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Abstract

Sites of positive selection are identified by comparing observed evolutionary patterns to those ex-
pected under a null model for evolution in the absence of such selection. For protein-coding genes,
the most common null model is that nonsynonymous and synonymous mutations fix at equal rates;
this unrealistic model has limited power to detect many interesting forms of selection. I describe a
new approach that uses a null model based on high-throughput lab measurements of a gene’s site-
specific amino-acid preferences. This null model makes it possible to identify diversifying selection
for amino-acid change and differential selection for mutations to amino acids that are unexpected
given the measurements made in the lab. I show that this approach identifies sites of adaptive sub-
stitutions in four genes (lactamase, Gal4, influenza nucleoprotein, and influenza hemagglutinin) far
better than a comparable method that simply compares the rates of nonsynonymous and synonymous
substitutions. As rapid increases in biological data enable increasingly nuanced descriptions of the
constraints on individual sites, approaches like the one here can improve our ability to identify many
interesting forms of selection.

Introduction

An important goal of biology is to identify genetic modifications that have led to interesting changes

in phenotype. In the case of protein-coding genes, this means identifying mutations that were fixed by

selection to alter properties such as the activity of enzymes or the antigenicity of viral proteins.

This goal is challenging because not all mutations that fix do so because they confer beneficial

phenotypic effects that are selected by evolution. Sometimes mutations fix because they adaptively alter

phenotype, but mutations also fix due to forces such as genetic drift or hitchhiking. Therefore, it is

difficult to examine gene sequences and pinpoint specific mutations that have changed evolutionarily

relevant phenotypes. As Zuckerkandl and Pauling (1965) noted a half-century ago:

[Many] substitutions may lead to relatively little functional change, whereas at other times
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the replacement of one single amino acid residue by another may lead to a radical functional

change... It is the type rather than number of amino acid substitutions that is decisive.

Unfortunately, Zuckerkandl and Pauling (1965) did not provide a prescription for determining the “type”

of substitution that leads to phenotypic change, and such a prescription remains elusive decades later.

Because it is difficult to determine a priori which substitutions have altered relevant phenotypes,

methods have been devised that compare homologous sequences to identify sites where mutations have

been positively selected by evolution. The basic strategy is to formulate a null model for evolution, and

then identify sites that have evolved in ways incompatible with this model. If the null model adequately

describes evolution in the absence of selection for phenotypic change, then sites that deviate from the

model are ones where mutations have been selected because they alter evolutionarily relevant phenotypes.

For protein-coding genes, the most widely used algorithms are built around the null model that

nonsynonymous and synonymous mutations should fix at equal rates. These algorithms estimate the

rates of fixation of nonsynonymous (dN ) and synonymous (dS) mutations at each codon site r (Nielsen

and Yang, 1998; Suzuki and Gojobori, 1999; Yang et al., 2000; Pond and Frost, 2005; Murrell et al.,

2012). The ratio dN/dS at r is taken as a measure of selection. If the ratio is clearly > 1 then pressure

for phenotypic change is favoring fixation of protein-altering nonsynonymous mutations, and the site is

under diversifying selection. If the ratio is clearly < 1 then nonsynoymous mutations are being purged

to prevent phenotypic change, and the site is under purifying selection.

Although dN/dS methods are tremendously useful (the leading software implementations HyPhy

and PAML have each been cited thousands of times; Pond et al., 2005; Yang, 2007), their underlying null

model is clearly oversimplified. A random amino-acid mutation completely inactivates the typical protein

≈40% of the time (Guo et al., 2004). So unsurprisingly, most genes have many sites with dN/dS < 1.

This finding is often of little biological value, since researchers frequently already know that the gene

they are studying is under some type of protein-level constraint. So detecting purifying selection as

manifested by dN/dS < 1 often points more to the naivety of the null model than unexpected biology.

Perhaps more importantly, dN/dS methods also have limited power to identify sites that have fixed

adaptive mutations. For instance, T-cells drive fixation of immune-escape mutations in influenza – but

because the relevant sites are under strong constraint, dN/dS remains < 1 and the relative increase in

nonsynonymous substitution rate is only apparent in comparison to homologs not subject to immune

selection (Machkovech et al., 2015). Therefore, even positive selection for adaptive mutations can fail to

elevate dN/dS > 1 at functionally constrained sites.

The limitations of a null model that assumes equal rates of fixation of nonsynonymous and syn-

onymous mutations have become especially glaring in light of deep mutational scanning experiments.

These experiments, which subject libraries of mutant genes to selection in the lab and query the fate

of each mutation by deep sequencing (Fowler and Fields, 2014; Boucher et al., 2014), can measure the

preference of each site in a protein for each amino acid (Bloom, 2015). A clear result is that sites vary

wildly in their amino-acid preferences. Some sites are relatively unconstrained and prefer all amino acids

roughly equally; for these sites, the null model of dN/dS methods is reasonable. But most sites strongly

prefer one or a few amino acids; dN/dS methods do not offer a plausible null model for these sites.
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As an example, Figure 1 shows the amino-acid preferences of five sites in TEM-1 β-lactamase

as measured by the deep mutational scanning of Stiffler et al. (2015). Mutations at three of these sites

confer antibiotic or inhibitor resistance in lactamases (Salverda et al., 2010). Inspection of Figure 1

shows that the two sites not implicated in resistance have evolved in ways that seem roughly compatible

with their amino-acid preferences measured in the lab: site 201 tolerates many amino acids in the lab

and is moderately variable in nature, while site 242 strongly prefers glycine in the lab and is conserved

at that identity in nature. But the three sites involved in resistance have evolved in ways that seem

to deviate from their amino-acid preferences measured in the lab: site 238 substitutes from the lab-

preferred glycine to the less preferred serine, site 240 repeatedly substitutes to lysine despite not strongly

preferring this amino acid in the lab, and site 244 substitutes from the lab-preferred arginine to several

less preferred amino acids. So given the experimentally measured preferences, it is fairly apparent that

the sites where mutations contribute to antibiotic resistance are evolving in ways that deviate from the

preferences measured in the lab. But as Figure 1 shows, a dN/dS method fails to find any site with

dN/dS > 1 at a false-discovery rate (FDR) of 0.05. As this example shows, a null model that fails to

account for site-specific amino-acid preferences can overlook sites that fix adaptive mutations.

Here I describe how the limitations of dN/dS methods illustrated in Figure 1 can be overcome. The

approach that I describe defines selection relative to a null model established by experimentally measured

site-specific amino-acid preferences, and so tests if sites are evolving differently in nature than expected

from constraints measured in the lab. This more nuanced null model can be used to identify sites of

diversifying selection for unusually rapid amino-acid change via a statistically principled extension to

standard dN/dS methods. The more nuanced null model can also be used to heuristically identify sites

of differential selection for unexpected amino acids. I apply the approach to four genes, and show that

it greatly outperforms a dN/dS method at identifying sites of antibiotic-resistance and immune-escape

mutations. As deep mutational scanning data become more widespread, approaches like the one here can

enhance our ability to identify sites of biologically interesting selection.

New Approaches

An evolutionary null model informed by experimentally measured amino-acid preferences

To remedy the limitations of dN/dS methods illustrated in Figure 1, we formulate a description of how

sites should evolve if selection in nature matches the constraints measured by deep mutational scanning

in the lab. This description consists of a set of site-specific experimentally informed codon models

(ExpCM). The ExpCM used here are similar but not identical to those in Bloom (2014a,b).

Deep mutational scanning experiments provide direct measurements of the preference πr,a of each

site r for each amino acid a (for details of how these preferences can be obtained from the experimental

data, see Bloom, 2015). These preferences are normalized so
∑

a πr,a = 1. We use the preferences to

define an ExpCM for each site. As is typical for phylogenetic substitution models, each ExpCM is a

reversible stochastic matrix giving the rates of substitution between codons. The rate Pr,xy from codon
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x to y at site r is written in mutation-selection form as

Pr,xy = Qxy × Fr,xy (Equation 1)

whereQxy represents the rate of mutation from x to y and Fr,xy represents the selection on this mutation.

The mutation terms are identical across sites, but the selection terms are site-specific.

The mutation terms Qxy are given by a HKY85 model (Hasegawa et al., 1985), and consist of

a transition-transversion ratio κ and four nucleotide parameters φA, φC , φG, and φT that sum to one.

These φ parameters give the expected nucleotide composition in the absence of selection on amino

acids; the actual nucleotide frequencies are also influenced by the selection (for this reason, the φ terms

cannot simply be equated with the empirical alignment frequencies as is sometimes done for conventional

substitution models). The mutation term is:

Qxy =





0 if x and y differ by more than on nucleotide,

φw if x can be converted to y by a transversion of a nucleotide to w,

κ× φw if x can be converted to y by a transition of a nucleotide to w.

(Equation 2)

The site-specific amino-acid preferences πr,a enter the model via the selection terms Fr,xy. Let

A (x) denote the amino acid encoded by codon x, let β be the stringency parameter described in Bloom

(2014b), and let ω be a gene-wide relative rate of fixation of nonsynonymous to synonymous mutations

after accounting for the amino-acid preferences. Then:

Fr,xy =





1 if A (x) = A (y)

ω if A (x) 6= A (y) and
(
πr,A(x)

)β
=
(
πr,A(y)

)β

ω ×
ln
(
(πr,A(y))

β
/(πr,A(x))

β
)

1−
(
(πr,A(x))

β
/(πr,A(y))

β
) otherwise.

