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Abstract

Robustness of a system’s behavior to changes in parameter values is a remarkable
property of natural systems and especially desirable when designing de novo synthetic
gene circuits. Loads on transcription factors resulting from binding to target promoters
have been shown to significantly affect the effective time constants of gene transcription
networks and to thus alter the overall system’s behavior. Here, we employ models that
explicitly account for load effects to investigate how these impact the robustness of a
stable gene transcription network to parameter perturbations. By employing a
combination of sampling-based methods and analytical tools from control theory, we
demonstrate that the presence of loading shrinks the region of parameter space where a
gene circuit performs the desired function. A number of multi-module synthetic gene
circuits are analyzed to demonstrate this point, including an event detector and a
molecular signature classifier. These results indicate that for designing genetic circuits
that are robust to parameter uncertainty it is highly desirable to find ways to mitigate
the effects of transcription factor loading.

Author Summary

Efforts to understand how loads affect gene transcription networks have been underway
in the past decade. Here we perform a numerical investigation on three synthetic gene
circuits to show that loads tend to decrease the robustness of stable gene transcriptional
networks. We complement the numerical findings with analytical derivations that
employ the stability radius to compare the robustness of different networks to
parameter perturbations near an equilibrium point. Consistent with the numerical
finding, the analytical results support that systems with substantial transcription factor
loading have smaller stability radius (less robustness) than systems without loading.

Introduction 1

Regulation of gene transcription is enabled by the reversible binding reaction of 2

transcription factors (TF) to their target gene promoter sites. It had been theoretically 3

suggested before and experimentally shown later that these binding reactions exert a 4

load on transcription factors, which results in significant effects on both temporal 5
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dynamics and steady state [5, 9, 10,25]. These effects have been called retroactivity to 6

extend the notion of electrical loads to biomolecular systems, making load problems 7

amenable of mathematical study [5]. More recently, the effects of retroactivity have been 8

studied within gene transcription networks (GTN), which result from the regulatory 9

interactions among genes and transcription factors. These studies were performed by 10

employing mathematical models of GTNs that account for the binding of transcription 11

factors to their target promoters [7, 18, 39]. In particular, in [7] the authors have shown 12

that the potential landscape of a toggle switch can be biased by loads. In [39], it was 13

shown that a genetic oscillator can be quenched or robustified depending on what nodes 14

the load is applied to. Finally, in [18] a general ordinary differential equation (ODE) 15

model for gene transcription networks was derived to explicitly account for retroactivity 16

while keeping the same dimension of standard Hill function based models. 17

Robustness has been studied for a long time in the fields of control, system biology 18

and synthetic biology as a key system property of genetic networks [11–17]. By 19

robustness in this paper is meant the ability to maintain a certain property, such as 20

stability or response time, in the face of parameter perturbations, which may result 21

from genetic mutations [12], changes of interactions among genes [13], or changes in the 22

environment [14]. Robustness enables gene regulatory networks to continue to function 23

despite noisy expression of their constituent genes or even when facing substantial 24

environment variation. From a design point of view, robustness to parameter uncertainty 25

is especially useful as it guarantees that the ideal behavior of a given synthetic circuit is 26

not heavily dependent on the specific parameter values, which are often poorly known. 27

To study how retroactivity impacts the robustness of gene transcription networks 28

against parameter perturbations, we compare the robustness of two models: the 29

standard Hill function-based model, which does not account for retroactivity [26], and 30

the model developed in [18], which extends the Hill function-based model to include 31

retroactivity. Numerical experiments are then performed on three networks of increasing 32

complexity: a toggle switch, an event detector and a molecular signature classifier. We 33

compare the percentage of success between the system with and without retroactivity 34

when all parameters are sampled in the same intervals. The numerical results indicate 35

that retroactivity leads to more failures in these three systems. To explain this finding 36

more generally, a robustness index called stability radius [29] is introduced to compare 37

local robustness of GTNs with and without retroactivity close to their stable equilibria. 38

Analytical results based on the stability radius also support the finding that 39

retroactivity generally decreases GTNs’ robustness against parameter perturbations. 40

On the one hand, our finding suggests that natural systems, being inherently robust, 41

may have evolved ways to mitigate retroactivity [19–21]. On the other hand, developing 42

methods to mitigate retroactivity will aid building synthetic biology circuits that are 43

more robust to parameter uncertainty, suggesting that modularity may be instrumental 44

for robustness in addition to being already crucial for bottom-up design [24,25]. 45

Models and Problem Formulation 46

Consider an n-node GTN, in which each node has at most two parents. As indicated in 47

Fig.1, each node represents a gene or transcriptional component, whose inputs are the 48

output transcription factors from other nodes. Each directed edge from node i to j 49

indicated by i→ j in Fig.1 indicates that the output of node i regulates the 50

transcription of node j. In short, gene transcription networks are composed of “nodes” 51

representing genes and “directed edges” representing regulatory interactions among 52

genes. 53

Let xi denote the output transcription factor of node i and let xi denote its 54

concentration. For simplicity of notation we suppose that each node has at most two 55
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Figure 1. A five-node gene transcription network.

parents. We will consider and compare the robustness of two models of GTNs. The first 56

one is the standard Hill function-based model [26]. The second model is one that 57

accounts for the binding of TFs to their target operator sites, which is neglected by the 58

standard Hill function-based model [18]. 59

The dynamics of the Hill function-based model can be written as : 60

Σ1 : ẋ = f(x, u) (1)

where x =
[
x1 x2 · · · xn

]′ ∈ Rn, u =
[
u1 u2 · · · un

]′
with ui representing 61

external input to node i, and the ith element of f(x, u) is given by 62

fi(x, u) = ui − δixi +Hi(x) (2)

with δi denoting the protein decay rate of xi. Here Hi(x) is the Hill function that 63

models the production rate of xi as controlled by its two parents xp and xq and is given 64

by 65

Hi(x) = pi
πi + πip

x
mip
p

Km,pKd,p
+ πiq

x
miq
q

Km,qKd,q
+ πipq

x
mip
p

Km,pKd,pq

x
miq
q

Km,qKd,pq

1 +
x
mip
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+

x
miq
q

Km,qKd,q
+

x
mip
p

Km,pKd,pq

x
miq
q

Km,qKd,pq

. (3)

