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Abstract 

We propose a simple method for reference-free deconvolution that provides both proportions of 
putative cell types defined by their underlying methylomes, the number of these constituent cell 
types, as well as a method for evaluating the extent to which the underlying methylomes reflect 
specific types of cells.  We have demonstrated these methods in an analysis of 23 Infinium data 
sets from 13 distinct data collection efforts; these empirical evaluations show that our algorithm 
can reasonably estimate the number of constituent types, return cell proportion estimates that 
demonstrate anticipated associations with underlying phenotypic data; and methylomes that 
reflect the underlying biology of constituent cell types.  Thus the methodology permits an explicit 
quantitation of the mediation of phenotypic associations with DNA methylation by cell 
composition effects.  Although more work is needed to investigate functional information related 
to estimated methylomes, our proposed method provides a novel and useful foundation for 
conducting DNA methylation studies on heterogeneous tissues lacking reference data. 
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Introduction 

In the last decade, there has been an increasing interest in epigenome-wide association studies 
(EWAS), which aim to investigate associations between DNA methylation and health or 
exposure phenotypes across the genome.  Numerous publications have reported associations 
between DNA methylation profiled in a single tissue and disease states or exposure 
phenotypes.  Most of these studies have used whole blood1 or cord blood2-4, but some have 
used other media such as buccal swabs5, adipose tissue6, 7, and placenta8-11.   

However, most tissues are complex mosaic of cells derived from at least two and sometimes 
three different germ layers; endoderm, mesoderm and ectoderm that give rise to both epithelial 
and stromal compartments.  Just the epithelial component of an organ can be composed of 
many cell types; for example we found that breast epithelium is composed of at least 10-12 cell 
types12 with potentially distinct DNA methylation profiles13.  Added to this complexity are the 
cells in the stromal component with distinct functions, including vascular and lymphoid 
endothelial cells and pericytes, immune cells such as macrophages, leukocytes and 
lymphocytes, stromal fibroblasts, myofibroblasts, myoepithelial cells, as well as adipose cells, 
endocrine cells, nerve cells and other cellular and tissue elements that have different but 
systematically varying developmental origins.  The complexity of the epigenome in normal 
tissues has been described in a recent analysis of 111 reference human epigenomes of human 
tissues14.  Thus, because normal tissue development, individual cellular differentiation and 
cellular lineage determination are regulated by epigenetic mechanisms, which include chromatin 
alterations as well as DNA methylation15-18, many phenotypic associations with DNA methylation 
may be explained in whole or in part by systematic associations with the distribution of 
underlying cell types.  This has been demonstrated statistically in numerous papers19-22 and in 
one notable recently published manuscript which identified and confirmed the specific cell 
subtype responsible for the highly replicated relationship between tobacco smoking exposure 
and DNA methylation of the GPR15 locus23.   This phenomenon has led to an interest in 
methods for adjusting EWAS studies for cell-type heterogeneity.  In referenced-based 
deconvolution methods, the distribution of cell types is obtained by projecting whole-tissue DNA 
methylation data onto linear spaces spanned by cell-type-specific methylation profiles for a 
specific set of CpGs that distinguish the cell types, so-called differentially methylated positions 
(DMPs)19; these methods require the existence of a reference set consisting of the cell-type 
specific methylation profiles, such as those that exist for blood19, 24, 25.   However, no such 
reference sets exist for solid tissues of interest, such as adipose and placenta, or even tumors, 
thus motivating reference-free methods13, 26, 27 that seek to adjust DNA methylation associations 
for cell-type distribution. 

Numerous cell-type deconvolution methods are currently available, many of them based on 
mRNA or protein expression28; all of them are essentially either reference-based, i.e. supervised 
by the pre-selection of loci known to differentiate cell types, or else reference-free, i.e. 
essentially unsupervised.  While reference-based deconvolution methods allow for direct 
inference of the relationship between phenotypic variation and altered cell composition of 
characterized cell subtypes, reference-free approaches can provide only limited, if any, 
information on the types of cells contributing to the phenotypic association.  In this article we 
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propose a simple method for reference-free deconvolution that addresses this challenge and 
that provides both interpretable outputs – proportions of putative cell types defined by their 
underlying DNA methylation profiles – as well as a means for evaluating the extent to which the 
underlying profiles reflect specific types of cells. 

Our fundamental approach is as follows: we assume an nm×  matrix Y  representing DNA 
methylation data collected for n  subjects or specimens, each measured on an array of m CpG 
loci, and that the measured values are constrained to the unit interval ]1,0[ , each roughly 

representing the fraction of methylated cytosine molecules in the given sample at a specific 
genomic position.  This conforms to the typical average beta output of popular platforms such as 
the Infinium arrays by Illumina, Inc. (San Diego, CA), i.e. the older HumanMethylation27 (27K) 
platform, which interrogates 27,578 CpG loci, and the newer HumanMethylation450 (450K) 
platform, which interrogates 485,412 CpG loci; however, it also conforms to the results of 
sequencing-based platforms such as whole genome bisulfite sequencing (WGBS).   In 

reference-based methods, the following relation is assumed to hold: TMΩY = , where M  is a 
known Km ×  matrix representing m  CpG-specific methylation states for K  cell types and Ω  is 
an Kn ×  matrix representing subject-specific cell-type distributions (each row representing the 

cell-type proportions for a given subject, i.e. the entries of Ω  lie within ]1,0[  and the rows of Ω  

sum to values less than one).  Reference-free methods attempt to circumvent lack of knowledge 
about M either by using a two-stage regression analysis (e.g. the Houseman approach27) or 
else fitting a high-dimensional mixed-effects model and equating the resulting random 
coefficients with cell-mixture effects (i.e. the Zou approach26); both methods rely on a 
predetermined model positing associations between DNA methylation Y and phenotypes X .  