(Equation 3)

The functional form relating Fr,xy to πr,a for nonsynonymous mutations is that derived by Halpern and

Bruno (1998) under certain (probably unrealistic) assumptions about the evolutionary process and the

relationship between the preferences and amino-acid fitnesses (see also McCandlish and Stoltzfus, 2014;

Thorne et al., 2007; Yang and Nielsen, 2008). Relative to the equation of Halpern and Bruno (1998),

Equation 3 removes terms related to mutation (these are captured by Qxy) and corrects a typographical

error in the denominator. The stringency parameter β is > 1 if natural selection favors high-preference

amino acids with greater stringency than the experiments used to measure πr,a, and is < 1 if it favors

them with less stringency. Under the assumptions of Halpern and Bruno (1998), β is related to effective

population size. Note that if β = 0, then the substitution model defined by Equation 1 reduces to a F1X4

version of the Goldman and Yang (1994) model. The ω parameter indicates if there is a retardation (ω <

1) or acceleration (ω > 1) in the rate of fixation of nonsynonymous mutations relative to synonymous

mutations after accounting for the preferences. Bloom (2014b) shows that a model of the form defined
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by Pr,xy is reversible and has stationary state

pr,x =

(
πr,A(x)

)β × φx1 × φx2 × φx3∑
y

(
πr,A(y)

)β × φy1 × φy2 × φy3
(Equation 4)

where x1, x2, and x3 are the nucleotides at positions 1, 2, and 3 of codon x.

The ExpCM can be used to calculate the likelihood of a phylogenetic tree and an alignment of genes

using the algorithm of Felsenstein (1981), which implicitly assumes that sites evolve independently. The

set of ExpCM for a given gene have six free parameters: ω, β, κ, and three of the φ’s. The πr,a values

are not free parameters, since they are specified a priori from experimental data. The values of the six

free parameters are fit by maximum likelihood.

Overall, ExpCM describe how sites evolve if selection in nature is concordant with the amino-acid

preferences measured in the lab. They therefore enable the visual comparison between the preferences

and natural evolution in Figure 1 to be performed in a formal statistical manner.

Identifying sites of diversifying selection

Having established a null model for how a gene should evolve if selection adheres to the constraints

measured in the lab, we next want to identify sites that deviate from this model. Such sites are likely

targets of additional selection. One such form of selection is diversifying selection for amino-acid change,

as occurs at viral epitopes under continual pressure to escape newly generated immunity.

To detect diversifying selection, we use an approach analogous the fixed effects likelihood (FEL)

method (Pond and Frost, 2005; Massingham and Goldman, 2005; Suzuki, 2004). After fixing the tree

and model parameters to their maximum likelihood values for the entire sequence, for each site r we

fit a synonymous rate µr and a parameter ωr corresponding to the nonsynonymous rate relative to the

synonymous rate by replacing Equation 3 with

Fr,xy =





µr if A (x) = A (y)

µr × ωr if A (x) 6= A (y) and πr,A(x) = πr,A(y)

µr × ωr ×
ln
(
(πr,A(y))

β
/(πr,A(x))

β
)

1−
(
(πr,A(x))

β
/(πr,A(y))

β
) otherwise.

(Equation 5)

and optimizing with respect µr and ωr. The reason that we fit µr as well as ωr is to accommodate

synonymous rate variation among sites; this can be important for the reasons described by Pond and

Muse (2005). The null hypothesis is that ωr = 1. Following Pond and Frost (2005), we compute a

P-value for rejecting this null hypothesis by using a χ2
1 test to compare the likelihood when fitting both

µr and ωr to that when fitting only µr and fixing ωr = 1. The key statistic is not ωr itself, but rather

the P-value for rejecting the null hypothesis in favor of ωr > 1 or ωr < 1. The former case implies

diversifying selection, while the latter case indicates a selective constraint on amino-acid change that is

not adequately captured by the preferences. To account for the fact that a different test is performed for

each site, we control the FDR using the procedure of Benjamini and Hochberg (1995). As demonstrated
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below, this approach has excellent power to pinpoint sites like 238 and 244 in Figure 1, which fix multiple

amino-acid mutations despite being under strong functional constraint.

Identifying sites of differential selection

Some interesting forms of selection do not cause sites to change repeatedly, but rather lead them to

substitute to amino acids that are unexpected given the amino-acid preferences measured in the lab.

Such sites are under differential selection to fix mutations different from those expected if selection in

nature parallels that in the lab.

To detect differential selection, we compare the preferences measured in the lab to those that op-

timally describe evolution in nature. Denote the preferences that optimally describe evolution in nature

as π̂r,a, with
∑

a π̂r,a = 1. Denote the differential preference ∆πr,a for amino-acid a at site r as the dif-

ference between π̂r,a and the experimentally measured preferences rescaled by the stringency parameter:

∆πr,a = π̂r,a − (πr,a)
β∑

a′(πr,a′)
β . If we redefine Equation 3 by replacing (πr,a)

β with π̂r,a as in

Fr,xy =





1 if A (x) = A (y)

ωr if A (x) 6= A (y) and π̂r,A(x) = π̂r,A(y)

ωr ×
ln(π̂r,A(y)/π̂r,A(x))
1−(π̂r,A(x)/π̂r,A(y))

otherwise,

(Equation 6)

then we can determine the preferences that optimally describe natural evolution by optimizing with

respect to π̂r,a after fixing the tree and model parameters to their maximum likelihood values for the

entire sequence. However, unconstrained optimization of Equation 6 will overfit the data. We therefore

instead optimize the product of Equation 6 and an equation that regularizes the ∆πr,a values by biasing

them towards zero:

Pr ({π̂r,a} | {πr,a} , β) =
∏

a

(
1

1 + C1 × (∆πr,a)
2

)C2

(Equation 7)

where C1 and C2 determine how strongly π̂r,a is biased towards the experimentally measured prefer-

ences. Here I use C1 = 150 and C2 = 0.5; Equation 7 is illustrated in Supplementary figure 2. Note that

while the underlying rationale for regularizing the ∆πr,a values is clear, the regularization implemented

by Equation 7 was chosen heuristically (a more statistically principled method for regularizing the ∆πr,a

values is an important area for future work).

A differential preference of ∆πr,a > 0 implies that natural evolution favors amino-acid a at site r

more than expected, whereas ∆πr,a < 0 implies that evolution disfavors this amino acid. The total dif-

ferential selection at r is quantified as half the absolute sum of the differential preferences, 1
2

∑
a |∆πr,a|;

this quantity ranges from zero to one. As demonstrated below, this approach has excellent power to pin-

point sites like 238 and 240 in Figure 1, which fix mutations to unexpected amino acids. However, I

emphasize that the test for differential selection is currently heuristic, and does not incorporate formal

statistical significance testing.
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Results

Choice of four genes to test approaches to identify sites of selection

To test the approaches for detecting selection described above, I selected four genes: the DNA-binding

domain of yeast Gal4, β-lactamase, the nucleoprotein (NP) of human influenza, and the hemagglutinin

(HA) of human seasonal H1N1 influenza. Previous deep mutational scanning studies have measured

the effects of all mutations to these genes (Kitzman et al., 2015; Stiffler et al., 2015; Doud et al., 2015;

Thyagarajan and Bloom, 2014), enabling calculation of their site-specific amino-acid preferences. For

each gene, I assembled an alignment of homologs for evolutionary analysis (Table 1).

A great deal is known about the pressures that have shaped the evolution of all four genes. Gal4 per-

forms a function that is conserved among homologs from widely diverged species, and does not appear

to be changing phenotypically (Johnston, 1987; Traven et al., 2006). However, the other three genes are

undergoing adaptive evolution: lactamases evolve resistance to new antibiotics and inhibitors (Du Bois

et al., 1995; Salverda et al., 2010), while NP and HA evolve to escape the immune response in hu-

mans (Voeten et al., 2000; Machkovech et al., 2015; Yewdell et al., 1979; Caton et al., 1982). These

genes therefore provide an excellent test case. Gal4 is a “negative control”: no sites in this gene should

be identified as under selection to fix adaptive mutations. But an effective approach for identifying pos-

itive selection should pinpoint the sites of drug-resistance and immune-escape mutations in the other

three genes.

Experimentally informed site-specific models are vastly better descriptors of evolution

Our basic assumption is that site-specific ExpCM are a better null model for evolution than the non-

site-specific models used by dN/dS methods. Prior work has shown that experimentally informed site-

specific models similar to the ExpCM defined here greatly outperform non-site-specific models (Bloom,

2014a,b; Thyagarajan and Bloom, 2014; Doud et al., 2015). To confirm this result for the ExpCM and

genes here, I compared the ExpCM to the model of Goldman and Yang (1994) (denoted as GY94), which

is commonly used by dN/dS methods. I used F3X4 equilibrium frequencies for GY94, with the nine

F3X4 parameters estimated by maximum likelihood. These equilibrium frequencies are not site-specific;

this is the major difference between GY94 and ExpCM (Figure 1).