In this expression, Km is the binding constants for the multimerization; Kd is the 66

binding constants to the promoters; π are specific production rates; pi is the total 67

concentration of the promoter of node i. When all nodes’ pi are the same, we use pT to 68

denote this value. 69

When the effect of the reversible binding between TF and their target promoters is 70

considered, the reaction flux corresponding to this binding reaction appears in the ODE 71

describing the rate of change of the TF’s concentration. This additional flux is what has 72

been called retroactivity [5] and can substantially slow down the temporal response of 73

the TF [9,25]. Explicitly including this flux in the system’s ODE requires also adding as 74

state variables the concentration of all the complexes that can be formed between 75

promoter sites and TFs, leading to a system with a much higher dimension than that of 76

the Hill function-based model. In [18], leveraging the fact that reversible binding 77

reactions are much faster than the process of gene expression, a reduced model was 78

derived that has the same dimension as the Hill function-based model, yet incorporates 79

the effects of the retroactivity fluxes. According to this model, the dynamics of a gene 80

transcription network modify to: 81

Σ2 : ẋ = [I +R(x)]
−1
f(x, u) (4)

where R(x) ∈ Rn×n, called the retroactivity matrix, is given as 82

R(x) =
n∑
i=1

V ′iRi(x)Vi (5)
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where Vi ∈ Rni×n with ni the number of node i’s parents. The jkth element of Vi is 1 if 83

the jth parent of i is k, and is 0, otherwise. We call Ri(x) the retroactivity of node i 84

and will be discussed in more details in the following. 85

The Hill function Hi(x) and the retroactivity of node i Ri(x) depend on the number 86

of node i’s parents and the bindings with its parents [18]. If node i has no parent, one 87

has 1
Kd,p

= 1
Kd,q

= 1
Kd,pq

= 0 in (3) and Ri(x) = 0; if node i has a single parent node xp, 88

we let 1
Kd,q

= 1
Kd,pq

= 0 in (3), and 89

Ri(x) = pi
mipx

mip−1
p

Km,pKd,p
(1 +

x
mip
p

Km,pKd,p
)−2. (6)

When node i has two parents xp and xq, the values of Hi(x) and Ri(x) depend on the 90

binding type, which is typically one of the following: 91

� Competitive binding: xp and xq bind exclusively to the promoters of their common 92

child. In this case, one has 1
Kd,pq

= 0 in (3) and 93

Ri(x) =
pi

(1 +
x
mip
p

Km,pKd,p
+

x
miq
q

Km,qKd,q
)2
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ipx
mip−1
p

Km,pKd,p
(1 +

x
miq
q

Km,qKd,q
) − mipx
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q
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−mipx
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m2
iqx

miq−1
q
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(1 +

x
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p

Km,pKd,p
)


(7)

� Independent binding: xp and xq do not affect each other in their bindings to a 94

common child. That is, even if a node’s promoter is bound with one parent, it is 95

still available to be bound with its other parents. In this case, Hi(x) is as defined 96

in (3) and 97

Ri(x) = pi

m2
ipx

mip−1
p

Km,pKd,p
(1 +

x
mip
p

Km,pKd,p
)−2 0

0
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x
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 (8)

� Cooperative binding: xp must be bound to its child’s promoters before xq can bind. 98

In this case, one has 1
Kd,q

= 0 in (3) and 99

Ri(x) =
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x
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 (9)

For details on these derivations, the reader is referred to [18]. 100

Numerical Experiments 101

In this section numerical experiments are performed to show the impact of retroactivity 102

on the robustness of a toggle switch, an event detector and a molecular signature 103

classifier to parameter variations. This is performed by comparing the parameter spaces 104

where the desired behavior is obtained for model Σ1 (without retroactivity) and model 105

Σ2 (with retroactivity). For simplicity we only consider the case where all promoters 106

have the same total concentration pT , modeling the case in which the systems’ parts are 107

inserted all in the same plasmid with concentration pT . 108
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Toggle Switch 109

We first consider the toggle switch, which is a simple module exhibiting bistable 110

behavior, originally constructed in [1] and then used as a switch in many other more 111

sophisticated multi-module systems [2, 3]. As shown in Fig. 2, the toggle switch is 112

composed of two TF x1 and x2, which negatively regulate each other’s transcription. 113

Here, i a j indicated that node i is repressing node j. Under suitable conditions (see [4], 114

for example) the toggle switch has two stable steady states, at each of which, one of the 115

TF appears in a high copy number, while the other one is suppressed. 116

Toggle Switch

Downstream 
System1x 2xu

Figure 2. The Toggle Switch.

With input u regulating x1, the dynamics of the toggle switch without retroactivity 117

Σ1 are given by 118

dx1

dt
=

pTπ1

1 + x2
2/(Kd,1Km) + u

− δx1

dx2

dt
=

pTπ2

1 + x2
1/(Kd,2Km)

− δx2

in which we have assumed for simplicity that all the transcription factors have the same 119

half lives. The dynamical model of the toggle switch with retroactivity Σ2 is given by 120

dx1

dt
=

(
pTπ1

1 + x2
2/(Kd,1Km) + u

− δx1

)
1

1 + r1

dx2

dt
=

(
pTπ2

1 + x2
1/(Kd,2Km)

− δx2

)
1

1 + r2

where, from expression (6), we have that

r1 =
4x1/(Kd,2Km)

1 + x2
1/(Kd,2Km)

pT , r2 =
4x2/(Kd,1Km)

1 + x2
2/(Kd,1Km)

(pT + p̄T )