For example, the Houseman method posits the model RAXY += T , where X  is an dn×  

design matrix of phenotype variables and potential confounders; the dm× regression coefficient 
matrix A and the nm×  error matrix R  are both assumed to have further linear structure 

involving M , and the common variation between A and R  is assumed to represent systematic 
association with cell type distribution.  However, results of this approach are somewhat 
influenced by the choice of the dimension of the linear subspace of ],[ RA representing the 

common variance induced by M 20; consequently there has been recent concern that the 
method may over-adjust for cell distribution.  A similar problem exists with the Zou approach, 
which models the phenotype as a linear function of DNA methylation, and in which the choice of 
a tuning parameter can influence the extent to which phenotypic associations are putatively 
explained by heterogeneity in underlying cell types.  Here, we propose that a variant of non-

negative matrix factorization be used to decompose Y  as TMΩY = , where the entries of the 
unknown matrices M  and Ω  are constrained to lie in the unit interval and the rows of Ω  are 
constrained to sum to a value less than or equal to one.  This approach is similar to existing 
approaches for estimating the proportion of normal tissue cells in a tumor sample or otherwise 
deconvolving mixtures of cells29-33.  Additionally, this factorization conforms to the biological 
assumption that DNA methylation measurements Y , regardless of associated metadata X , 
ultimately arise as linear combinations of constituent methylomes, as we have previously 
argued20.  However, such constrained factorizations can be computationally intensive, and it is 
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still necessary to specify the number K  of assumed cell types, so in Supplementary Section S1 
we propose a fast approximation that facilitates resampling, which is the basis of our method for 
determining K , described in Section S2.  Note that 1=K  corresponds to the case where there 
are no relevant constituent cell types, which should be true for relatively pure media.  If 
associations remain between Ω  and X , i.e. if the associations between X  and Y  factor 

through the decomposition TMΩY = , then these associations are potentially explained by 
systematic changes in cell composition.  Evidence for mediation of associations by cell type is 
substantially strengthened if the methylomes represented by M  map to biological processes 
that correspond to distinct populations of cells.  To that end, we propose a simple companion 
analytical procedure for the interpretation of the methylomes represented by M .  Denote each 

row of M  (corresponding to one CpG) as the 1×K  vector jμ , },...,1{ mj ∈ .  CpG loci that most 

differentiate the K  putative cell types will tend to have distinct values within jμ ; thus high 

values of the row-variance },...,var{ 1
2

jKjjs μμ=  should correspond to CpGs that are most 

relevant to the biological distinctions among the K  cell types, and this can be tested with 
auxiliary annotation data.  Figure 1 illustrates our approach.  

We demonstrate these methods in analyses of 23 genome-scale DNA methylation data sets 
from 13 distinct data collection efforts, including four blood data sets, several breast tumor data 
sets (including data from The Cancer Genome Atlas, TCGA), vascular and liver tissues, sperm, 
and four separate media collected on the same population, Bangladeshi neonates, including 
placenta.  In addition, we leverage data derived from The Roadmap Epigenomics Project, 
demonstrating their utility in addressing the biological relevance of fitted methylomes M . 

Results 

To test our proposed approach, we analyzed 23 DNA methylation datasets from 13 distinct 
studies, each set of DNA methylation measurements obtained via the Infinium 27K or 450K 
platform.  Four blood data sets3, 22, 34, 35 were included as positive controls (given the existing 
reference data and known heterogeneity), each collected in the context of an epidemiologic 
study, and each assumed to exhibit heterogeneity in cell type as previously described3, 19, 22.  
Sperm36 and isolated vascular tissues37 were included as negative controls, presumed to 
represent relative homogeneity in terms of constituent cell types.  Note that four datasets arose 
from one study on arsenic exposure in Bangladeshi neonates3, 9, in which four separate tissues 
were obtained from the same individuals.  Also included were arterial tissue38, liver tissue39, and 
data from cancer data sets40-43, including breast tissues from TCGA44.  Table 1 lists the data 
sets, their sources and their short descriptions.  Figure S3.1 shows the results of hierarchical 
clustering applied to 26,476 CpG sites common across the datasets (Manhattan distances 
based on mean methylation for the data set, clustering based on Ward’s method implemented 
as Ward.D in R version 3.2.2).  Figure S3.2 summarizes the number of CpGs analyzed for each 
data set, by fraction of samples observed for each CpG.  Note the strong clustering of data sets 
by type of media.  The ordering of data sets in Table 1 and many subsequent figures are based 
on the clusters shown in Figure S3.1.   
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Estimated Numbers of Cell Types 

Using the method described in Supplementary Section S2 with 25 iterations, for each data set 

we found the decomposition TMΩY = , for values of K  varying from 2 to either 10max =K  or 

the maximum possible given the sample size ( 8max =K  for BV+LV, 2 for BV and LV, 7 for 

AR[n]).  We then used our bootstrap approach (Supplementary Section S3) for determining the 

number K̂  of classes for each data set, displayed in Figure 2a, which demonstrates 

heterogeneity in the number of classes K̂  estimated.  3ˆ ≥K  for blood data sets ( 3ˆ =K  for the 
cord blood data set BL-as, larger for the other three peripheral blood datasets).  For breast 

tissues (both tumor and normal) K̂  was typically large.  3ˆ ≥K  for the artery and liver data sets 

having three distinct sources each (AR[np] and L[np]).  1ˆ =K  for the pure blood and lymphatic 

vessel data sets (BV and LV); 2ˆ =K  for other vessel data sets consisting of normal tissue 
(AR[n] , AR-as, BV+LV, UV-as), for the normal liver data set L[n], for sperm (SP) and for 

placenta (PL-as).  We remark that K̂  was typically lower for datasets that were more likely to be 

comprised of homogeneous tissues.   We also remark that our proposed method of selecting K̂  
is based on minimizing a bootstrapped deviance statistic, and that the variation of this statistic 
across values of K  can be informative.  For example, with the BL-ra dataset, the deviance 
dropped precipitously from 1=K  to 3=K , while for the sperm data set the deviance remained 
flat from 1=K  to 6=K  before rapidly increasing (Figure 2b).   