To compare the models and perform the other analyses in this paper, I developed the software

package phydms (phylogenetics informed by deep mutational scanning; https://github.com/

jbloom/phydms). This software interfaces with and extends Bio++ (Dutheil et al., 2006; Guéguen

et al., 2013) to enable analyses with both ExpCM and GY94 models.

I used phydms to infer a maximum-likelihood phylogenetic tree for each gene using GY94 with

a single gene-wide dN/dS ratio (the M0 model of Yang et al. (2000)). After fixing the tree topology to

that estimated using GY94 M0, I re-optimized the branch lengths and model parameters by maximum

likelihood for four additional models. The first is GY94 M3 (Yang et al., 2000), in which the likelihood

for each site is a linear combination of those under three different dN/dS values, with these values and

their weights shared across the whole alignment and optimized by maximum likelihood. The second
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is ExpCM. The third is ExpCM with the amino-acid preferences averaged across sites – this averaging

makes the model non-site-specific, but captures any gene-wide trends in the deep mutational scanning

data. The final is ExpCM with the amino-acid preferences randomized among sites – this model is still

site-specific, but the site-specific parameters are no longer associated with the actual site for which they

were measured.

I compared these models using Akaike Information Criteria (AIC) (Posada and Buckley, 2004),

which measures model fit penalized by the number of free parameters. Table 2 shows that ExpCM de-

scribe the evolution of all four genes far better than any other model. The huge superiority of ExpCM

over the GY94 models is because ExpCM capture site-specific evolutionary constraints, as demonstrated

by the fact that ExpCM in which preferences are averaged across sites are comparable to GY94. The

failure of the averaged ExpCM to offer consistent improvement over GY94 is because most specificity

in the substitution process occurs at the level of sites, not the level of genes – so there is little to be

gained from a gene-specific model that treats all sites the same. The poor performance of the random-

ized ExpCM is because a site-specific model only helps if the experimentally measured preferences are

assigned to the correct sites. Indeed, Table 2 shows that randomly assigned site-specific preferences are

so detrimental that they are nearly completely flattened by fitting a stringency parameter β that is close

to zero, effectively making the randomized ExpCM non-site-specific. Overall, Table 2 confirms previous

work (Bloom, 2014a,b; Thyagarajan and Bloom, 2014; Doud et al., 2015) showing that experimentally

informed site-specific models provide vastly improved descriptions of evolution.

Another informative comparison is between the dN/dS of GY94 and the ω of ExpCM. ExpCM

can represent protein-level constraint either via the site-specific amino-acid preferences or by shrinking

ω to < 1. In contrast, GY94 can only represent constraint by shrinking dN/dS even if the actual

selection is for preferred amino acids at each site rather than against amino-acid change per se (Spielman

and Wilke, 2015a). Table 2 shows that the ExpCM ω is always greater than the GY94 dN/dS. This

effect is most striking for lactamase: while GY94 suggests selection against amino-acid change per se

by fitting dN/dS = 0.3, ExpCM indicate that this selection is actually accounted for by the site-specific

amino-acid preferences by fitting ω = 1. For the other three genes, the ExpCM ω is < 1 indicating that

the site-specific amino-acid preferences don’t capture all constraints, but the ExpCM ω is still always

substantially greater than the GY94 dN/dS.

The ExpCM stringency parameter β also provides useful information. Recall that β > 1 means

that natural evolution selects for preferred amino acids with greater stringency than the deep mutational

scanning. Table 2 shows that for both influenza genes (NP and HA), the stringency of natural evolution

exceeds that of the deep mutational scanning, indicating that the experiments of Doud et al. (2015) and

Thyagarajan and Bloom (2014) were not as rigorous as selection in nature. For lactamase, the stringency

of natural evolution is approximately equal to that of the deep mutational scanning, providing a second

indication (along with the fitting of ω ≈ 1) that the experiments of Stiffler et al. (2015) did an excellent

job of capturing the constraints on lactamases in nature. Only for Gal4 is β < 1: either the selections

of Kitzman et al. (2015) were more stringent than natural selection, or the measured preferences are not

completely representative of those in nature and so β is fit to < 1 to somewhat flatten these preferences.

The stringency-rescaled amino-acid preferences are in Figure 2, Supplementary figure 3, Supple-
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mentary figure 4, and Supplementary figure 5. These figures reveal remarkable variation in constraint

among sites, explaining why ExpCM better describe evolution than non-site-specific models. Overall,

the results in this section verify that ExpCM offer a better evolutionary null model, and so motivate their

use in identifying diversifying and differential selection.

Experimentally informed site-specific models better detect diversifying selection

I used the ExpCM to identify sites of diversifying selection for amino-acid change. This was done by

using phydms to fit ωr and a synonymous rate for each site r via Equation 5, fixing all other parame-

ters at their optimized values. To compare to a standard dN/dS method, I also fit a dN/dS ratio and

synonymous rate for each site using GY94 with all other parameters fixed to the values optimized under

GY94 M3 (equivalent to the fixed effects likelihood or FEL method as implemented by Pond and Frost

(2005)).

Figure 3A shows that ExpCM have much greater power to identify diversifying selection than the

GY94 dN/dS method. For Gal4, GY94 finds many sites with dN/dS < 1, but no sites with dN/dS > 1

at an FDR of 0.05. As discussed in the Introduction, identifying sites with dN/dS < 1 points to the

naivety of the GY94 null model rather than unexpected biology, since any reasonable researcher would

have already expected Gal4’s protein sequence to be under evolutionary constraint. The more plausible

ExpCM null model finds that all sites in Gal4 are evolving as expected from the measurements in the lab

(for no sites does it reject the null hypothesis ωr = 1). For the other three genes, GY94 again finds that

there are many sites with dN/dS < 1 while failing to identify any sites with dN/dS > 1 at an FDR

of 0.05 – despite the fact that there is clear evidence that all three genes fix drug-resistance or immune-

escape mutations. In contrast, the more realistic ExpCM find sites of diversifying selection for all three

genes: there are three sites with ωr > 1 in lactamase, four in NP, and two in HA.

To statistically validate the ExpCM approach for identifying diversifying selection, I used pyvolve

(Spielman and Wilke, 2015b) to simulate alignments of NP under ExpCM informed by the experimen-

tally measured preferences and using the tree inferred for the actual NP sequences. In each simulation,

I randomly selected five sites and placed them under diversifying with ωr values ranging from 5 to 30.

I then analyzed the simulated alignments for diversifying using the ExpCM and the FEL-like GY94

dN/dS method. As shown in Supplementary figure 7, ExpCM consistently outperformed GY94 at

identifying the simulated sites of diversifying selection. Supplementary figure 7 also shows that the Ben-

jamini and Hochberg (1995) procedure effectively controlled the false discovery rate. These simulations

demonstrate the statistical soundness of the ExpCM approach for identifying diversifying selection.

Both the FEL-like GY94 dN/dS method and the ExpCM used for the analysis in Figure 3A test for

diversifying selection across the phylogeny. But in many cases, diversifying selection is episodic. There-

fore, dN/dS methods have been extended to identify sites under diversifying selection in only some

lineages (Yang and Nielsen, 2002; Guindon et al., 2004; Yang and Dos Reis, 2011; Murrell et al., 2012).

I used one of these methods, MEME (Murrell et al., 2012), to test for episodic diversifying selection. Sup-

plementary figure 8 shows that MEME identifies one site of diversifying selection each in lactamase and

NP, and no sites in HA or Gal4. This makes MEME more powerful than the FEL-like GY94 method but
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still less powerful than ExpCM. However, MEME and ExpCM outperform the FEL-like GY94 method

for orthogonal reasons: MEME is superior because it can identify episodic selection, whereas ExpCM are

superior because they account for functional constraints on individual sites. In principle, it should be

possible to merge ExpCM with methods to identify episodic diversifying selection.

A variety of other dN/dS methods have also been developed. The most prominent other class in-

cludes so-called “random effects” methods that use an empirical Bayesian approach to share information

about the distribution of dN/dS across sites (Nielsen and Yang, 1998; Yang et al., 2005; Huelsenbeck

et al., 2006; Murrell et al., 2013). The relative pros and cons of “random effects” methods versus the

“fixed effects” methods used in this paper remain an area of active discussion (Pond and Frost, 2005;

Echave et al., 2016). It is beyond the scope of the current study to compare these two classes of methods.

Here I simply note that as with the test for episodic selection described in the previous paragraph, Ex-

pCM substitution models could in principle also be incorporated into the “random effects” framework,

since the essential differences between “random effects” and “fixed effects” methods are due to how

parameters are handled rather than the substitution model itself.

Overall, the results in this section show that ExpCM are better at identifying diversifying selection

than several standard dN/dS methods. The reason for this superiority is that the ExpCM account for

variation in the inherent constraints on different sites, and so have greater power to recognize when a

functionally constrained site is changing more rapidly than expected.

Experimentally informed site-specific models enable detection of differential selection

ExpCM also enable identification of differential selection for unexpected amino acids. I used phydms to

estimate the differential preference ∆πr,a of each site r for each amino-acid a by optimizing the product

of Equation 6 and Equation 7 after fixing all other parameters. The differential selection at each site r

was quantified as 1
2

∑
a |∆πr,a|, which can range from zero to one.