Here p̄T =
∑m
j=1 pTi and pTi denotes the total concentration of x2’s jth child promoter 121

contained in the downstream system. When the toggle switch is not connected to any 122

downstream system, p̄T = 0. 123

For a given input profile u switching from a low value to a high value, the toggle 124

switch is said to be functional if the output x2 switches from low to high and keeps this 125

high value even when the input u changes back to its low value. If the toggle switch 126

output does not switch to its high value and latches to it, the toggle is said to be 127

non-functional. As a demonstration of the effect of retroactivity on the toggle switch 128

dynamics, we illustrate numerical simulations in Fig. 3. The system model without 129

retroactivity Σ1 is functional. When the toggle switch is not connected to any 130

downstream system, that is, p̄T = 0, the system model Σ2 also functions (as indicated 131

in Fig. 3(a)) but the switching time increases, that is, the system becomes slower. This 132

is in accordance to what demonstrated in previous studies [8, 18]. When the toggle 133
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switch is connected to a downstream system, it fails to function as no switch is observed 134

(Fig. 3(b)). If in this case, one increases the decay rate, the switching is restored even if 135

the final value is lower (Fig. 3(c)). This is in accordance with the fact that if the 136

temporal response of a TF is faster (as obtained, for example, by increased turnover 137

rates), retroactivity has a decreased effect [25]. 138

(a)

(b)

(c)

u

time (min)

1x 2x

1x 2x

1x 2x

1x 2x

1

2

2

2

Figure 3. Effect of retroactivity on the toggle switch. Comparison between Σ1 and Σ2

for fixed parameters. Here, we have set δ = 0.01 min−1, Kd,1 = Kd,2 = Km = 1 nM,
pT = 1 nM, π1 = π2 = 1 min−1. The system without retroactivity Σ1 is functional. (a)
Model with retroactivity Σ2 without downstream system (p̄T = 0). (b) Model with
retroactivity Σ2 with downstream system (p̄T = 20 nM). (c) Model with retroactivity
Σ2 with downstream system (p̄T = 20 nM) but with increased decay rate δ = 0.02.

Robustness to parameter variations 139

To determine how retroactivity affects the robustness of the toggle switch to parameter 140

variations, we compare the fraction of parameter space for Σ1 and Σ2 that leads to a 141

functional toggle switch. A larger fraction of the parameter space leading to a 142

functional system indicates larger robustness to parameter variations. 143

To this end, we treat each parameter as an independent random variable uniformly 144

distributed in a certain interval. Parameters for concentrations are in nM and time is in 145

minutes. In this section, we choose δ ∈ [0.01, 0.02], which means that the half life of 146

proteins is in [30, 60] minutes. Choose pT ∈ [1, 100] to include both low and relatively 147

high plasmid copy number. By considering that in practice the number of copies of each 148

protein per cell is expected to be less than 20000, we choose πi such that 149

1 ≤ pTπi

δ ≤ 20000. Then one has πi ∈ [0.02, 2]. Suppose the disassociation constants Kd 150

and Km are in [1, 50] (see, for example [18]). For each fixed p̄T , we employ the Latin 151

Hypercube Sampling (LHS) method to take a number of N samples of all the other 152

parameters from their corresponding intervals and run simulations of Σ1 and Σ2 for 153

each sample. LHS is a type of stratified Monte Carlo sampling method, which is highly 154
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efficient. In fact, in practice it is sufficient that N is larger than 4
3 times the number of 155

random variables to provide a statistically sufficient covering of the entire parameter 156

space [27]. Here, we choose N = 2000, which is much larger than what found to be 157

sufficient for LHS. For the same input profile u(t) as given in Fig. 3, if a switch in the 158

output of x2 is observed, we call it a success; otherwise, we call it a failure. We count 159

the number of successes of Σ1 and Σ2 and summarize the results in the percentages 160

shown in Fig. 4.

30.35%

16.65%

0.00%

53.00%

14.50%

32.50%

0.00%

53.00%

6.45%

40.55%

0.00%

53.00%

46.97%

0.00%0.00%

53.03%

Only         works Both work Both fail Only         works

45.30%

1.70%0.00%

53.00%
36.65%

10.35%

0.00%

53.00%

Figure 4. Robustness of toggle switch to parameter perturbations. Percentage of the
parameter space that leads to success of Σ1 (without retroactivity) and Σ2 (with
retroactivity) shown in Red plus Blue and Blue, respectively. Here, p̄T corresponds to
the number of promoter sites in the downstream system that x2 regulates.

161

Fig. 4 shows that the system without retroactivity Σ1 always has a larger fraction of 162

the parameter space leading to success when compared to the system with retroactivity 163

Σ2. In particular, as the number of promoter sites p̄T that x2 regulates in the 164

downstream system increases, the fraction of the parameter space where the system 165

with retroactivity functions shrinks to the point of never functioning when p̄T is 166

extremely high. Note that the percentage of cases where the system with retroactivity 167

functions and the one without retroactivity does not is zero. 168

Event Detector 169

In this section, we perform simulations on an event detector circuit and illustrate how 170

retroactivity affects the robustness of such a multi-module system against parameter 171

perturbations. The event detector (ED) consists of six nodes and is shown in Fig. 5, in 172

which i→ j and i a j represent that i is an activator or a repressor of j, respectively. 173

The event detector detects a decrease in the input by switching the value of the output 174

node to a low value and by keeping it even after the input has acquired back the 175

original high value (by virtue of the toggle switch). In particular, when the input u 176

switches to a low value, the cascade consisting of nodes x1, x2, x3 propagates the signal 177

to remove repression on the inverter x4, eventually resulting in a switch in the state of 178

the toggle module, which leads to a switch of the output node x7 to a low value. 179
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outputCascade
Toggle Switch

Inverter

1x 2x 3x 4x 5x 6x 7xu

Figure 5. The Event Detector.