Associations with Phenotypic Metadata 

To examine the associations between Ω  and various metadata associated with the 
subjects/specimens in the corresponding study, we fit a quasi-binomial model for each row of  
Ω ; Table 1 provides the covariate model X  used for each data set.  As described below and in 
detail in Supplementary Section S4, to circumvent dependence of results on the choice of K , 

we examined associations over the range },...,1{ maxKK ∈ , using a permutation test (1000 

permutations) for inference on each covariate.  Table 2 provides a summary of permutation test 
results.  As shown in Table 2, cell mixture proportions Ω  were typically significantly associated 
with major phenotypes of interest and occasionally with age (e.g. bl-hn and BR-tcga[t]); the 
exception was the sperm dataset, for which Ω  was not significantly associated with fraction.  
Note in particular that for breast tumors, ER status variables (or histology variables 
incorporating ER status) were significantly associated with Ω .  Sex was typically not 
significantly associated with Ω . As shown in Figure 2, the associations between Ω  and 
phenotype could be quite striking (e.g. rheumatoid arthritis status) or completely lacking (e.g. 

sperm fraction).  Figure 3a shows clustering heatmap of Ω  ( 10ˆ == KK ) for BL-ra, one of the 
positive control blood data sets, with annotation track showing the associated phenotype 
rheumatoid arthritis case/control status.  Figure 3b shows a similar clustering heatmap for the 

negative control SP (sperm, 2ˆ == KK ), along with the associated phenotype, specimen 
fraction.  Other clustering heatmaps are provided supplementary files.   
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We also considered the effect of Ω  on CpG-specific associations of DNA methylation with X . 
As described below and in detail in Section S5, we computed regression coefficients for logit-

methylation (i.e. M-values) upon ],[ ΩX  for },...,1{ maxKK ∈ (for 1=K  the covariate model was 

simply X );  for Ω  and for each covariate, we then used the resulting nominal p-values to 

estimate the proportion 0π  of null associations.  For demographic variables (age, sex, race), 

Figure S5.1 illustrates the value of 0π  for the overall association of Ω  with DNA methylation (

)ˆ,2max(* KKK == ).  For demographic variables, Figure S5.2 provides a comparison of 0π  

from the 1=K  model with 0π  from the *KK = model.  Figure 4 displays a similar comparison 

for other variables.  These figures demonstrate that adjustment by Ω  very often resulted in 

higher values of 0π , the estimated proportion of null associations.  Exceptions were age in bl-hn 

and sex in AR[np] and AR-as, where adjustment by Ω  reduced 0π  (Figure S5.2).  On the other 

hand, the proportion of null associations with Ω  was typically low: except for the homogeneous 

tissue datasets SP and BL+LV, 0π  was less than 0.2; of the others, except for the arsenic-

exposure data sets UV-as, AR-as, and PL-as, 0π  was extremely close to zero.  

Interpretation of Putative Cell Types 

We examined the biological relevance of resulting matrices M  in several different ways.  First, 

for each data set, we computed row-variances 2
js  (as described above) both for 2=K  and for 

)ˆ,2max(* KK = .  For each of these two values of K , we classified each CpG },...,1{ mj ∈  by 

whether its row-variance 2
js  lay above the 75th percentile )( 2

75.0 sq , reasoning that these CpGs 

could be considered as important distinguishers of cell type.  Next, we obtained a list of DMPs 
for differentiating distinct major types of leukocytes (Blood DMPs), and another list of CpGs 
mapped to genes considered Polycomb Group proteins (PcG loci), the construction of both lists 
described in detail in Supplementary Section S6.  For each data set we computed the odds ratio 

for the association of high row-variance ( )( 2
75.0

2 sqs j > ) with DMP set membership (Blood DMPs 

or PcG loci), using Fisher’s exact test to compute the corresponding p-values.  Odds ratios are 
depicted in Figure 5, with log10 p-values given in Table S6.1.  Blood DMP status showed the 
highest associations in blood data sets, although also somewhat high associations in L[np] and 
AR[np] (data sets having tissues with potentially inflammatory components to pathology).   Data 
sets with tumors (BR-tcga[t], br-1[t], br-2[t], br-3[t], g[nt], and g[t]) showed high association of 
PcG loci with cell-type distinguishing CpGs, but so did the data set with normal gastric tissue, 
g[n].   As shown in Figure S6.1, the Bilenky DMPs based on breast tissue showed the highest 
association with cell-type distinguishing CpGs in the data sets with breast tissue, although 
associations were also high in L[np], AR[n], and AR[np].  As shown in Figure S6.2, the REMC 
DMPs, based on comparison of ectodermal/mesodermal/endodermal distinctions among 
embryonic stem cells, showed relatively weak (or negative) associations with cell-type 
distinguishing CpGs for all datasets.   
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We also developed a novel approach based on WGBS data from the Roadmap Epigenomics 
Project for 24 primary tissues.  For each sample, we obtained the 470,909 CpGs overlapping 
with CpGs from either Infinium array (and having fewer than 3 missing values), clustering the 
tissue samples based on the 15,000 most variable of these CpGs (Manhattan distance metric 
with Ward’s method of clustering).  The resulting dendrogram, shown in Figure S7.1, 
demonstrates substantial clustering along general tissue type.  We also applied our 
deconvolution algorithm to these 24 tissue samples ( 6=K ), with results shown in Figure S7.2; 
note that the deconvolution of these tissues resulted in constituent cell types that roughly 
aligned with anticipated anatomical associations, e.g. tissues with substantial smooth or skeletal 
muscle mapped to one cell type, tissues with a substantial lymphoid/immune component 
mapped to another, and central nervous tissues map to yet another.  We reasoned that similar 
tissue types would differ principally in the proportion of underlying normal constituent cell types, 
and thus provide information on cell-type heterogeneity underlying other tissues of similar type.  
Consequently, we selected the tissue pairs corresponding to the 25 smallest Manhattan 
distances (as calculated for the clustering in Figure S7.1), with pairs illustrated as network 
edges in Figure S7.3.  Due to small numbers of DMPs (10 or fewer) we excluded two pairs; for 
each of the remaining 23 pairs, we identified, among the 15,000 CpGs most variable across all 
24 tissue types, those CpGs that differed in methylation fraction by greater than 0.70 between 
the two samples; we considered these CpGs to be Infinium-specific DMPs for tissue-specific 
heterogeneity.  Using these 23 sets of DMPs, we conducted a gene-set analysis as described in 
the previous paragraph.  The clustering heatmap in Figure 6 presents the odds ratios for the 