Figure 3B shows the distribution of site-specific differential selection. As expected, no sites in

Gal4 are under strong differential selection. But for each of the other genes, a small subset of sites are

under strong differential selection. I heuristically classified differential selection as “significant” if it

exceeded 2-times the maximum value for Gal4. At this threshold, there are seven sites of differential

selection in lactamase, nine in NP, and three in HA. So overall, Figure 3B suggests that most sites are

evolving as expected in all four genes, but a small fraction of sites are under differential selection in

lactamase, NP, and HA due to their roles in drug resistance or immune escape. This result is concordant

from what we expect given biological knowledge about the selection pressures on these genes. Note that

similarly reasonable results are not obtained using the non-phylogenetic Kullback-Leibler divergence to

measure differences between amino-acid frequencies in nature and the experimentally measured amino-

acid preferences (Supplementary figure 9). This fact emphasizes the importance of examining evidence

for diversifying selection in a phylogenetic framework rather than simply treating natural sequences as

an unbiased statistical ensemble.

A more detailed portrayal of the diversifying selection at each site is in Figure 4, Supplementary

figure 10, Supplementary figure 11, and Supplementary figure 12. For each site, these images display the
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evidence for diversifying selection, the strength of differential selection, and the differential preference

for each amino acid at sites under non-negligible differential selection.

There are sites in lactamase, NP, and HA that are under both diversifying and differential selection,

but there are also sites that are only under one of these forms of selection (Figure 3). These findings make

sense: often, pressure for amino-acid change will drive multiple substitutions to non-preferred amino-

acid identities, leaving traces of both types of selection. But sometimes, a relatively unconstrained site

substitutes to a variety of different amino acids, leading to diversifying but not differential selection. In

other cases, a site fixes just one or a few substitutions to a non-preferred amino acid that confers some

enduring phenotypic benefit, leading to differential but not diversifying selection.

The identified sites of selection are consistent with existing biological knowledge

The ExpCM identified sites of differential and diversifying selection in all three genes that are undergoing

adaptive evolution (lactamase, NP, and HA), while GY94 identified no sites with dN/dS < 1 in any of

the genes. But before concluding that this result indicates the superiority of the ExpCM, we must answer

the following question: are the identified sites actually the locations of substitutions that have altered

evolutionarily relevant phenotypes? To answer this question, I examined the literature on drug resistance

in lactamases and immune escape by NP and HA (Table 3).

For lactamases, Salverda et al. (2010) report 18 sites at which mutations known to affect resistance

are observed in clinical isolates. The ExpCM identify 9 sites of selection; 6 of these 9 sites are among the

18 known sites of resistance mutations (Table 3). There are 263 residues in the mature lactamase protein,

so we can reject the possibility that the identified sites are not associated with resistance mutations

(P = 10−6, Fisher’s exact test). So for lactamase, the ExpCM mostly identify sites that have been

independently shown to affect drug resistance.

NP is under immune selection to escape T cells (Voeten et al., 2000; Machkovech et al., 2015) and

probably also antibodies (Carragher et al., 2008; Laidlaw et al., 2013). The ExpCM identify 10 sites

of selection. I searched the literature and found reports that 8 of these 10 sites are relevant to immune

escape (Table 3). So for NP, the ExpCM mostly identify sites that have been independently shown to

affect immunogenicity.

HA is under immune selection to escape antibodies. Caton et al. (1982) used antibodies to map

escape mutations in H1 HA. A reasonable definition of the antigenic portion of HA is the set of sites

identified by Caton et al. (1982) plus any sites in three-dimensional contact with these sites (a contact is

defined as a Cα−Cα distance ≤ 6Å in PDB 1RVX). Using this definition, 86 of the 509 sites in the HA

ectodomain are in the antigenic portion of the molecule. The ExpCM identify 3 sites of selection, all of

which are in the antigenic portion of HA. We can reject the possibility that these identified sites are not

associated with the antigenic portion of the molecule (P = 0.005, Fisher’s exact test). So for HA, the

ExpCM identify sites that have been independently shown to affect immunogenicity.

Overall, these results show that sites of selection identified by ExpCM are indeed the locations of

substitutions that alter evolutionarily relevant phenotypes. For a concrete illustration of sites of adaptive

substitutions that are identified by ExpCM but not by a dN/dS method, Figure 5 shows the results of
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the ExpCM analysis of the five example sites in lactamase discussed in the Introduction and Figure 1.

Three of these five sites experience substitutions that affect resistance, but a dN/dS method fails to

flag any of them as under diversifying selection (dN/dS > 1) since it doesn’t account for site-specific

constraints (Figure 1). Figure 5 shows that ExpCM correctly identify all three resistance sites as under

diversifying or differential selection, while finding that the non-resistance sites are evolving as expected.

Visual inspection of the two figures provides an intuitive explanation of why accounting for site-specific

amino-acid preferences makes ExpCM so much more powerful at identifying sites of selection to alter

evolutionarily relevant phenotypes.

Discussion

I have described an approach that uses experimentally informed models to identify sites of biologically

interesting selection in protein-coding genes. This approach asks the following question: Is a site evolv-

ing differently in nature than expected from constraints measured in the lab? In contrast, traditional

dN/dS methods simply ask: Is a site evolving non-neutrally? The former question is sometimes more

informative than the latter. It is by now abundantly clear that most protein residues are under some type

of constraint, so finding that a site evolves non-neutrally is often unsurprising. Instead, we want to iden-

tify sites of substitutions that have altered evolutionarily relevant phenotypes. As demonstrated here,

experimentally informed models have much greater power to identify such sites. The improvement is

remarkable: while a dN/dS method fails to find any sites of adaptive evolution in the genes examined,

experimentally informed models identify 22 sites of diversifying or differential selection, most of which

fix mutations that have been independently shown to affect drug resistance or immunogenicity.

What accounts for the improve power of the experimentally informed site-specific models? As

vividly illustrated by the deep mutational scanning studies that provide the data used here (Figure 2,

Supplementary figure 3, Supplementary figure 4, and Supplementary figure 5), there is vast variation

in the constraints on sites within a protein. Therefore, the significance that we should ascribe to a

substitution depends on where it occurs: several changes at an unconstrained site may be unremarkable,

but a single substitution away from a preferred amino acid at a constrained site probably reflects some

powerful selective force. Whereas dN/dS methods treat all substitutions equally, the models used here

evaluate the significance of each substitution in the context of the experimentally measured amino-acid

preferences of the site at which it occurs.

Does this reliance on experimental measurements make the approach less objective? At first glance,

the fact that dN/dS methods are uncontaminated by messy experiments feels reassuring. In contrast, ex-

perimentally informed models are dependent on all the subjective decisions associated with experimental

design and interpretation. But in truth, experimentally informed models simply make explicit something

that is already true: we define positive selection with respect to a null model for evolution in the absence

of this selection. At least for the genes examined here, sites of known adaptive mutations are better

identified by leveraging imperfect experiments that capture many of the constraints on natural evolution

than by objectively testing the implausible null hypothesis that every site is evolving neutrally.

An assumption of experimentally informed site-specific models is that amino-acid preferences are
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conserved among the homologs under analysis. At first glance this assumption seems tenuous – epistasis

can shift the effects of mutations as a gene evolves (Lunzer et al., 2010; Bridgham et al., 2009; Gong et al.,

2013). But it is rare for epistatic shifts to be large enough to undermine the advantage of site-specific

models: this fact is demonstrated by direct experiments (Doud et al., 2015; Risso et al., 2015; Ashenberg

et al., 2013), the observation that parallel viral lineages tend to substitute to the same preferred amino

acids at each site (Zanini et al., 2015), and the empirical superiority of site-specific models in fitting

phylogenies of diverged homologs (Table 2; Bloom, 2014b; Doud et al., 2015). Therefore, epistasis

does not subvert the basic advantage of a model informed by site-specific amino-acid preferences.

Of course, experimentally informed site-specific models require measurement of amino-acid pref-

erences. However, advances in deep mutational scanning will make this requirement less and less of

an impediment (Fowler and Fields, 2014; Boucher et al., 2014). In a fitting twist, one of the pioneers

of deep mutational scanning (Fowler and Fields, 2014) was also the first to sequence a gene from in-

fluenza (Fields et al., 1981; Fields, 2016). At the time, sequencing the homologous gene from thousands

of other viral strains must have seemed unimaginable – a few decades later, for this study I had to

subsample the �105 publicly available influenza sequences down to a manageable number. The core

techniques of deep mutational scanning – sequencing and gene/genome engineering – are improving at a

similar pace, so coming years will see measurement of the amino-acid preferences of many more genes.

Another possibility is to use non-experimental strategies to inform site-specific models like the one

here. One strategy is to predict site-specific constraints from higher-level properties such as solvent ac-

cessibility (Meyer and Wilke, 2013; Shahmoradi et al., 2014; Meyer and Wilke, 2015) or via molecular

simulation (Fornasari et al., 2002; Kleinman et al., 2010; Arenas et al., 2015; Echave et al., 2015). It re-

mains unclear whether such non-experimental strategies can predict site-specific amino-acid preferences

with sufficient accuracy to inform substitution models that can match the ExpCM used here. Another

strategy is to infer preferences from naturally occurring sequences (Rodrigue et al., 2010; Rodrigue and

Lartillot, 2014; Tamuri et al., 2012, 2014; Hopf et al., 2015). If these sequences can be partitioned into

distinct clades, then preferences inferred from one clade might be used to identify selection acting only

in another clade. But direct measurement via deep mutational scanning may well prove the best solu-

tion: after all, biology is full of properties that are challenging to predict or infer, but are now routinely

measured in high-throughput.