The dynamics of the event detector without retroactivity are given by system model 180

Σ1 : ẋ = f(x, u) where x =
[
x1 x2 x3 x4 x5 x6 x7

]′
and the ith element of 181

f(x, u) is given as follows: 182

f1 = u− δx1

f2 = pTπ2
x1/Kd,1

1 + x1/Kd,1
− δx2

f3 = pTπ3
x2/Kd,2

1 + x2/Kd,2
− δx3

f4 = pTπ4
1

x3/Kd,3
− δx4

f5 = pTπ5
1

1 + x4/Kd,4 + x2
6/(Kd,6Km)

− δx5

f6 = pTπ6
1

1 + x2
5/(Kd,5Km)

− δx6

f7 = pTπ7
1

1 + x2
6/(Kd,6Km)

− δx7

By considering retroactivity, one has system model Σ2: 183

dx1

dt
=

1

1 + r(x1)
f1

dx2

dt
=

1

1 + r(x2)
f2

dx3

dt
=

1

1 + r(x3)
f3

dx4

dt
=

1 + r22

(1 + r11)(1 + r22)− r12r21
f4

+
−r12

(1 + r11)(1 + r22)− r12r21
f6

dx5

dt
=

1

1 + 4(x5/Km)r(x2
5/Km)

f5

dx6

dt
=

1 + r11

(1 + r11)(1 + r22)− r12r21
f6

+
−r21

(1 + r11)(1 + r22)− r12r21
f4

dx7

dt
= f7
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where r(X), r11, r12, r21, r22 are the retroactivity expressions given by 184

r(X) =
pT /Kd

(1 +X/Kd)2
(10)

and 185

r11 = pT
(1/Kd,4)(1 + x2

6/(Kd,6Km))

(1 + x4/Kd,4 + x2
6/(Kd,6Km))2

(11)

r12 = −2pT
(x4/Kd,4)(x6/(Kd,6Km))

(1 + x4/Kd,4 + x2
6/(Kd,6Km))2

(12)

r21 = −2pT
(1/Kd,4)(x2

6/(Kd,6Km))

(1 + x4/Kd,4 + x2
6/(Kd,6Km))2

(13)

r22 = r221 + r222 (14)

with

r221 = 4pT
x6/(Kd,6Km)(1 + x4/Kd,4)

(1 + x4/Kd,4 + x2
6/(Kd,6Km))2

and

r222 = 4pT
x6/(Kd,6Km)

(1 + x2
6/(Kd,6Km))2

.

Here, r11, r12, r21, r221 follow from (7) since x4 and x6 bind competitively to their 186

common child x5, and r222 follows from (6). Note that when all the above retroactivity 187

expressions are 0, Σ2 is exactly the same as Σ1. 188

For a given input profile u that switches from a high value to a low value, the ED is 189

said to be functional if the output x2 switches from high to low and keeps this low value 190

even when the input u changes back to its high value. If the ED’s output does not 191

switch to its low value and latches to it, the system is said to be non-functional. As a 192

demonstration of the effect of retroactivity on the ED’s dynamics, we illustrate 193

numerical simulations in Fig.6. 194

The output of the ED without retroactivity Σ1 indicated by blue plots in Fig. 6 195

successfully detects the event while the ED with retroactivity Σ2 fails. As we 196

progressively increase δ, both Σ1 and Σ2 work properly. This reaffirms the fact that 197

retroactivity has less of an impact on TF with faster dynamics as described in the case 198

of the toggle switch. In fact, it is well known that retroactivity leads to delays in the 199

temporal response of transcription factors [9, 25], which are accumulated through the 200

stages of the cascade as illustrated in Fig. 7, ultimately leading to the ED’s failure. A 201

faster TF turn over rate mitigates the effects of load-induced delays [22,25]. 202

Robustness to parameter variations 203

To determine how retroactivity affects the robustness of the ED to parameter variations, 204

we compare the fraction of parameter space for Σ1 and Σ2 that leads to a functional ED. 205

A larger fraction of the parameter space leading to a functional system indicates larger 206

robustness to parameter variations. 207

To this end, we randomly change all parameters in Σ1 and Σ2 and check whether the 208

ED still functions. We employ as before LHS to select 2000 samples of parameters from 209

intervals δ ∈ [0.01, 0.02], πi ∈ [0.02, 2], pT ∈ [1, 100], Kd and Km in [1, 50]. If the output 210

of the event detector is able to detect the change of the input and maintain it at the low 211

value, we count it as a success. Results are summarized in Fig. 8. The percentage of 212

parameter space where Σ1 successfully functions (red+blue) is 79.75% while that where 213

Σ2 functions (blue) is only 42.20%. That is, the system model with retroactivity 214

PLOS 9/24

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 21, 2016. ; https://doi.org/10.1101/037564doi: bioRxiv preprint 

https://doi.org/10.1101/037564


u

0.01 

time (min)
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0.02 
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1 2

1 2

7x

7x
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Figure 6. Effect of retroactivity on the event detector. The output of Σ1 (without
retroactivity) and Σ2 (with retroactivity). Parameter values are set to pT = 1nM,
Km = 10nM, Kd,i = 1nM, πi = 2min−1. The value of δ is as indicated in the plots.

successfully functions in about only half of the parameter space where the system model 215

without retroactivity functions. 216

To further determine the relationship between the circuit copy number pT , which 217

determines the load applied by target promoters on their transcription factors, and the 218

failure due to retroactivity, we then fixed pT at the different values 1, 5, 10, 20, 50, 100 219

and randomly changed all the other parameters in their respective intervals. Results are 220

summarized in Fig. 9. When the total concentration pT is low, the failure due to 221

retroactivity is only 0.1%, which implies that Σ1 and Σ2 behave similarly and 222

retroactivity does not have a dramatic impact. By contrast, when pT is increased to 100, 223

the failure due to retroactivity grows to 64.60%. That is, the existence of retroactivity 224

causes 64.60% of the parameter space of the event detector to lead to a non-functional 225

system. All together, these results indicate that retroactivity dramatically decreases the 226

robustness of the ED to parameter variations and that an suggest that an ED built on 227

very low plasmid copy number (pT ) will be more robust to parameter variations. Of 228

course, tradeoffs with noise may become important as the molecule count decreases. 229

