allo-HCT. We applied EST to distinguish CLL patients from 

healthy individuals. We also estimated two parameters of clinical interest, the immigration rate of novel B cells 

into the circulation and the average time to generate the transplanted immune repertoire after allo-HCT. 

Applications to both experimental and simulated data demonstrated that our model mimics the real data well: 

statistics and tests derived from the model can successfully distinguish cancer samples from normal ones, and 

describe the evolutionary dynamics of an immune repertoire. In particular, these statistics are sensitive in 

distinguishing samples with immediate CLL relapses from those in remission for more than two years. They 

also revealed a potential negative effect of Rituximab post HCT, which functions as a bottleneck for a B cell 

population. Since Rituximab eliminates the majority of B cells, when administrating it to post-HCT patients, it 

necessarily leads to delays in the reconstitution of the normal immune repertoire. 

 

Our statistics provide three additional insights. The EST assesses the diversity of an immune repertoire; the 

estimator 

   

ˆ q  of incorporation rate reflects the evolutionary variation of a repertoire; and the estimated average 

time to repertoire reconstitution reveals the expansion or shrinkage of a transplanted repertoire. Together these 
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metrics assess the quantitative properties of the immune repertoire in disease monitoring, including its diversity 

and dynamics. Thus, integrating these statistics may provide the potential for prognosis of patients with 

treatments. Large-scale studies are needed to confirm the applicability and accuracy of these statistical tools in 

patient care. 

 

The application of our model and methods is not limited to blood cancer. By using analogous interpretations, it 

is straightforward to extend this approach to immune monitoring in other diseases, such as autoimmune 

diseases, infections and non-hematologic malignancies. The polymorphic variation in a healthy immune 

repertoire with mild fluctuations may often be described in terms of ESD. When diseases occur, the human 

body often generates strong and persistent immune responses against pathogens or other antigens and the 

immune repertoire generally exhibits highly skewed frequency spectra of lymphocyte clones, such as have been 

seen in colon cancer and systemic lupus erythematosus (unpublished data from Dr. C. Wang). Therefore, the 

diversity patterns of immune repertoires in these diseases may deviate from ESD and become detectable by our 

statistics. 

 

Our stochastic model is a substantial simplification of the evolutionary mechanism of the actual dynamics of an 

immune repertoire and neglects many essential elements including positive and negative selection. It is 

predominantly applicable to rather ideal situations, such as in the absence of antigen stimulation or with mild or 

weak antigen stimulation, where the background (null) distribution follows ESD. Analysis of additional clinical 

samples will be needed to determine whether different repertoire signatures occurring in the context of clinical 

events such as infections will remain assessable with this method. To effectively model the response of the 

immune repertoire to other immunological diseases, the current model might be extended by incorporating 

parameters representing the selection pressures on specific lymphocyte clones. This would involve allowing 

lymphocyte clones, after entering the circulation, to proliferate at different rates, proportional to the strengths of 

antigen stimulation. By explicitly modeling positive and negative selection, the power to distinguish persistent 

abnormality in the immune repertoire from temporary fluctuations may be improved. 
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Currently our diversity modeling and analysis are mainly performed at gene segment levels, e.g., V and J gene 

segments, but these methods can be extended to the clonotype level. However, identification of different types 

of clonal sequences requires accurate identification of somatic hypermutations and sequencing errors. Lately 

extensive efforts have been made to improve sequencing techniques and reduce sequencing error rates.  

Currently Illumina sequencers produce approximately one sequencing error every 1000 nucleotides, while ion-

torrent machines produces ~1 error every 100 nucleotides. Therefore, using Ilumina sequencers it is possible to 

estimate diversity metrics at clonotype levels, but they tend to produce multiple replicates for each clonotype. 

Thus, before applying our models, replicates need to be removed to comply with our assumption that each read 

corresponds to one cell. Advances in sample processing enable PCR-free sequencing, which eliminates the 

amplification step and will not produce replicates. Applying these new technologies will enable estimation of 

diversity metrics at clonotype levels, and permit inference concerning more subtle variations in patient immune 

repertoires. 