Overall, I have described a new approach that leverages high-throughput experimental data to iden-

tify sites of selection in protein-coding genes. This approach clearly outperforms a standard implemen-

tation of the widely used dN/dS strategy, however there remains room for improvement. The utility of

the dN/dS strategy has been enhanced by innovations that have made it possible to do things like test for

selection only along certain branches (Murrell et al., 2012; Yang and Dos Reis, 2011), utilize Bayesian

approaches to share information across sites (Nielsen and Yang, 1998; Yang et al., 2005; Huelsenbeck

et al., 2006; Murrell et al., 2013), and more rapidly perform the computational analyses (Delport et al.,

2010; Murrell et al., 2013). Most of these innovations could also be used in combination with the ex-

perimentally informed models described here. Methodological improvements of this sort, coupled with

growing amounts of deep mutational scanning data, could make experimentally informed models an

increasingly powerful tool to identify genotypic changes that have altered phenotypes of interest.
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Materials and Methods

The phydms software package

The algorithms described in this paper are implemented in the phydms software package, which is

freely available at https://github.com/jbloom/phydms. The phydms package is written in

Python, and uses cython to interface with and extend Bio++ (http://biopp.univ-montp2.

fr/; Dutheil et al., 2006; Guéguen et al., 2013) for the core likelihood calculations. Special thanks are

due to Laurent Guéguen and Julien Dutheil for generously making the cutting-edge version of Bio++

available and providing assistance in its use. The phydms software also uses dms tools (https://

github.com/jbloom/dms_tools; Bloom, 2015) and weblogo (http://weblogo.threeplusone.

com/; Crooks et al., 2004) for processing and visualizing the data and results.

Computer code and data availability

The data and commands to perform the analyses and simulations in this paper are included as Supple-

mentary Files with this preprint on bioRxiv. Within each archive, there is an explanatory iPython

notebook that performs the analyses. The ZIP archives also contain the preferences, alignments, and

full phydms output. Below is a brief description of the steps used to assemble the preferences and

alignments.

Amino-acid preferences for the four proteins

For NP, the preferences were taken directly from those provided by Doud et al. (2015), using the average

of the measurements for the two NP variants. For HA, the preferences were taken directly from those

provided by Thyagarajan and Bloom (2014). For lactamase, Stiffler et al. (2015) provide their data as

“relative fitness” scores, which are the log10 of the enrichment ratios. I used the scores for the selections

on 2.5 mg/ml of ampicillin (the highest concentration), averaging the scores for the two experimental

trials. Following the definition of Bloom (2015) of the preferences as the normalized enrichment ratios,

the preferences πr,a are calculated from the relative fitness scores Sr,a so that πr,a ∝ max
(
10Sr,a , 10−4

)

and 1 =
∑

a πr,a. For Gal4, Kitzman et al. (2015) provide their data as “effect scores”, which are

the log2 of the enrichment ratios. The preferences are calculated from the effect scores Er,a so that

πr,a ∝ max
(
2Er,a , 2× 10−4

)
and 1 =

∑
a πr,a. A few of the effect scores are missing from Kitzman

et al. (2015), so these scores are set to the average score for all mutations for which scores are provided.

The formulas to convert the lactamase and Gal4 scores to preferences include the max operators to

avoid estimating preferences of zero; the minimal allowable values specified by the second argument to

these operators are my guess of the lowest frequency that would have been reliably observed in each

experiment.
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Alignments

For NP, the sequence alignment was constructed by extracting all post-1950 full-length NPs in the In-

fluenza Virus Resource (Bao et al., 2008) that are descended in purely human lineages from the 1918

virus (this is H1N1 from 1950-1957 and 1977-2008, H2N2 from 1957-1968, and H3N2 from 1968-

2015), and then retaining just two sequences per-subtype per-year to yield a manageable alignment. The

rationale for using only post-1950 sequences is that most influenza sequences isolated before that date

were passaged extensively in the lab prior to sequencing. For HA, the alignment was constructed by

extracting all post-1950 sequences in the human seasonal H1N1 lineage (this is H1N1 from 1950-1957

and 1977-2008), and then retaining just four sequences per year to yield a manageable alignment. For

lactamase, the alignment consists of the TEM and SHV lactamases used in Bloom (2014b). For Gal4,

a set of homologs was obtained by performing a tblastn search of the Gal4 DNA-binding domain

used Kitzman et al. (2015) against wgs (limiting by saccharomyceta (taxid:716545)) and

chromosomes for hits with E ≤ 0.01, and then retaining only sequences that aligned to the Gal4

DNA-binding domain with≥ 70% protein identity and≤ 5% gaps. For all genes, alignments were made

pairwise to the sequence used for the deep mutational scanning with EMBOSS needle (Rice et al.,

2000), and any sites were purged if they were gapped in that reference sequence.

Sequence numbering

In the figures and tables, the residues in NP are numbered sequentially beginning with one at the N-

terminal methionine. The residues in HA are numbered using the H3 numbering scheme (this is the

one used in PDB 4HMG), and the site-specific selection analysis is performed only for the residues in

HA ectodomain (these are the residues present in PDB 4HMG). The residues in lactamase are numbered

using the scheme of Ambler et al. (1991). The residues in Gal4 are numbered using the same scheme as

in Kitzman et al. (2015).
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Table 1: The four genes analyzed in this study.

gene
# of

residues
deep mutational
scanning study alignment details

yeast Gal4 DNA
binding domain 64

Kitzman et al.
(2015)

17 sequences with 87% and 59% avg and
min pairwise protein identity

β-lactamase 263 Stiffler et al. (2015)
85 sequences with 82% and 63% avg and

min pairwise protein identity
influenza

nucleoprotein (NP) 498 Doud et al. (2015)
180 sequences with 95% and 90% avg

and min pairwise protein identity
influenza H1

hemagglutinin (HA) 564
Thyagarajan and

Bloom (2014)
111 sequences with 95% and 87% avg

and min pairwise protein identity

Table 2: The site-specific ExpCM describe the evolution of all four genes vastly better than GY94
or ExpCM in which the amino-acid preferences have been averaged or randomized across sites.

Gal4
model ∆AIC log likelihood # free parameters: values of selection parameters
ExpCM 0 -1048 6: β = 0.82, ω = 0.13
GY94 M3 129 -1103 15: ω1 = 0.01, ω2 = 0.11, ω3 = 0.49, p1 = 0.50, p2 = 0.29
GY94 M0 192 -1139 11: ω = 0.06
averaged ExpCM 196 -1146 6: β = 1.07, ω = 0.06
randomized ExpCM 206 -1151 6: β = 0.10, ω = 0.07

lactamase
model ∆AIC log likelihood # free parameters: values of selection parameters
ExpCM 0 -3421 6: β = 1.01, ω = 1.02
GY94 M3 564 -3694 15: ω1 = 0.07, ω2 = 0.55, ω3 = 6.24, p1 = 0.69, p2 = 0.17
GY94 M0 765 -3798 11: ω = 0.34
averaged ExpCM 766 -3804 6: β = 0.77, ω = 0.35
randomized ExpCM 790 -3816 6: β = 0.10, ω = 0.34

NP
model ∆AIC log likelihood # free parameters: values of selection parameters
ExpCM 0 -8624 6: β = 2.43, ω = 0.61
GY94 M3 2175 -9703 15: ω1 = 0.00, ω2 = 0.16, ω3 = 1.31, p1 = 0.59, p2 = 0.24
averaged ExpCM 2584 -9916 6: β = 0.43, ω = 0.11
randomized ExpCM 2593 -9921 6: β = 0.10, ω = 0.11
GY94 M0 2613 -9926 11: ω = 0.11

HA
model ∆AIC log likelihood # free parameters: values of selection parameters
ExpCM 0 -7461 6: β = 1.61, ω = 0.60
GY94 M3 1782 -8343 15: ω1 = 0.02, ω2 = 4.26, ω3 = 4.94, p1 = 0.59, p2 = 0.25
averaged ExpCM 2137 -8530 6: β = 0.42, ω = 0.23
randomized ExpCM 2157 -8539 6: β = 0.10, ω = 0.23
GY94 M0 2176 -8544 11: ω = 0.22
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Table 3: Most sites of selection identified using the ExpCM are positions where mutations are
known to affect biologically relevant drug resistance or immune escape phenotypes.

gene site evidence for an effect on a biologically relevant phenotype
lactamase 35 No evidence implicating this site in resistance (Salverda et al., 2010)
lactamase 48 No evidence implicating this site in resistance (Salverda et al., 2010)
lactamase 104 E104K involved in β-lactam resistance (Salverda et al., 2010)
lactamase 112 No evidence implicating this site in resistance (Salverda et al., 2010)
lactamase 164 R164C, R164H, and R164S involved in β-lactam resistance (Salverda et al., 2010)
lactamase 182 M182T potentiates resistance (Salverda et al., 2010)
lactamase 238 G238S involved in β-lactam resistance (Salverda et al., 2010)
lactamase 240 E240K involved in β-lactam resistance (Salverda et al., 2010)
lactamase 244 R244C, R244H, and R244S involved in inhibitor resistance (Salverda et al., 2010)