450K data with )ˆ,2max(* KK = ; the heatmap in Figure S6.4 presents the odds ratios for the 

27K data with )ˆ,2max(* KK = , and the odds ratios for 2=K are given in Figures S7.5 and 

S7.6.  Corresponding p-values are given in Tables S7.1, S7.2 and S7.3. Note that we excluded 
additional pairs from the 27K array analysis due to small DMP overlap with the 27K array.  As 
shown in Figure 6, positions that distinguished immune-related tissues (CD34+ hematopoietic 
stem cells vs. thymus or spleen) were highly associated with CpGs distinguishing cell types in 
the two 450K blood data sets, as well as in the mixed liver tissue dataset L[np] and the mixed 
arterial dataset AR[np], consistent with the findings demonstrated in Figure 5a.  In the arterial 
data sets AR[n] and AR[np], the normal breast data set BR-tcga[n] and to some extent the 
normal mixed vessel data set BV+LV, high associations were found for CpGs that distinguished 
smooth muscle content (aorta vs. psoas muscle, heart atrium vs. ventricle, heart atrium vs. 
esophagus).  Interestingly, AR[n], AR[np], and BR-tcga[n] displayed associations with CpGs 
distinguishing lung and esophagus, potentially an epithelial cell comparison (although potentially 
also representing a distinction in smooth muscle content).  All other positive associations were 
relatively weak.  Strong negative associations with CpGs that distinguished right atrium from left 
ventricle were observed for L[n], SP, UV-as, and AR-as, although these results may be driven 
by small numbers of CpGs (see p-values in Table S7.2).  Patterns were similar for 2=K  
(Figure S7.5).  Patterns were similar in 27K blood data sets; additionally, the normal gastric data 
set g[n] displayed high association with DMPs distinguishing Roadmap stomach tissues (Figure 
S7.4).  Interestingly, L[n]  was the only dataset displaying mostly negative (though weak) 
associations.    

Additional Analyses on 450K Blood Datasets 
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We analyzed four blood data sets as positive controls, with the expectation that the resulting 
cell-type proportions Ω  would show substantial associations with X .  Practically, considering 
that reference data sets exist for blood, estimation of associations between phenotypic 
metadata and major types of leukocytes would typically employ the reference-based estimation 
of Ω  rather than the essentially unsupervised approach we have proposed.  Two additional 
avenues of investigation emerge:  (1) the extent to which the reference-based and reference-
free approaches are consistent in their results; and (2) the extent to which the unsupervised 
approach may provide additional information on immune response and inflammation (as 
represented by distributions of leukocytes including their various activation states) beyond 
associations with simply the major types of leukocytes, i.e. those existing in currently available 
reference sets.  To this end, we further analyzed the two 450K blood data sets, BL-ra and BL-

as, estimating for each data set two sets of cell-type proportion matrices ( 7=K ):  0Ω  

(reference-based) and 1Ω  (reference-free).  We used a common set of DMPs for each 

estimation procedure, with details provided in Supplementary Section S8.  Note that for the 

reference-based approach, we fit T
00ΩMY =  with essentially known 0M , while for the 

reference-free approach, we estimated 1M  in the context of fitting T
11ΩMY = .  We note that, in 

general, we did not anticipate 0Ω  and 1Ω  to be equal.  The reason is that the unsupervised, 

reference-free approach will find only the major axes of variation within a given data set, not 
necessarily all relevant distinctions of major cell types.  For example, if a data set consists of 
only two distinct immune profiles (with very little variation among the subjects sharing a profile), 
then the reference-free approach will typically find only two cell types, those corresponding to 

each profile.  However, 0M  and 1M  should be related to by a mixing matrix Ψ  that reassigns 

the “correct” cell types to the unsupervised decomposition, i.e. T
01 ΨMM = .  It follows that 

ΨΩΩ 10 ≈ , thus phenotypic associations with 0Ω should match those with ΨΩ1 .  Figures S8.1 

and S8.2 depict the mixing matrices Ψ , obtained by constrained projection, for BL-ra and BL-
as, respectively.  Though our essentially unsupervised approach resulted in cell proportion 

estimates 1Ω  quite distinct from 0Ω , for both BL-ra and BL-as the reference-based solution 0Ω  

was nevertheless reasonably similar to a linear combination ΨΩ1  of the unsupervised solution 

1Ω (Figures S8.3 and S8.4). Phenotypic associations with the “re-mixed” ΨΩ1  cell proportion 

estimates were remarkably similar to associations with the reference-based solution 0Ω  

(Figures S8.5 and S8.6), with only one notable reversal: in the BL-ra dataset, the relative 
magnitudes of CD4+ and CD8+ coefficients were reversed, but all were still significantly and 
negatively associated with rheumatoid arthritis status.   