Classifier 230

In this section, we consider a molecular signature classifier circuit that is composed of 231

five modules as shown in Fig. 10. These modules are three sensors, an AND gate whose 232

design is based on [6], and the toggle switch [1]. The output of the classifier should be 233

switched OFF shortly after all the three inputs u1, u2, u3 have become high at the same 234

time. Here, the inputs u1, u2, u3 represent the concentrations of three different signaling 235

molecules and the situation of interest is when they are all high simultaneously. As soon 236

as the inputs become all high simultaneously, the concentrations of TF x6, x1, x5, and 237

thus of x2 become high. Since TF x3 and x4 are activated by a cooperative interaction 238

of their parent nodes, the concentration of x4 becomes high when and only when all the 239

three inputs u1, u2, u3 are high at the same time. TF x4, in turn represses x7. Therefore, 240

the toggle switch TF x8 switches to its high value and turns OFF the output. 241

The dynamics of the above classifier without retroactivity are Σ1 : ẋ = f(x, u), 242
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Figure 7. Propagation of load-induced delays in the event detector. Comparison of Σ2

(with retroactivity) and Σ1 (without retroactivity).

where x =
[
x1 x2 x3 x4 x5 x6 x7 x8 x9

]′
and the ith element of f(x, u) is 243

given as follows: 244

f6 = u1 − δx6 (15)

f1 = u2 − δx1 (16)

f5 = u3 − δx5 (17)

f2 = pTπ2
x1/Kd,1

1 + x1/Kd,1
− δx2 (18)

f3 = pTπ3
x2x6/(Kd,2Km,1)

1 + x2x6/(Kd,2Km,1)
− δx3 (19)

f4 = pTπ4
x3/Kd,3

1 + x3/Kd,3
− δx4 (20)

f7 = pTπ7
1

1 + x4/Kd,4 + x2
8/(Kd,5Km)

− δx7 (21)

f8 = pTπ8
1

1 + x2
7/(Kd,6Km)

− δx8 (22)

f9 = pTπ9
1

1 + x2
8/(Kd,5Km)

− δx9 (23)

By considering retroactivity one has a different model denoted by Σ2 described by 245

the following ODEs: 246
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Only  Σ1 works
37.55 %

Both work
42.20%

Only  Σ2 works
0.05%

Both fail
20.20%

Figure 8. Robustness of the event detector to parameter perturbations. Percentage of
the parameter space that leads to success of Σ1 (without retroactivity) and Σ2 (with
retroactivity) shown in Red plus Blue and Blue, respectively.

41.25%

40.05%

0.00%
18.70%

64.60%
19.75%

0.00%
15.65%13.70%

62.45%

0.15% 23.70%

4.85%

65.75%

0.25%

29.15%

1.20%

62.45%

0.05%

36.30%

0.10%

43.85%

0.00%

56.05%

Only         works Both work Both fail Only         works

Figure 9. Percentage of success of Σ1 (without retroactivity) and Σ2 (with
retroactivity) for different values of pT .

dx6

dt
=

1 +B

1 +A+B
f6 −

B

1 +A+B
f2 (24)

dx1

dt
=

1

1 + r(X1)
f1 (25)

dx5

dt
=

1 +A1

1 +A1 +B1
f5 −

A1

1 +A1 +B1
f3 (26)

dx2

dt
=

1 +A

1 +A+B
f2 −

A

1 +A+B
f6 (27)

dx3

dt
=

1 +B1

1 +A1 +B1
f3 −

B1

1 +A1 +B1
f5 (28)
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Figure 10. Classifier

247

dx4

dt
=

1 + r22

(1 + r11)(1 + r22)− r12r21
f4 (29)

+
−r12

(1 + r11)(1 + r22)− r12r21
f8 (30)

dx7

dt
=

1

1 + 4x7/Kmr(x2
7/Km)

f7 (31)

dx8

dt
=

1 + r11

(1 + r11)(1 + r22)− r12r21
f8 (32)

+
−r21

(1 + r11)(1 + r22)− r12r21
f4 (33)

dx9

dt
= f9 (34)

Here, r(X), r11, r12, r21, r22 are the same expressions as (10)-(14); A, B, A1 and B1 are
due to cooperative bindings of x6 and x2 to x3, and x3 and x5 to x4, respectively, for
which one has by (9)

A =
pTx2/(Kd,2Km,1)

(1 + x2x6/(Kd,2Km,1))2
, B =

pTx6/(Kd,2Km,1)

(1 + x2x6/(Kd,2Km,1))2

A1 =
pTx5/(Kd,3Km,2)

(1 + x3x5/(Kd,3Km,2))2
, B1 =

pTx3/(Kd,3Km,2)

(1 + x3x5/(Kd,3Km,2))2
.

For a given triple of input profiles u1, u2, u3, the classifier is said to be functional if 248

the output x9 switches from high to low when and only when the inputs ui become all 249

high simultaneously. If the classifier’s output does not switch to its low value and 250

latches to it, the system is said to be non-functional. As a demonstration of the effect of 251

retroactivity on the classifier’s dynamics, we illustrate numerical simulations in Fig. 11. 252

For the given input profile u1, u2, u3, the output of the classifier without retroactivity 253

Σ1 indicated by the blue plots successfully switches from high to low as soon as all the 254

inputs become high simultaneously. By contrast, system Σ2 fails since its output 255

becomes low even when the input u2 is still low. The reason for which Σ2 fails is the 256

accumulation of time delays in the temporal response of transcription factors caused by 257

retroactivity. This phenomenon also agrees with the observation of delay’s effects in Fig. 258

7. Note from the red plots of Fig. 11 that the time delay experienced by the pulse 259

resulting from u2 propagates to x3, so that the AND of x3 and u4 results into a high x4 260

that ultimately switches the output of the toggle switch OFF, leading to failure of the 261
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classifier. Once we change δ to 0.02, both Σ1 and Σ2 function as this delay does not 262

accumulate as much. This is consistent with the previous observations that retroactivity 263

has less of an impact if the TF have faster turnover rates. 264

time (min)

1 2

1 2

0.01 

0.02 

1u

2u

3u

9x

9x

0.01 

0.01 

0.01 2x

3x

4x

1 2

1 2

1 2

Figure 11. Comparison between the Classifier Σ1 without retroactivity (indicated in
blue) and the one with retroactivity Σ2 (indicated in red). Parameter values are given
by pT = 1, Kd,1 = Kd,2 = Kd,3 = Kd,5 = Kd,6 = 1,Kd,4 = 10,
Km = Km,1 = Km,2 = 10, π1 = π2 = π3 = π4 = π5 = 1 and π6 = 2.