NP 20 Forms part of a T-cell epitope (Alexander et al., 2010)
NP 101 Forms part of an antibody epitope (Varich et al., 2011)
NP 105 Forms part of a T-cell epitope (Berkhoff et al., 2007)
NP 131 No reports of this site as a target of immune selection
NP 290 Forms part of an antibody epitope (Varich and Kaverin, 2004)
NP 319 No reports of this site as a target of immune selection
NP 371 Forms part of an antibody epitope (Miyoshi-Akiyama et al., 2012; Varich et al., 2009)
NP 375 E375G interacts with T-cell escape mutation at 384 (Rimmelzwaan et al., 2004; Gong et al., 2013)
NP 384 R384G and R384K are T-cell escape mutations (Voeten et al., 2000; Rimmelzwaan et al., 2004)
NP 422 K422R is a T-cell escape mutation (Boon et al., 2004)
HA 138 Contacts antigenic-site residues defined by the experiments of Caton et al. (1982)
HA 189 Contacts antigenic-site residues defined by the experiments of Caton et al. (1982)
HA 225 An antigenic site residue defined by the experiments of Caton et al. (1982)

22

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2016. ; https://doi.org/10.1101/037689doi: bioRxiv preprint 

https://doi.org/10.1101/037689
http://creativecommons.org/licenses/by/4.0/


A
site

Role in
resistance

Evolution in
lactamases

Experimentally
measured

preferences

201

Not known to
affect resistance

Some variation,
A & L common

201

N

D

Y
W

Q

R
V
P
H
E
G
L
T
S

C
A
M
K
I
F

238
β-lactam

resistance from
G238S

Multiple G→S
mutations

238

S

N

A
G

240
β-lactam

resistance from
E240K

Multiple E→K
mutations

240

I

V

T

S

W
M
E
A
Y
G
C
P
H
K
L
F
R
N
Q
D

242

Not known to
affect resistance

Completely
conserved as G

242

N

G

244
Inhibitor

resistance from
R244C/H/S

Mutations from
H to S, R, & C

244

H

G

T

K

C

S

R
B

GY94
equilibrium
frequencies

201

Y

F

M

K

Q

N

H

E

D
I

S
T
P
G
R
L
A
V

238

Y

F

M

K

Q

N

H

E

D
I

S
T
P
G
R
L
A
V

240

Y

F

M

K

Q

N

H

E

D
I

S
T
P
G
R
L
A
V

242

Y

F

M

K

Q

N

H

E

D
I

S
T
P
G
R
L
A
V

244

Y

F

M

K

Q

N

H

E

D
I

S
T
P
G
R
L
A
V

GY94

−4

−2

0

2

4

d
N d
S
<

1
←

lo
g

10
P
→

d
N d
S
>

1 sites
201
238
240
242
244

sites
201
238
240
242
244

Figure 1: Different sites are expected to evolve differently, but dN/dS methods ignore this fact and so
have limited power to detect positive selection. (A) The amino-acid preferences of five sites in TEM-1
β-lactamase as measured by Stiffler et al. (2015) (letter heights are proportional to amino-acid pref-
erences). Three sites experience mutations that confer extended-spectrum antibiotic or inhibitor resis-
tance (Salverda et al., 2010). The two sites not involved in resistance are evolving in a way that seems
roughly compatible with their amino-acid preferences, while the three sites implicated in resistance are
evolving in ways that clearly deviate from the preferences (for instance, site 238 mutates from highly
preferred glycine to the very low preference amino-acid serine). (B) A standard dN/dS model (that
of Goldman and Yang, 1994, abbreviated GY94) assumes all sites evolve under uniform constraints.
When this model is used to fit a site-specific dN/dS, no sites are deemed under diversifying selection
(dN/dS > 1) at a FDR of 0.05 for testing all sites, although the non-resistance site 242 is deemed under
purifying selection (dN/dS < 1). The violin plot shows the distribution of P -values for sites having
dN/dS > or < 1. All sites below the bottom dotted blue line are deemed to have dN/dS < 1 at and
FDR of 0.05. No sites have dN/dS > 1 at this FDR, so the top dotted blue line indicate the P -value
that would be needed for a site to have dN/dS > 1 at a significance level of 0.05 using a Bonferroni
correction. This figure shows a handful of selected sites to illustrate the general principle, and does not
represent a rigorous statistical analysis of the full gene. A full analysis of all sites and further details
are later in the paper. See Supplementary figure 1 for subtleties about amino-acid preferences versus
equilibrium frequencies.
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Figure 2: Site-specific amino-acid preferences for lactamase. The height of each letter is proportional
to the preference for that amino acid at that site, and letters are colored by amino-acid hydrophobicity.
These are the preferences experimentally measured by Stiffler et al. (2015) for TEM-1 β-lactamase under
selection with 2.5 mg/ml ampicillin, re-scaled by the stringency parameter β = 1.01 from Table 2. The
re-scaling is done so that if the experimentally measured preference for amino-acid a at site r is πr,a, then
the rescaled preference is proportional to (πr,a)

β . The lactamase sequence is numbered using the scheme
of Ambler et al. (1991), meaning that residue numbers 239 and 253 are skipped. Comparable data for
Gal4, NP, and HA are shown in Supplementary figure 3, Supplementary figure 4, and Supplementary
figure 5, respectively.
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Figure 3: The experimentally informed models (ExpCM) identify many sites of diversifying or dif-
ferential selection that are missed by a standard dN/dS analysis (GY94). (A) The violin plots show
the distribution of P -values that a site is under diversifying selection for (positive numbers) or against
(negative numbers) amino-acid change (ωr indicates both the ExpCM parameter in Equation 5 and the
GY94 dN/dS ratio). The portion of the distribution above / below the dotted blue lines contains all sites
for which there is support for rejecting the null hypothesis ωr = 1 at a FDR of 0.05. When there are
no sites with support at this FDR, the dotted blue lines indicate the P -value that would be needed for a
site to have ωr > 1 or < 1 at a significance level of 0.05 using a Bonferroni correction. The dN/dS
method identifies many sites of purifying selection, but fails to find any sites of selection for amino-acid
change. The ExpCM model already accounts for basic functional constraints and so doesn’t identify any
sites with ωr < 1, but does identify sites of diversifying selection in all genes except Gal4 (which is
not thought to evolve under pressure for phenotypic change). (B) The violin plots shown the distribu-
tion of differential selection at each site inferred with the ExpCM. Since Gal4 is not under selection for
phenotypic change, I defined a heuristic threshold at 2-times the Gal4 maximum value of 0.27. At this
threshold, sites of differential selection are identified for all three other genes. The legend labels all sites
under diversifying or differential selection. This analysis was performed using phydms; Supplemen-
tary figure 6 shows that similar results are obtained if the dN/dS analysis is instead performed using
HyPhy (Pond et al., 2005).
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Figure 4: Site-specific selection on lactamase inferred with experimentally informed models. The
height of each letter above/below the black center line is proportional to the differential selection
for/against that amino acid at that site relative to what is expected from the amino-acid preferences in
Figure 2. The overlay bar shows the evidence for diversifying selection at each site, which is manifested
by strong evidence for a ratio ωr of nonsynonymous to synonymous substitution rates that is higher (red)
or lower (blue) than expected from the amino-acid preferences. The lactamase sequence is numbered
using the scheme of Ambler et al. (1991), meaning that residue numbers 239 and 253 are skipped. Com-
parable data for Gal4, NP, and HA are shown in Supplementary figure 10, Supplementary figure 11, and
Supplementary figure 12, respectively.
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Figure 5: The experimentally informed models (ExpCM) correctly identify the three lactamase sites in
Figure 1 that contribute to drug resistance. Figure 1 showed five sites in lactamase, three of which (238,
240, and 244) experience substitutions that contribute to drug resistance. However, a dN/dS analysis
(GY94) fails to identify any of these sites as under diversifying selection (dN/dS > 1) at a FDR of 0.05
for testing all sites (dotted blue lines). In contrast, ExpCM correctly determine that the three resistance
sites are under diversifying (238 and 244) or differential (238 and 240) selection, and that the two non-
resistance sites (201 and 242) are evolving as expected. ExpCM outperform the dN/dS method because
they implement a null model that accounts for the site-specific amino-acid preferences shown in Figure
1; for instance, this null model is not surprised that site 242 remains fixed at the highly preferred amino-
acid R, but does find it noteworthy that site 240 substitutes to K multiple times even though that is not a
particularly preferred amino acid.
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Supplementary figure 1: Clarification of subtleties in the relationship between amino-acid preferences
and substitution model equilibrium frequencies. Figure 1 shows the experimentally measured amino-
acid preferences and the equilibrium frequencies of the GY94 model. The equilibrium frequencies of
the experimentally informed codon models (ExpCM) are given by Equation 4, and are similar but not
identical to the preferences: the ExpCM equilibrium frequencies are also influenced by the unequal
number of codons per amino acid, nucleotide mutation biases, and the stringency parameter β. The
equilibrium frequencies of the GY94 model already account for the codon/mutation factors. To clarify
these distinctions, this figure shows the preferences and equilibrium frequencies of the ExpCM model,
and the “all-equal” amino-acid preferences that would lead to the equilibrium frequencies of the GY94
model if the nucleotide frequency parameters in that model are construed as representing mutation-level
rather than selection-level processes. Note that the logo plots show the amino-acid frequencies implied
by the equilibrium codon frequencies (i.e. the sum of the frequencies of all encoding codons for each
amino acid).
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Supplementary figure 2: Graphical illustration of the equation used to regularize the ∆πr,a values
when inferring differential selection. The log of the regularization defined by Equation 7 is a sum of
terms like this taken over all differential preferences at a site. This regularization has the property that
the marginal cost of shifting ∆πr,a away from zero is initially steep but then flattens somewhat as ∆πr,a
becomes large. This corresponds to the intuition that most sites will be evolving as expected (and so have
∆πr,a ∼ 0), but a few sites might be under strong differential selection. This plot uses C1 = 150 and
C2 = 0.5.
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Supplementary figure 3: Site-specific amino-acid preferences for Gal4. Shown are the preferences
experimentally measured by Kitzman et al. (2015) for the DNA-binding domain of yeast Gal4, re-scaled
by the stringency parameter β = 0.82 from Table 2.