It follows that if 1M  contains information on immune function not readily apparent from 0M , 

then the information should be evident in the residual matrix T
01 ΨMM − .  In fact, a number of 

CpGs still showed substantial heterogeneity among the residual methylomes 1M  in comparison 

with the residual methylomes T
01 ΨMM −  (Figures S8.7 and S8.8).  The residual methylomes 
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T
01 ΨMM − , which reflect residual epigenetic information suggestive of cell-type heterogeneity 

but unaccounted for by the reference methylomes 0M , displayed substantially diminished 

association with the DMPs based on Roadmap WGBS data, compared with the unadjusted 
methylomes 1M (Figure S8.9 vs Figure S8.10).  However, with loci mapped to genes known to 

reflect immune activation or regulation, both 1M  and T
01 ΨMM −  typically displayed similar 

heterogeneity across constituent methylomes (Figures S8.11 and S8.12).  In particular, they 
identified two strongly significant processes in the rheumatoid arthritis data set, Th1 & Th2 
differentiation and T-Cell Polarization (Figure S8.13), while for arsenic exposure in Bangladeshi 
neonates, they identified one strongly significant process, Regulators of T-Cell Activation 
(Figure S8.14).   These results were somewhat dissimilar from results obtained using the 

reference-based cell proportions 0Ω  in limma to adjust for cell type (Figures S8.15 through 

S8.17).  In particular, the limma-based methods found significant associations for the less 
specific gene set T-Cell Differentiation, but not for Th1 & Th2 differentiation.  Thus, subtle 

immune effects may be more readily apparent from the row variances of 1M  than from the 

methylation associations obtained by adjusting for the reference-based cell proportions. 

Additional Analyses on Datasets with Normal and Pathological Tissue 

Finally, in an analysis of cell proportions Ω  obtained using the Roadmap-derived methylomes 
as a reference, notable distinctions between normal and pathological tissues were revealed 
(Figures S9.1 through S9.3).  In particular, gastric tumors differed from normal gastric tissues in 
having greater immunological/inflammation content but lesser gastrointestinal content, 
atherosclerotic carotid (and to some extent atherosclerotic aorta) differed from normal aorta in 
having greater immunological/inflammation content but lesser muscular content, and cirrhotic 
tissues differed from normal liver tissues in having greater immunological/inflammation content 
but lesser gastrointestinal content (with the pattern more striking for cirrhotic tissues related to 
viral infection than for cirrhotic tissues related to alcohol abuse). 

Discussion 

We have proposed a simple method for reference-free deconvolution that provides both 
interpretable outputs, i.e. proportions of putative cell types defined by their underlying 
methylomes, as well as a method for evaluating the extent to which the underlying reflect 
specific types of cells.  We have demonstrated these methods in a wide array of methylation 
datasets in various tissues and focused on differing exposures or outcomes. 

Overall our deconvolution approach is similar to many others that have been proposed29-33.  In 
particular, it is very similar to a recent publication that applied a convex-mixtures approach to 
deconvolve RNA expression33.  Our approach differs from this one in that it deconvolves DNA 
methylation, with a corresponding constraint on the values of M ; in addition, importantly, we 
have provided a more comprehensive approach for interpreting the resulting columns of M . 

We have provided a novel approach for estimating the number K̂  of cell types, which we have 
shown to reflect the level of cellular heterogeneity anticipated from each tissue we analyzed.  
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More heterogeneous tissues (blood, breast, and gastric tissues) resulted in higher values of K̂ , 

while the more homogeneous tissues had lower values:  1ˆ =K  for the (admittedly small) 

isolated lymphatic and blood vessel endothelium data sets, while 2ˆ =K  for sperm and umbilical 

cord endothelial tissues.  Note, however, that Figure 2b reflects ambiguity in the choice of K̂  for 

sperm and equally supports the choice 1ˆ =K ; similar plots shown in Figure 2b unambiguously 

suggest 1ˆ >K  for two blood data sets and for an artery data set.  A similar plot for UV-as (not 

shown) displayed an unambiguous preference for the choice of 2ˆ =K , but the two putative 
types of cells did not associate with any metadata (Table 2).  Taken together, these results 

demonstrate that our algorithm returns reasonably reliable values of K̂  reflecting cellular 
heterogeneity. 

Cell mixture proportions Ω  were typically significantly associated with major phenotypes of 
interest, with the notable exception of sperm, umbilical vein endothelium, and placental artery 
(the former two assumed to be homogenous tissues).  Thus, the radically dimension-reduced 
DNA methylation data in Ω  can still retain strongly significant associations with major 
phenotypes of interest.  However, for other covariates, especially demographic confounders, 
there was considerable variation in significance, demonstrating that Ω  can also show null 
associations with some covariates.  Taken together, the results show that Ω  can distinguish 
signal from noise.   As the limma analysis demonstrated, residual signal can still exist in Y  
even after adjusting for Ω , although often in a more diminished capacity.  In a few rare cases, 
the signal increased after adjusting for Ω .  Taken together, these results suggest that a 
substantial proportion of the association between Y  and phenotypic metadata X  can be 

factored through the decomposition TMΩY = , occasionally clarifying the residual signal, but 
more often diminishing it.  This finding is significant, as it would strongly suggest that the results 
of the vast majority of EWAS studies are driven by physiologic changes of the underlying 
composition of cells within the samples obtained.  This is nicely highlighted by a recent report 
identifying a specific cell type driving the associations between smoking and changes in DNA 
methylation in peripheral blood23.  This is in contrast to the prevailing current interpretation of 
most findings, which has aligned more strongly with the concept of metastable epialleles. These 
alleles represent loci where environmental conditions during development dictate ‘setpoints’ for 
the levels of methylation at particular gene sequences that are consistent across tissues within 
any person, also yielding differences in concordant gene expression45-48.  The methods 
described in our work may have some utility for future discovery of these alleles in that within-
person, cross-tissue comparisons of methylation profiles would be expected to be enriched for 
metastable alleles when the loci that are reflective of subsets of cell types are described and 
removed from comparisons. 