Methods 

I. Moran infinitely many alleles model and derived statistics 
We model the evolution of the immune repertoire as a Moran infinitely many alleles model [41,42], which 

assumes that individuals in a population are created or lost through a birth and death process with a constant 

population size. In our case, B cells may proliferate or die randomly in a population. According to this model, 

the allelic configuration of the V-J combinations at a stationary state follows ESD and we can formulate a 

statistical test based on this null distribution. We choose the observed homozygosity as the test statistic and the 

p-value can be theoretically computed using Ewens sampling formula [41,42]. However, in our scenario, the 

sample size is generally large, on the order of 10
4
, thus it is impossible to enumerate all possible configurations 

of V-J combinations. Monte Carlo simulation is used to generate the p-values of EST, following Slatkin [41,42], 

and the significance cut-off is set at 0.05. The code for our application of the EST is available upon request. 
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To estimate the incorporation parameter θ, we directly apply Ewens’ result that the number of different allele 

types in the system, K, is a sufficient statistic for θ, and the MLE 

   

ˆ q  of θ is the solution of the 

equation

  

K =
q

q + i -1
i=1

N

å  [29,36], where N is the population size and 0<K< N. Then we use the bisection method 

to solve the above equation to obtain 

   

ˆ q  [41,42]. 

 

II. Linear birth process with immigration and derived estimator 
We show the derivation of linear birth process with immigration for the development of a transplanted immune 

repertoire. The number of novel B cells that have entered the circulation and initiated clones by time t follows 

the stochastic pure birth process P(t), which has a rate 

   

qM  and initial value zero. The i-th novel B cell, which 

comes from the donor, migrates into the circulation at the time Ti (0 ≤ T1 < T2 < ….) and then proliferates to 

initiate a clone independently from other clones according to a linear birth process with rate 1. We let 

  

Wi(t -Ti) 

measure the size of the i-th B cell clone at time t after entering the circulation at the time Ti. 

  

Wi(t -Ti) starts at 

  

Wi(0) =1 and increases at an infinitesimal birth rate 

  

ni(t) for 

  

ni(t) ³1, where 

  

ni(t) represents the size of the i-

th B cell clone at time t. Thus the total size of the transplanted B cell population in an immune repertoire at time 

t is the sum of sizes of all the present B cell clones

  

S(t) = W i(t -Ti)
i=1

P(t )

å ,  starting at S(0) = 0, with infinitesimal 

rates rt = n(t)+qM  for 

  

n(t) ³1, where 

   

n(t) = ni(t)
i

å  is the total size of all the B cell clones at time t. This 

process 

  

S(t)is called a linear birth process with immigration.  

 

We then estimate the average time to generate the transplanted immune repertoire observed at a given time t by 

first identifying and removing cancer clones and then summing up the expected time intervals between any two 

consecutive events, either immigration or proliferation. For each sample of the six patients, we estimate this 

time parameter 

   

TM  as T̂M =
1

rt
=

1

n(t)+qMn=0

S(t )

å
n=0

S(t )

å , where 

  

S(t) is the transplanted B cell population size of that 
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sample at time t and 
1

rt
 is the expected time until the next event takes place, which is the reciprocal of rate 

rt = n(t)+qM for 

  

n(t) ³1. 

   

qM  is estimated by solving 

   

K(t) =
qM

qM + i -1
i=1

S( t )

å , where 

  

K(t) is the number of 

different B cell types in that sample at time t [29,36,37]. 

 

III. Forward simulation 
To examine whether our model fits the immune repertoire data, we performed forward simulation following the 

modified Polya urn model (also known as the Chinese restaurant process) [38] with different values of the 

incorporation rate θ. At time t =1, the immune repertoire is empty and a novel B cell enters the system. At time 

  

t = N(t), the 

  

N(t)-th B cell is added to the repertoire either by an incorporation event with probability 

   

q

q + N(t) -1
 or by a proliferation event from the i-th existing B cell clone with probability 

   

ni(t)

q + N(t) -1
, where 

  

ni(t) is the size of the i-th existing B cell clone at time t and 

   

N(t) = ni(t)
i

å . The simulation is stopped when 

the population size reaches 15,000. We used two values for parameter 

   

q , 40 and 1, corresponding to the 

estimated incorporation rate 

   

q from donor samples and cancer samples, respectively. The simulation was 

repeated 100 times for each value of 

   

q and observed homozygosity computed for each simulation and each 

patient sample. 

 

IV. Simulation for performance evaluation of test statistics 
To evaluate the sensitivity of our methods, we performed extensive simulations mimicking the spiking-in of 

cancer clones at different proportions into control (donor) samples. We tested 99 levels of cancer clone 

abundance, ranging from 1% to 99% of the total read size. For each of the 99 proportions, we randomly chose 

one of the control samples and then picked one clone as the surrogate cancer clone. Next, we assigned a new 

clone size calculated according to the proportion assigned to this cancer clone and sampled the remaining clones 
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without replacement to constitute the residual immune repertoire, scaling the total sample size to 15,000. We 

repeated this procedure 100 times per proportion level, that is, 9,900 simulations in total. 