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2016. ; https://doi.org/10.1101/037689doi: bioRxiv preprint 

https://doi.org/10.1101/037689
http://creativecommons.org/licenses/by/4.0/


1

T

G

S

L

R

A

Q

N

P

C

E

K

W

F

Y

D

H

M
V

AYNATHLS
F

I

Q

P

L

Y

N

S
F
A

S

C

R
GTKRQ

P

N
L
H
A
S
A

F

I

H
Y

11

EINDRKQS
H

T

M
R

D
E
I

L

H

M

T
C
E

D
N

Q

A

C

P
R
G
T

Q

P

I

A
D
V
E
H

RPQ
21

W

M

C

K

T
N
S

K

T

S
V
R
G
A

G

W

R

N

V

L

Y

F

A

Q
H
S
T

D

W

F

I

T

Q
L
E
V

I
F

K
R
L

Q

T

V

I

H
R
Y
K
A
Y

K

C

G

Q
N
S
C

I
V
N

G
31

E

H

M
A
R
KM

A

V

L

T

M

C
I
N

V

T

S

M

I

C

D

L
H
E
G
A

S

G
F

L

M

I
E

G
W

I

G

H
M

R
A

V

M
C
W
F
H
Y

41

N

M

G

W
T
S
I
Y
L

Q
F

N
M
T

E

L

G

W
K
V
I

S

C
S

V

TE
T

E

C

V

M
I
L
R

A

M

Q

T

S

G
K
M

I

F

V

L
P

D

T

C
S
Q
A
G

51

A

G

V

E

Q

L

T
I
P
D
N

G

S

M

C

F
K
N
A
T
Y

A

EEASGLRKM

N

I

L

L
V
I
N

QNGTCS
61

N

T
V
I
L

A

G

N
S
T
C

D

F

L

IEKRVMENGAMSIVILA

S
C

G

T
S
A

71

W

K

Y
FDC

N

Q

T

I

S

M

V
L
A
E

Y

A
K
RRLHQVSIWANILNMHCKAR

V

F

H
YLTAIGCES

81

V

I

D

E
Y
A

S

C
Y
T
F
Q
H

A

W

K

V

G

S

Q
P
Q

M

G
A
N
S

N

V

S

Q

P

Y

K
T
G
R
A

K

Y

T

L

Q

F
N
H
GKSCNDSFWCHAG

P

Q

H

R

G

N
V
I
K
T

91

R
K
N

TGGHSAMP
C

V
L
I

W

F
H

C
Y
M

Q
H
K
R
K

R
F

I

R

K

H

N

M

T

E

A
S
P
Y
L
V

101

V

E

H

S

P

Y

C

Q

N
T
G
D
Y

K

A

W

L

H
R
G
F
S

L

G

H

E

M

T

V
A
R
N
K
F

W
H

F

Q

L

A

C

G
I
M
H

RNDEC

G

P

H

S
L
F

T

S

L

Q

H

M
N
C
I
V

V

I

L
111

V

M

F
I
L
T
Y
E

A

N

D

R

KW

P

K

Q

D

N

Y

F
E
D

E
L

C

V
I
V

H

M

I

Y
T
C
L
Q
S
R

T

V

M
K
R
L

V

C

T
IW

121

W

Y

A

L

V

S

K
C
R
K

R

M

H

L

I
V
C
Q

V

S

G

A
H

N
F

A

E

T

Y

I

M

G

S

L
C
V
N

M

K

V

R

T

Q

A
L
G
E

N

I

W

T

G

K

H

S

A

M

F

Q
L
D
Y
V

I

S

A

Y

L

E
F
N
T
C
H
D
V

N

L

R

C

S

K
G
M
T
V
A

M

L

R

H

V

Q
K
P
T

131

V

H

G

M

S

Q
C
A
P

S

G
Q

M

K
I
L
A

V

S
T
C
C

Q

A
H
C

F

L
V
I
M

L

M
L
IWIYLQVH

141

C

G

A
S
G
NLLMACGNDSA

T

I

Q

V

TYQR
151

S

TRTSAILIVRM

I

S
A
C
T
V

S
G
I

L
MD

161

V

T

S
A
PRLCIVTF

M
S

G

M

Q

V
N
A
C
P

A

N
S
E

I

M
Q
S
L
L

MA

S
Q

C

GS
171

N

S

C
T
I

L
S

A

Q
PRM

K
R
G

T

A

C

SGTKGNSLAAG
181

H

M

F

G

W

N

S
Q
A
F

G

H

N

C
A
L

T

A

I
VKG

L

Q

M

I
V
A

G
A

S

T
H

V

I

L
C
M
S

G

A
V

191

I

Q

L
MEISMQLLATMI

V

RLQMTVGIRKQ

RG
201

M

Y

V

T

H
Q
L
I

H

Y

L

Q

A
NDRKCNFFWRG

D

E
211

S

V

Y

D

A

F

M

T

L
C
N

GRQ

Y

L

V

R

M
H
K
K

S

G
T
AR

Q

V

M

L

S

N
T
A
I
G
F

S
T
A
L

W

Y
G

T

D
E

221

S

K
R
T

G

N

F

Y
Q
M
T

M

W

A

C
I

Y

C

E

D

M

K

H

S
Q
N

M

F

N

S

G

C

T
V
L
Q
I
S

T

V

LK
A

V

C

T
GKCLF

231

T

L

K

I

M

G
A
H
Q
R

Q

N

H
R
K
T
N

I

T
P
A
C

D

T
G
S
P
A
C

M

QRK
H

S

G
M
A
A

Q
L
M
I

A

T
V
M
V

E

D
241

Q
C

M

T

V
S

K
RE

T

P
A
G
S
K
R
A

Q

C
S
V
N
L
C

PGSMWTN
251

I

L

V

A
D

EA

Q

V

L
I
FEDVCMLC

V
N
F
I
T
L

FVLG

T
C
V
S
A

261

RA

S
G
T
C
A
Q

C

M
L
M

L
V
I
K

V
I
L
K
R
T

Q

V
P
S
G

G

H

T

Q

A

C

S
S

N

H

I

Q

T
V

271

S

N
A
G

HKG

T

S
G

V

S
C
V

S

Q

I

C
M
LPC

I

V

M
S

G
A
L

A

M
S

C
M
T
V
C
I

281

YFSAGPLVHASTMGQ
C

C

P

H

Y

Q

K

V

R
A
T
L

M

G

Y

A

I

S

H

E

C
L
V
T

R

E

N

W

I

G
A
E

Q

M

N

S
R
S

V

R

A

G
A

R

M

C

F

Y

L

I
H
V
G

L

N

E

T

P
D

291

S

A

P

Y

C

G

M
F
Q

I

V

C

P

G

T

D
H
K
E
L

D

M

G

A

Q

S

E
V
Y
R
H
K

A

M

G

R

T

V

C

S

F
H
Q
D
N

G
F

S

N

H
Y
A

T

SLVSHG
301

M

A

F

S

V

K

Y

T

R

L
H
I
E

S

A

H
N
Q
P
D

A

S

T
P
A

L

C

I

V

W
F
N

Q

G

Y

T

R
K
R

M
I
V
T

Q
L

C

Q

A

L
F

T

N

R

L

A

V
I

Q
C
H
M
K

L

V

H

Q

M

W

G
A
S
T
N
K
R

M

Y

V

T

G

Q

A
S

C
311

N

Q
V
S
T
G
R

C

S

I

M
T
V
F

L

S
Y
V

A

C
G
S
M

F
I
V
L
S

V

T

M

C
L
IRRAVQGDSLYWIHK

P

V

C

S

H

T

G

Q

K
R
L
N
D

E
321

Q

A

W

V

C

Y
K
R
I
N
T

A

S

P
F

C

L

M

I

R

N

Q
H
G
AHKG

S
L

Q
I

V
M
L
M

T
L
I
V
F

Y
W

331

I

L
M
S
G
A
G

S

T
A
M
C
N

Q

C
H
C

Q

S
A
T

C

L
G
A

I

P
A
H

Q

Y
M
C
F
D

E
S

D
341

T

I
L
Y

A

H

Q

S

G

W
K
R
T
I
L
VL

D

T
S
I

L

V

C

K

M
T
A
F

W

L

V
I
A

H

K
R
A

G
C

K

F

S

G

L
R
M
T
A

351

I

K
I

Q

C

L
T
V

W

N

L

I

P

K
H
R
Q

Q

C

A

V
R
PRG

Y

H

F

S
K
M

L
C

A

E

N

V
R
Q
T
S
K

C

S

V

T
361

RGLCPIVFCITMQVLI
S

G
A
H

N

G

T
A
S
A

E

G

C

S

M

K

Q

V
T
N

EHAPSDFLYGQN
371

Q

V

P

N

L
C
M
I
V

N

T

D
E
P

I

S

L

M
C
F
N
V
A
T
R

K

L

T

Y

C

I
M
K

T

M

D

L
Q
E
H

P

V

A

M
C
G
N

S
R

I

Y

H

C

T

M
F
S
K

A
S
T
R
V

L
M
C

Q
E

381

T
L
N

RVTSCMKRQ

H

R

F
Y
S

W
G
S
A
M

K

I
K

RT
391

K

RG

S

C

A

S

GG
G

I

S

A

Q

T
R
H
N
L

A

T

G

F

S
H
R

I

F

T

N
K
R
H

Q

M
I
A
K
R
S

V

P

H

T
A
Q
K
R
T

K
R

401

K

I

S

A
R
Q

T
R
L
K
H
C
S

Q

S
N
C
T
A
N

C

A

S

GQ
T

L

M
V
I
C

A

S
A

S

C

L
M
I
V
T
H

S

C

A
T
V
I

Q
A
P

411

C

A
V
S
T
M

L

FS
T

M

C

L
I
V
C

L

K

R

A
S

QRKPWGLTYQCID
N
V
R
H

C

I

V
M
L
T

C

H

A

S

V
L
P
V

N

A

C

S
Y
H
F

421

E

L

S

N

Y
V
A
H
I
D

H

L

K

M

S

G

A

V
Y
R
F

A

T

K

S

G

P
R
N

Q
N

D

S

L

I

H

A

C
V
T
T

C
V
I
I

V

T

C

L
M
S

N

T

L

G

C

M
A
H
M
T
C
V
A
Y
F
T

P

N

G

A
H
R
S
C

431

H

C

Q

F

L
Y
G
V
S

K

I

L

A

F

H

Y

T
P
Q

C
G
N

G

Q

C

E

R

S

N
F
P
I
V
L
T

V

T

D
P
H
S
EGRIDNSTAHQGN

S
I
D
V

Y
M

441

H

R
N

L

G
I
V
S
T

D

E
L

T

C
V
I
C

V
I
N

T

S

A

G

K

E
D
R
E

H

K

L

Q

D
F
C
I
M

K

L
T
M

E
C

Y

G

D

L

I

N

S
T
Q

451

E

V

L

M

F

H

N

D

Q

R
K
Y
G
T
A

P

G

C

V

L

F

Y

T
I
N
K
R

C

S

I

N

T

A

Q

D
V
L
H
R
W
P
G

T

Y

K

F

G

C

N

Q

I

V
A
L
E
R

V

M

A

G

N

C

I

Q

T
Y
D
S
E
L

Q

G

K

L

W

A
V
M
R
S

C

L

N

G

T

Q

A

S
Y

F
V

E

D

L

F

S
K
W
G
H

Q
R

A

R
G

461

K

RGA

I

VFEA

Q

I

M

W
Y
H
F
L
Q

I

L

T

G

M
K
N
C
S

DA

Q

EKR
471

AYHGTAFHKCINSQR
V

S

R

A
P
V

IA
VPFLCWQYRSTLYHCIFNYKQPARESHV

D

481

R

W

V
M
N

S
M

K
N
K

P

M
N
T
V
E
F

C

R
G
WSYFY

FG
491

M

DKSNRA
D

A

K

M

E
V

S

Q

M

N

D
E
C

W

V

F
Y
F

I

G

S

D

V
M
N
L
Y
M

Y

Q

N
R
I
K