Robustness to parameter variations 265

To determine how retroactivity affects the robustness of the classifier to parameter 266

variations, we compare the fraction of parameter space for Σ1 and Σ2 that leads to a 267

functional classifier. A larger fraction of the parameter space leading to a functional 268

system indicates larger robustness to parameter variations. 269

To this end, we employ the LHS method as before to obtain 2000 samples from the 270

parameter space. For each sample of parameters, we employ the inputs u1, u2, u3 as 271

shown in Fig. 11. If the output of the classifier at x9 is low if and only if all u1, u2, u3 272

are high, we count it as a success; otherwise, it is counted as a failure. Simulation results 273

including the failure due to retroactivity (marked as red) are shown in Fig. 12, which 274

suggests that retroactivity leads to malfunction in 47.40% of the parameter space. 275

To further determine the relationship between pT and the loss of function of the 276

classifier, we fixed pT = 1, 5, 10, 20, 50, 100 and randomly changed all the other 277

parameters. Simulations are summarized in Fig. 13. When the total concentration pT is 278

low, for example pT = 1, the failure due to retroactivity is 0.05%, which implies that Σ1 279
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Only  Σ1 works

47.40%

Both work
13.00%

Only  Σ2 works

0.05%

Both fail

39.10%

Figure 12. Classifier robustness. Percentage of the parameter space that leads to
success of Σ1 (without retroactivity) and Σ2 (with retroactivity) shown in Red plus
Blue and Blue, respectively.

and Σ2 behave similarly and retroactivity does not have dramatic impact ono the 280

classifier. When pT is increased to be 100, one observes a large value of the failure due 281

to retroactivity, which is 70.05%. 282

70.05%1.85%

0.00%
28.10%

54.40%

10.85%
0.25%

34.50%

11.30%

28.30%

0.70%

59.70%

3.30%

22.90%

0.20%
73.60%

0.05% 5.15%
0.00%

94.80%

26.15%

26.40%

0.70%

46.75%

Only         works Both work Both fail Only         works

Figure 13. Percentage of success of the classifier Σ1 (without retroactivity) and Σ2

(with retroactivity) for different values of pT .

Summary of Findings from Numerical Simulations 283

Simulations on the toggle switch, the event detector and the classifier suggest the 284

following. When we sample the parameter space for Σ1 and Σ2, system with 285

retroactivity Σ2 encounters substantially more failures than the system without 286

retroactivity Σ1. This indicates that retroactivity shrinks the region of parameter space 287

where these stable gene circuits perform the desired function and thus decreases their 288

robustness. In accordance to what previously found, retroactivity’s impact on the 289

system’s robustness is more dramatic on a slower system than on a faster one. When a 290

system is fast enough, the impact due to retroactivity becomes negligible. 291
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Analytical Measure of Robustness 292

In this section, we analytically compare the robustness of the system with retroactivity
to that of the system without retroactivity and thus confirm more generally that
retroactivity tends to decrease the robustness of stable gene transcription networks
against parameter perturbations. To this end, we analyze the behavior of the systems
(with and without retroactivity) close to the common stable equilibrium x∗, where x∗ is
such that f(x∗, u) = 0 for a fixed u. The objective is to compare the robustness of the
equilibrium’s stability to parameter perturbations. We thus consider the linearization of
Σ1 and Σ2 about x∗, which leads to the two following linear systems:

Σ̄1 : ẋ = Ax

and
Σ̄2 : ẋ = (I +R)−1Ax

where

A =

(
∂f(x, u)

∂x

)
x=x∗

, R = R(x)x=x∗

are constant matrices. For the system’s robustness with respect to parameter 293

perturbations, we restrict ourselves to additive perturbations, which, compared to 294

relative perturbations that inherently have a multiplicative structure, are the most 295

general [28]. To mathematically compare the robustness of Σ̄1 and Σ̄2 against additive 296

parameter perturbations, we employ the concept of stability radius, which has a long 297

history in robust control theory [29,30]. The stability radius measures a system’s ability 298

to maintain certain stability conditions of the equilibrium point under additive 299

perturbations to the elements of the system’s matrix. If system Σ̄2 has smaller stability 300

radius than system Σ̄1, it follows that the worst case parameter perturbation in Σ̄2 301

pushes the slowest eigenvalue closer to the imaginary axis than the worst case 302

parameter perturbation does in Σ̄1. As a consequence, we should expect much slower 303

convergence to the equilibrium in Σ̄2 as compared to Σ̄1 in the worst case. In the sequel, 304

we will say that Σ̄1 is more robust than Σ̄2 if the stability radius of the former is greater 305

than that of the latter. 306

In particular, let Λ(M) denote the spectrum of a square matrix M ∈ Kn×n, where 307

K = C or R. Let C− denote the open left-half complex plane and let C+ denote the 308

closed right-half complex plane. Define the stability radius of M as 309

rK(M) , inf{|∆| : ∆ ∈ Kn×n,Λ(M + ∆) ∩ C+ 6= ∅} (35)

where | · | denotes the 2-norm. Then rK(M) is the 2-norm of the smallest perturbation 310

forcing M + ∆ to be unstable. The stability radius defined in (36) is a natural measure 311

of a system’s ability to maintain stability of an equilibrium point under perturbations to 312

elements of the system matrix. A system with larger stability radius is able to maintain 313

its stability under larger perturbations to the system’s matrix in the 2-norm sense. 314