On the other hand, we demonstrated that columns of M  correlate with external biological 
annotation data in a manner concordant with their interpretation as methylomes specific to 
constituent cell types.  Blood DMP status showed the highest associations in blood data sets, 
although also somewhat high associations in L[np] and AR[np], data sets having tissues with 
potentially inflammatory components to pathology.   Data sets with tumors (BR-tcga[t], br-1[t], 
br-2[t], br-3[t], g[nt], and g[t]) demonstrated high associations with PcG Loci , reflecting the 
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mitotic activity of tumors; that normal gastric tissue, g[n]  also showed a high association with 
PcG Loci is consistent with the high level of cellular turnover in gastric tissues.  The Bilenky 
DMRs showed the strongest associations for breast tissues, consistent with the fact that the 
Bilenky DMRs were obtained from breast tissue, but also demonstrated strong associations for 
liver pathologies, and in arterial tissues AR[n] and AR[np].  Breast and arterial tissues have a 
mix of epithelial and smooth muscle tissues, which may explain the arterial results.  The 
association in L[np] may reflect the fibrous character of pathological liver tissue.  REMC DMRs 
demonstrated only weak correlation or strong negative correlation with all tissues, perhaps 
reflecting the embryonic/developmental nature of the REMC DMRs. 

Comparisons with DMPs constructed from Roadmap WGBS data also demonstrated that the 
columns of M  reflect epigenetic content concordant with anatomical expectations; in particular, 
blood datasets displayed associations with DMPs distinguishing CD34+ hematopoietic stem 
cells vs. thymus or spleen, as were datasets L[np] and AR[np], which both included tissue 
pathologies involving inflammation and immune response.  Arterial data sets displayed 
associations with DMPs distinguishing smooth muscle from endothelium.  Associations with 
Roadmap-based DMPs were typically weak for homogeneous tissues, in particular sperm.  
Interestingly, the normal liver tissue data set L[n] had mostly weak negative associations; one 
possible explanation is that the primary tissues available from the Roadmap were too dissimilar 
from normal liver tissue to distinguish subtle anatomical features.   Using the Roadmap data as 
a pseudo-reference, normal and pathological tissues were revealed to differ anatomically along 
anticipated lines, specifically in that pathological tissues had greater cellular content reflective of 
immune or inflammation processes, and lesser gastrointestinal content (gastric and liver tissue) 
or muscular content (arterial tissue).  Taken together, these results suggest that the columns of 
M  reflect methylomes of constituent cell types. 

We remark that the unsupervised deconvolution approach we have proposed cannot be 
guaranteed to recover the methylomes of all constituent cell types; instead, it recovers the major 
axes of cellular variation.  This was evident in the comparison of reference-based and 
reference-free deconvolution of blood datasets BL-ra and BL-as; for these datasets, the 
reference-free approach recovered the linear combination of reference methylomes most 
relevant to characterizing the underlying variation.  However, when “re-mixed” back to 
proportions of known cell types using a reference methylome, associations with phenotypic 
metadata were consistent with those obtained from reference-based deconvolution.  While on 
its surface this suggests that the reference-free approach has no value when a reference 
methylome is known (as is the case with blood), further analysis of the residual information in 
the unsupervised deconvolution demonstrated that reference-free deconvolution may reveal 
distinctions in cell type relevant to characterizing the underlying variation in the dataset but more 
subtle than the potential distinctions fixed in advance by the reference set.  For example, the 
unsupervised approach identified two strongly significant processes in the rheumatoid arthritis 
data set, Th1 & Th2 differentiation and T-Cell Polarization; this finding is consistent with known 
Th1/Th2 differentiation processes49, 50 and T-Cell polarization process51, 52 involved in the 
etiology of rheumatoid arthritis.  Similarly, the unsupervised approach identified Regulators of T-
Cell Activation as a significant process in the dataset investigating arsenic exposure in 
Bangladesh.  In fact, the impact of arsenic exposure on regulation of T-cells has been noted53, 
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and even observed in another study conducted in Bangladesh54.  We remark that we obtained 

somewhat different results using reference-based cell proportions 0Ω  in limma to adjust for cell 

type.  Thus, the reference-free approach may provide important information that complements a 
reference-based approach. 

As a general point, we have demonstrated the links suggested in Figure 1; thus, we have shown 
that it is possible to use a reference-free approach to characterize the extent to which 
phenotypic associations with DNA methylation data are explained by differences in constituent 
cell types.  We remark that such distinctions may be subtle, such as variation in smooth muscle 
content or the presence of leukocytes with specialized immunological states.  There may still 
exist associations residual to those with variations in putative underlying cell types, although 
they will often be diminished after adjusting for cell type in the manner we have proposed.  
Other reference-free approaches can also distinguish between associations driven by variation 
in cell type and those that are more focal to individual CpG sites, but our proposed method has 
several advantages over these existing methods.  The first is that it is not particularly intensive 
computationally; the second is that it provides an easy and interpretable way to estimate the 
underlying number of constituent cell types; the third is that it provides estimates of cell-
proportions that are directly interpretable and comparable with estimates obtained from 
reference data sets.  In particular, our method provides a means for extracting information that 
is more subtle than that available from reference data sets but may nevertheless reflect 
additional variation in constituent cell types.  While similar insights may be obtained simply by 
examining the CpG-specific associations, we note that there is ongoing controversy on what 
“adjustment for cell-type” means in the context of EWAS analysis.  We have previously argued 
that all epigenetic variation is ultimately mediated by cell-type, if the meaning of “cell-type” is 
conceived of broadly enough20; a more useful framing of the question is how to identify types of 
cells that are relevant to the biological variation being studied.  Our proposed approach helps in 
partitioning the underlying variation into units that resemble cell-specific methylomes, so that 
these methylomes or the overt functional characteristics of these cells may be further analyzed 
using additional biological characterization data. 