Supplementary figure 4: Site-specific amino-acid preferences for influenza NP. Shown are the pref-
erences experimentally reported in Doud et al. (2015) for the average of the measurements on the
A/PR/8/1934 and A/Aichi/2/1968 strains, re-scaled by the stringency parameter β = 2.43 from Table
2.
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Supplementary figure 5: Site-specific amino-acid preferences for HA. Shown are the preferences
experimentally measured by Thyagarajan and Bloom (2014) for influenza HA (A/WSN/1933, H1N1
strain), re-scaled by the stringency parameter β = 1.61 from Table 2. The residues are numbered accord-
ing to the H3 numbering scheme (the one used in PDB 4HMG), and data are only shown for sites in the
HA ectodomain (residues present in the crystal structure in PDB 4HMG).
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Supplementary figure 6: The results of the dN/dS analysis are qualitatively similar when using
HyPhy rather than phydms. This figure shows the same data as that in Figure 3A, but also in-
cludes the results of a dN/dS analysis using the fixed effects likelihood (FEL) method implemented
in HyPhy (Pond et al., 2005). The results are not identical to the phydms GY94 results because the
HyPhy implementation differs slightly from the phydms implementation: HyPhy performs the dN/dS
analysis using the substitution model of Muse and Gaut (1994) rather than GY94, and infers a neighbor-
joining tree with a nucleotide substitution model rather than a maximum-likelihood tree using a codon
model. Nonetheless, the results of the HyPhy FEL analysis are highly similar to those of the phydms
GY94 analysis, both in terms of the overall distribution of results and in terms of the values for the
specific indicated sites. The point markers represent the same sites as in Figure 3.
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Supplementary figure 7: Simulations validate the statistical approach used to identify diversifying
selection. Using the actual ExpCM parameters for NP in Table 2 except fixing ω = 1 for all sites
except for those selected to be simulated under diversifying selection, I used pyvolve (Spielman and
Wilke, 2015b) to simulate 10 alignments along tree inferred from the actual NP sequences. For each
simulation, I randomly selected 5 sites to place under diversifying selection, with ωr values ranging from
1 (no diversifying selection) to 30 (very strong diversifying selection). I then analyzed the data using
phydms in the same way that the actual data were analyzed. Sites were called as being under significant
diversifying selection using the false discovery rates (FDRs) indicated in the figure. The top panel shows
that ExpCM greatly outperformed the FEL-like GY94 method at identifying true positives. The bottom
panel shows that the Benjamini and Hochberg (1995) procedure effectively controls the fraction of false
discoveries among the sites called as being under diversifying selection using ExpCM. The Benjamini
and Hochberg (1995) procedure may be slightly too conservative for ExpCM (for every value of ωr the
actual rate of false discoveries is slightly below the FDR), but the differences seem modest.
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Supplementary figure 8: This figure is same as Figure 3A but also includes an analysis with
MEME (Murrell et al., 2012) as implemented in HyPhy (Pond et al., 2005). MEME reports the P -value
that a site has dN/dS > 1 on at least some branches of the tree. As can be seen from this figure, MEME
is somewhat more powerful than the GY94-based FEL approach, presumably because some sites are
only under episodic diversifying selection. While the GY94-based FEL approach identifies no sites of
diversifying selection, MEME identifies one site of diversifying selection in lactamase and one site in NP.
However, MEME still identifies fewer sites for all genes than the ExpCM.

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2016. ; https://doi.org/10.1101/037689doi: bioRxiv preprint 

https://doi.org/10.1101/037689
http://creativecommons.org/licenses/by/4.0/


Gal4 lactamase NP HA
0

1

2

3

4

5

6

7

8

K
ul

lb
ac

k-
Le

ib
le

rd
iv

er
ge

nc
e

pr
ef

s
fro

m
al

ig
nm

en
tf

re
qs

Supplementary figure 9: This figure shows the distribution over sites of the Kullback-Leibler diver-
gence of the experimentally measured amino-acid preferences from the alignment frequencies. Note
that the Kullback-Leibler divergence does not take phylogeny into account, and so will be confounded
the incomplete sampling of potentially tolerated amino acids by natural evolution. The distribution of
per-site Kullback-Leibler divergences shown here lacks the biologically sensible features of the differ-
ential selection computed in a phylogenetic framework and shown in Figure 3B. For instance, Gal4 has
many sites with very high Kullback-Leibler divergence even though on biological grounds we expect it
to be evolving mostly in the absence of positive selection. In contrast, lactamase and NP tend to have
lower Kullback-Leibler divergence even though we know that they evolve under selection for adaptive
mutations that confer drug resistance or immune escape. The biologically unreasonable distribution of
Kullback-Leibler divergences shown in this plot are probably due to the failure of the Kullback-Leibler
divergence to account for phylogeny, which may in turn make the results highly sensitive to uneven
phylogenetic sampling and differences in the total sequence divergence spanned by the alignments (see
Table 1). The Kullback-Leibler divergence was computed using logarithms taken to the base two.
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Supplementary figure 10: Site-specific selection on Gal4 inferred with the experimentally informed
models.
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Supplementary figure 11: Site-specific selection on NP inferred with the experimentally informed
models.
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Supplementary figure 12: Site-specific selection on HA inferred with the experimentally informed
codon models. Residues are numbered as in Supplementary figure 5.
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