 

V. Immune repertoire sequence data from CLL patients 
We have previously collected serial blood samples from six CLL patients at diagnosis and after allo-HCT at 

days +56, +365, and +550.  (Samples collected at day +180 used in [27] were removed as those patients were 

treated with Rituximab at three months post-transplant, which may confound analyses.) Patient SPN3975 has 

two samples collected at additional time points at days +650 and +740. The samples of six donors were also 

collected to serve as references. These samples were then sequenced by Roche/454 technology. After initial 

filtering, we mapped each read to germline sequences from ImMunoGeneTics (IMGT) database  [43] using the 

Asymmetric Smith-Waterman algorithm [44] to identify the germline types for each V, D, J gene segment. In B 

cells, there are about 48 V, 20 D and six J functional gene segments. Identification of D gene segment in the V-

D-J junction is rather difficult due to the short length of D gene segments and trimming at both ends of D gene 

segments during somatic recombination. Reads that were not mappable or that were mapped to non-functional 

gene segments were filtered out.  
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Figures 
 

 

 

Fig 1. Heatmap of frequency spectra of V-J combinations in immune repertoires. Frequency spectra of V-J 

combinations in immune repertoires of a healthy donor (A) and a CLL patient SPN4077 at diagnosis (B) across 

48 functional V segments (x axis) and six functional J segments (y axis). Color indicates the number of cells on 

the log scale. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2016. ; https://doi.org/10.1101/037770doi: bioRxiv preprint 

https://doi.org/10.1101/037770
http://creativecommons.org/licenses/by-nd/4.0/


 22 

 

Fig 2.  Illustration of B cell evolutionary model (A) and evaluation of model fitness by forward simulation 

(B).  (A) Schematic illustration of the general developmental process of B cells over time T. After maturing in 

bone marrow or training in lymph nodes, B cells represented by circles enter the circulation to proliferate and 

initiate clones independently and spontaneously. Each color represents a distinct clone and the distinct clones 

enter the circulation at different times. (B) Distributions of observed homozygosity of data from patient/normal 

samples and forward simulations. From left to right, respectively, are represented CLL samples, forward 

simulation with incorporation rate  = 1, normal (healthy) donor samples, and forward simulation with  = 40. 
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Fig 3. Temporal variation of p-values (A-B) and test statistic (C-D) of EST for deviations from the normal 

pattern in Fig 1 (A) among samples of six patients. SPN4077, SPN3860, SPN3873 and SPN3751 were in 

sustained remission following allo-HCT (A and C); while SPN3975 and SPN3740 had imminent relapsed CLL 

post-HCT with p-values close to zero (B and D). All the donors have p-values 1. The black dashed line in A and 

B represents the significance level of 0.05 for EST. The black dashed line in C and D is an arbitrary separation 

of patients for observed homozygosity. Note: for SPN4077 data are available at four time points, while only 

three time points are available for SPN3860, SPN3873 and SPN3751. The x-axis labels “Donor” and “DX” 

represent donor sample and patient sample at diagnosis, respectively. “56d”, “365d”, “550d”, “650d”  and 

“740d” represent patient samples collected at different time points (in days) after allo-HCT. 
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Fig 4. Sensitivity analysis of statistics based on the simulated data. The sensitivity of Ewens sampling test 

(A) and 

   

ˆ q  (B), MLE estimator of incorporation rate , respectively, at various abundances of surrogate cancer 

clones. The x-axis represents the percentage of the surrogate cancer clones in the entire immune repertoire. The 

black dashed lines represent the significance level of 0.05 for EST (Fig 4 (A)) and the ad-hoc cut-off 20 for 

   

ˆ q  

(Fig 4 (B)), respectively. 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2016. ; https://doi.org/10.1101/037770doi: bioRxiv preprint 

https://doi.org/10.1101/037770
http://creativecommons.org/licenses/by-nd/4.0/


 25 

 

 

Fig 5. Temporal changes in estimated immigration rates 

   

ˆ q   of novel B cells among patient samples. The 

grouping of patients and the x-axis labels are the same as in Fig 3. The black dashed line represents the ad-hoc 

cut-off of 20 for the estimated incorporation rate 

   

ˆ q . 
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Fig 6. Temporal trend of estimated average time to construct transplanted immune repertoires in six 

patients. The grouping of patients and the x-axis labels are the same as in Fig 3. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2016. ; https://doi.org/10.1101/037770doi: bioRxiv preprint 

https://doi.org/10.1101/037770
http://creativecommons.org/licenses/by-nd/4.0/


 27 

Supporting Information  

 

S1 Fig. Frequency spectra of V-J combinations by forward simulation with incorporation rates θ = 1 (A) 

and θ = 40 (B) across 288 V-J combinations assuming a population size of 15,000. 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2016. ; https://doi.org/10.1101/037770doi: bioRxiv preprint 

https://doi.org/10.1101/037770
http://creativecommons.org/licenses/by-nd/4.0/