The computation of rR(M) is in general a challenging problem [32]. To avoid 315

complex computations, we determine lower and upper bounds of rR(M) for both the 316

system with retroactivity Σ̄2 and the system without retroactivity Σ̄1, which can be 317

more easily computed, and then compare the bounds. The derivations of the bounds 318

(see the Appendix) can be easily performed when the retroactivity matrix R(x) is 319

diagonal, corresponding to the case in which transcription factors bind to the 320

corresponding target promoters independent of each other or almost independent (i.e., 321

the off-diagonal entries of R(x) are sufficiently small compared to the diagonal entries). 322

In such a case, let r and r represent the smallest and largest diagonal entries of R, 323

respectively. Then, we can analytically prove (see Appendix) that Σ̄1 is more robust 324

than Σ̄2 when any of the following cases holds: 325
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(i) r ≈ r, that is, the diagonal entries are all close to each other; 326

(ii) r is large enough, that is, retroactivity is high; 327

(iii) Σ̄1 has some low-pass filtering properties in the sense that the H∞ norm of the 328

matrix A is achieved at ω = 0. 329

Therefore, if the loads resulting at all nodes of the network are balanced (i.e., they are 330

close to each other), if the loads at all nodes are very large, or if the system response to 331

higher frequencies stimulations is lower compared to that at low frequencies (low-pass 332

filtering behavior), which is often the case in biomolecular networks ( [34–36]), then Σ̄1 333

is more robust than Σ̄2. 334

Discussion 335

In this paper, we have analyzed how the robustness of a stable gene transcription 336

network is affected by the loading applied on transcription factors by the promoter sites 337

to which the factors bind. Here, robustness is intended as the ability of a system to keep 338

a desired behavior in the face of parameter perturbations. Specifically, the behavior 339

whose robustness is investigated is the stability of equilibria, which is especially 340

important in systems with memory, including switches, event detectors, and molecular 341

signature classifiers. These enable a cell to make a decision based on changes in the 342

molecular profile of the environment and have been extensively investigated for 343

synthetic biology applications [40]. 344

Our computational study performed by sampling the biologically relevant parameter 345

space indicates that the parameter region where the desired behavior is observed is 346

more than 46% smaller in the system model that includes retroactivity compared to one 347

that does not include it. Since the impact of retroactivity is controlled by the 348

dissociation constant of TF to their promoter sites and by the promoter sites number 349

(DNA copy number), we also studied how the parameter region corresponding to the 350

desired behavior is affected by increasing the DNA copy number. For low copy numbers, 351

the two models (with and without retroactivity) have similar parameter regions leading 352

to the desired behavior (less than 10% difference). However, for medium and high copy 353

numbers this parameter region is more than 50% and 76%, respectively, smaller in the 354

system with retroactivity compared to the one without it. Circuits, or portions of them, 355

are often built on medium or high copy number plasmids, and even when built in a 356

single copy, TFs still bind non-specifically to a large number of decoy sites [37,38]. 357

Therefore, unless retroactivity is mitigated, appropriately tuning the parameters is 358

harder in practice than in an ideal modular system where the functionality of TFs is not 359

affected by the downstream sites that they regulate. Also, this difficulty becomes more 360

prominent as the circuit size increases. This is illustrated by the reduced robustness of 361

the molecular signature classifier as compared to the event detector, and, in turn, by the 362

reduced robustness of the event detector as compared to the toggle switch (Fig. 4, Fig. 363

8, Fig. 9, Fig. 12, Fig. 13). 364

As the circuit size increases, it is thus important to investigate ways of mitigating 365

the effects of retroactivity. One avenue is the creation of insulation devices, which can 366

be placed at suitable locations in the circuit to enable some level of modularity [22, 25]. 367

Recent works have developed insulation devices for genetic circuits based on fast 368

phosphorylation processes [25]. In fact, it was previously demonstrated theoretically 369

that fast phosphorylation processes can be used to speed up the effective time scale of 370

TFs, such that load-induced delays, occurring at the faster time scale of 371

phosphorylation, become negligible on the slower time scale of gene expression [22]. 372
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This is consistent with our simulations showing that when the decay rate of TFs is 373

artificially increased, proper behavior can be restored (Fig. 3, Fig. 6, Fig. 11). 374

Our focus here is the robustness of stability of equilibria as opposed to robustness of 375

instability, such as found in oscillators [41]. In fact, in this case, the effects of 376

retroactivity are not determined and have been shown to either increase or decrease the 377

robustness of the oscillator design depending on the circuit topology [39]. 378

We have provided an analytical approach to compare the robustness of stability of a 379

system with retroactivity to that of a system without retroactivity using the concept of 380

stability radius. This provides the largest perturbation a linear system’s matrix can 381

tolerate before the appearance of eigenvalues with positive real part [29]. Since the 382

stability radius is a tool developed for linear systems, we linearized the system about 383

the steady state of interest and computed upper and lower bounds to the stability 384

radius for both the system with retroactivity and the one without it. Comparisons 385

among these analytical bounds lead to the finding that the system with retroactivity 386

tends to have a smaller stability radius than that of the system without retroactivity, 387

and hence a decreased robustness, confirming the numerical results. 388

In conclusion, our findings demonstrate that modularity leads to more robust 389

systems in addition to having both evolutionary advantages in nature [21] and design 390

advantages when engineering novel systems [40]. A modular approach to design, 391

wherein the subsystems do not depend on their context, is therefore highly preferable to 392

designs where large systems are monolithically created. 393

Appendix 394

Robustness Index: Stability Radius 395

Let Λ(M) denote the spectrum of a square matrix M ∈ Kn×n, where K = C or R. Let 396