We remark on a few current limitations of our approach.  One is that we have used a crude 
gene-set procedure based on variance, which removes “signed” information and thus precludes 
the use of algorithms based on expression signature, such as CTen55.  Another related limitation 
is a lack of relevant annotation data.  Further work is necessary to adapt the method we have 
proposed here to “signed” comparisons, thus enabling a wider array of annotation tools, and to 
develop other relevant annotation datasets relevant to identifying subtle cell types. 

Methods 

Empirical Examination of Proposed Methods 

We removed chromosome Y data from all datasets; and we also removed chromosome X data 
from all but the breast datasets.  For the 450K data sets downloaded from TCGA, and for the 
450K data collected to investigate associations with arsenic exposure in Bangladeshi neonates3, 

9, we used the FunNorm algorithm (Bioconductor package minfi) to process the raw idat files; 
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we obtained all other data sets as processed average beta values from Gene Expression 
Omnibus (GEO).  For 450K data sets, we excluded CpGs with cross-hybridizing probes or 
probes with SNPs56, and used the BMIQ algorithm57 (Bioconductor package wateRmelon) to 
align the scales of Type I and Type II probes.  Finally, for each data set, we excluded CpGs 
having missing measurements for over half the specimens.    

Associations with Phenotypic Metadata 

As described in Supplementary Section S4, permutation tests were used to assess omnibus 
significance of  covariates X  with fitted cell proportions Ω .  As described in Supplementary 
Section S5, we further compared associations of Y  with X  before and after including terms 
from Ω  in the regression model for Y , using the limma procedure58 (via the R package limma) 
to compute regression coefficients, using the R package qvalue to estimate both q-values and 

the overall proportion 0π  of null associations. 

Interpretation of Putative Cell Types 

We obtained a list of DMPs for differentiating distinct major types of leukocytes (Blood DMPs) 
from the Reinius reference set25, and constructed a set of CpGs mapped to genes considered 
Polycomb Group proteins (PcG loci), compiled from four references59-62 as in our previous 
articles20, 27. We also constructed a set of CpGs based on differentially methylated regions 
(DMRs) obtained from WGBS data collected by the Epigenomics Roadmap Project.  
Supplementary Section S6 describes the details of the construction of these DMP sets.  In 
addition, we developed a novel approach based on WGBS data from the Roadmap 
Epigenomics Project for 24 primary tissues, described in detail in Supplementary Section S7. 

 Additional Analyses on 450K Blood Datasets 

To compare reference-based analysis with our proposed approach, we analyzed the two 450K 
blood data sets, BL-ra and BL-as, estimating for each data set two sets of cell-type proportion 

matrices ( 7=K ):  0Ω  (reference-based) and 1Ω  (reference-free).  Details appear in 

Supplementary Section S8.  Briefly, to obtain the mixing matrix Ψ  that relates matrices 0M  and 

1M , we used a constrained projection similar to that used to obtain the reference-based cell 

proportion matrix 0Ω , and compared 1M  with T
01 ΨMM −  by identifying CpGs with high 

variation across their constituent methylomes.  In addition, we compared these highly varying 
CpGs with with immune activation and immune regulation pathways compiled from six 
sources63-69. 

Additional Analyses on Datasets with Normal and Pathological Tissue 

We projected Infinium data from each of the three datasets sets g[nt], AR[np], and L[np] onto 

the profile matrix M  obtained by decomposing the Roadmap WGBS data ( TMΩY = ); we then 
averaged the resulting specimen-specific cell proportions Ω  over tissue status (normal gastric 
tissue vs. gastric tumor, normal aorta vs. atherosclerotic aorta and atherosclerotic carotid, and 
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normal liver vs. alcohol-related cirrhotic liver and cirrhotic liver due to viral infection).  Details 
and results appear in Section S9. 
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Figures 

Figure 1.  If associations between DNA methylation data Y  and phenotypic metadata X  factor 

through the decomposition TMΩY = , and the data in M  serve to distinguish cell types by their 
associations with relevant annotation data, then associations between X  and Y  are explained 
in whole or in part by differences in the distribution of constituent cell types.   
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Figure 2.  (A) Estimated number K̂  of classes for each data set. (B) Bootstrapped deviance 
profiles for four selected data sets, along with mean deviance, median deviance, and quartiles 
for each value of K . 
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Figure 3.  Clustering heatmaps of cell proportion matrix Ω  for two data sets; purple intensity 
indicates cell proportion. (A) Blood from rheumatoid arthritis cases and controls (BL-ra, 

10ˆ == KK ).  (B) Sperm (SP, 2ˆ == KK ). 
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Figure 4.  Comparison of 0π (proportion of null association CpGs) from the 1=K  model with 

0π  from the *KK = model; only non-demographic variables are shown.     
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Figure 5.  Gene-set odds ratios, showing the association of gene set membership with the set 

of CpGs whose values are highly variable across fitted methylomes ( )( 2
75.0

2 sqs j > ).   (A)  Blood 

DMRs.  (B) CpGs mapped to polycomb group protein genes. 
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Figure 6.  Gene-set odds ratios for 450K data sets, showing association of sets of DMPs 
distinguishing various Roadmap Epigenomics WGBS specimens with the set of CpGs whose 

values are highly variable across fitted methylomes ( )( 2
75.0

2 sqs j > ).    
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Tables 

Table 1 – Summary of Datasets 

 

Code Tissue Source Ref Platform Source Description N Covariate model

g[nt]
gastric tissue: 

tumor+normal
297 Tumor[normal|tumor]

g[n] gastric tissue: normal 94 -

g[t] gastric tissue: tumor 203 -

br-1[t] breast: tumor
GEO:

GSE20712
43 27K

119 breast tumor samples with histological 

information.  Removed 29 samples with 

ambiguous or missing histology.

119
Histology[basal|HER2|LumA|LumB] + 

Age[young|old] + Size[small|large]

br-2[t] breast: tumor
GEO:

GSE31979
40 27K 103 primary invasive breast tumors. 90

Histology[basal|ER-|ER+|HER2|LumA|LumB] + 

Age

br-3[t] breast: tumor
GEO:

GSE32393
41 27K

Breast tumor samples: 91 invasive ductal, 13 

invasive lobular, 10 mucinous or medullary; 76 

were ER+.

114
ER[ER-|ER+] + Histology[duct|lob|muc or 

med] + Age

bl-ov peripheral blood
GEO:

GSE19711
35 27K

Whole blood from 131 ovarian cancer cases 

(drawn pre-treatment) and 274 controls.
402 Case[control|ovarian cancer case] + Age

bl-hn peripheral blood
GEO:

GSE30229*
34 27K

Peripheral blood from 92 head and neck 

squamous cell carcinoma (HNSCC) patients and 

92 controls. Removed 2 outlier cases.

182 Case[control|HNSCC case] + Age

BL-ra peripheral blood
GEO:

GSE42861
22 450K

Peripheral blood from 354 rheumatoid arthritis 

patients and 335 controls.
689 Case[control|arthritis case]

BL-as cord blood (not public) 3 450K**

Cord blood from 45 Bangladeshi neonates, 

with corresponding drinking water arsenic 

concentrations.

45 Log-arsenic + Sex[female|male]

SP sperm
GEO:

GSE47627
36 450K 26 normal sperm samples. 26

Fraction[swim down|swim up|whole 

1h|whole 2h]

BV+LV endothelial tissue 16 Source[BV|LV]

BV
endothelial tissue: 

blood vessel
6 -

LV
endothelial tissue: 

lymphatic vessel
10 -

UV-as
umbilical vein 

endothelial tissue
(not public) 9 450K**

Umbilical vein endothelial tissues from 51 

Bangladeshi neonates, with corresponding 

drinking water arsenic concentrations.

51 Log-arsenic + Sex[female|male]

AR-as placental artery (not public) 9 450K**

Placental arteries from 46 Bangladeshi 

neonates, with corresponding drinking water 

arsenic concentrations.

46 Log-arsenic + Sex[female|male]

AR[np]

arterial tissue: 

atherosclerotic + 

normal

49
Source[normal|ath|carotid ath] + 

Sex[female|male] + Age

AR[n]
arterial tissue: 

normal aorta
15 -

PL-as placenta (not public) 9 450K**

Placentas from 45 Bangladeshi neonates, with 

corresponding drinking water arsenic 

concentrations.

45 Log-arsenic + Sex[female|male]

L[np]
liver tissue:  cirrhotic 

+ normal
100 Source[normal|CirrEtOH|CirrV]

L[n] liver tissue: normal 34 -

BR-tcga[n] breast: normal 450K*

96 normal breast tissues (matched to tumor) 

from The Cancer Genome Atlas, downloaded 

Nov. 2014

96 Age + Race[white|other]

BR-tcga[t] breast: tumor 450K*
725 breast tumors from The Cancer Genome 

Atlas, downloaded Nov. 2014
725

Age + Race[white|other] + 

Staging[II+|III+|IV/X|?] + ER[ER+|ER-] + 

HER2[HER2+|HER2-|HER2?]

TCGA

(11/2014)

42

37

38

39

44

GEO:

GSE46394
450K

15 normal aortic tissues, 15 atherosclerotic 

aortic lesions, 19 carotid atherosclerotic 

samples.

GEO:

GSE60753
450K

34 normal liver tissues, 21 cirrhotic tissues 

(due to alcoholism), 45 cirrhotic tissues [due to 

chronic hepatitis B (HBV) or C (HCV) viral 

27K
GEO:

GSE30601

203 gastric tumors and 94 matched gastric non-

malignant samples.

GEO:

GSE34487
450K

16 vascular samples: 6 primary blood vessel 

endothelial cell samples and 10 primary 

lymphatic endothelial cell samples.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 22, 2016. ; https://doi.org/10.1101/037671doi: bioRxiv preprint 

https://doi.org/10.1101/037671
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2 – Inference with Phenotypic Metadata 

 

 

Data Set Permutaton P-values

g[nt] Tumor<0.001

br-1[t] Histology<0.001; Age=0.059; Size=0.016

br-2[t] Histology<0.001; Age=0.06

br-3[t] ER<0.001; Histology=0.295; Age=0.008; BSC=0.297

bl-ov Case<0.001; Age=0.999

bl-hn Case<0.001; Age<0.001

BL-ra Case<0.001

BL-as Log-arsenic<0.001; Sex=0.263

SP Fraction=0.994

BV+LV Source=0.013

UV-as Log-arsenic=0.515; Sex=0.962

AR-as Log-arsenic=0.285; Sex=0.505

AR[np] Source<0.001; Sex=0.043; Age=0.377

PL-as Log-arsenic=0.006; Sex=0.451

L[np] Source<0.001

BR-tcga[n] Age=0.089; Race=0.153

BR-tcga[t] Age<0.001; Race<0.001; Staging=0.013; ER<0.001; HER2<0.001
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