C− denote the open left-half complex plane and let C+ denote the closed right-half 397

complex plane. Define the stability radius of M as 398

rK(M) , inf{|∆| : ∆ ∈ Kn×n,Λ(M + ∆) ∩ C+ 6= ∅} (36)

where | · | denotes the 2-norm. Then rK(M) is the 2-norm of the smallest perturbation 399

forcing M + ∆ to be unstable. The stability radius defined in (36) is a natural measure 400

of a system’s ability to maintain stability of an equilibrium point under perturbations to 401

elements of the system matrix. A system with larger stability radius is able to maintain 402

its stability under larger perturbations to the system’s matrix in the 2-norm sense. If 403

Λ(M) ∩ C+ 6= ∅, one has rK(M) = 0. In the following, we only consider the non-trivial 404

case: Λ(M) ∩ C+ = ∅, that is, M is a Hurwtiz stable matrix. 405

By the continuity of eigenvalues of a matrix with respect to its entries, the 406

eigenvalue leaving C− towards C+ must lie on ∂C−, which is the boundary of C−. Thus 407

we can write 408

rK(M) = inf
s∈∂C−

(
inf

∆∈Kn×n
{|∆| : det(sI −M −∆) = 0}

)
(37)

According to [29], one has the following relationship for the complex stability radius 409

for ∆ ∈ Cn×n: 410

rC(M) = inf
s∈∂C−

|(sI −M)−1|−1 = ||M ||−1
H∞

(38)

where 411

||M ||H∞ = sup
ω∈R

σ1

(
(jω −M)−1

)
(39)
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with σ1(·) the largest singular value of a matrix. This makes the computation of rC(M) 412

possible. By [30] one has that the real stability radius for ∆ ∈ Rn×n is given by 413

rR(M) = min
ω∈R

sup
γ∈(0,1]

σ2n−1

[
M γωI

−γ−1ωI M

]
(40)

The real stability radius can be computed from (40), or by algorithms proposed in [31]. 414

However, the computation of rR(M) involves the minimization of unimodal 415

functions [30], which is a challenging problem [32]. To avoid complex computations, we 416

determine lower and upper bounds of rR(M) which can be easily computed. 417

Lemma 1 Suppose M,∆ ∈ Rn×n. Then 418

||M ||−1
H∞
≤ rR(M) ≤ σn(M) (41)

where σn(M) denotes the smallest singular value of M . 419

Proof of Lemma 1: By the definition of the stability radius in (36), one immediately 420

has rC(M) ≤ rR(M), which together with (38) implies the following lower bound 421

rR(M) ≥ ||M ||−1
H∞

(42)

On the other hand, (37) implies 422

rR(M) ≤ inf
s=0

(
inf

∆∈Rn×n
{|∆| : det(sI −M −∆) = 0}

)
= inf

∆∈Rn×n
{|∆| : det(M + ∆) = 0}

≤ inf
∆∈Rn×n,det ∆=0

{|∆| : det(M + ∆) = 0}

which is equal to σn(M) by the Schmidt-Mirsky Theorem [33]. Then one has the 423

following upper bound 424

rR(M) ≤ σn(M) (43)

We complete the proof. � 425

The bounds obtained in Lemma 1 are tight in the sense that they can be reached 426

under certain conditions as indicated by the following lemma: 427

Lemma 2 If the H∞ norm of M is achieved at ω = 0, one has 428

σn(M)||M ||H∞ = 1. (44)

Proof of Lemma 2: Since the H∞ norm of M is achieved at ω,

||M ||H∞ = σ1

(
(jω −M)−1

)
= σ−1

n (jω −M).

Then
||M ||H∞σn(M) = σn(M)σ−1

n (jω −M)

which is equal to 1 at ω = 0. We complete the proof. � 429

Note that Lemma 1 has given upper and lower bounds for the real stability radius of 430

a matrix. Such bounds have been shown to be tight in Lemma 2 in the sense that they 431

can be reached under certain conditions. This in turn provides a simpler way to 432

compare the robustness of linear systems as will be seen later in the following section. 433
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Robustness Comparison 434

For genetic networks in practice, parameter perturbations are usually real. If the real 435

stability radius of Σ̄1 is larger than that of Σ̄2, we say Σ1 is more robust than Σ2 at 436

their equilibrium. By definition of real stability radius, this means that for all real 437

parameter perturbations with a certain upper bound in its 2-norm, the system Σ̄1 is 438

stable at x∗ while Σ̄2 may become unstable. Note that the dynamics of Σi is similar to 439

its linearized system Σ̄i when it is sufficiently close to its equilibrium. Thus we call a 440

non-linear system Σi is more robust if its linearized system Σ̄i has larger real stability 441

radius. In this subsection we will compare the robustness of the two linearized systems 442

Σ̄1 without retroactivity and Σ̄2 with retroactivity under real perturbations to elements 443

of their system matrices A and (I +R)−1A, respectively, by comparing their real 444

stability radiuses. Since the real stability radius of an unstable matrix is 0, we only 445

consider the case when A and (I +R)−1A are both Hurwitz stable. 446

Based on Lemma 1, one can immediately conclude that Σ1 is more robust than Σ2 if 447

||A||−1
H∞

> σn((I +R)−1A) (45)

and Σ2 is more robust than Σ1 if 448

||(I +R)−1A||−1
H∞

> σn(A) (46)

These two inequalities (45) and (46) give sufficient conditions to determine whether 449

retroactivity increases or decreases the robustness of the gene transcription network 450

against parameter perturbations. 451

When it comes to independent bindings, the retroactivity matrix R is diagonal [18],
which allows us to obtain further analytical results. Let r and r denote the smallest and
largest diagonal entry of R. Then

σn(I +R) = 1 + r

We further suppose that each node has at least one child. Then r > 0 and thus 452

σn(I +R) > 1 (47)

453

Lemma 3 If 454

σn(I +R) > σn(A)||A||H∞ (48)

one has that Σ1 is more robust than Σ2. 455

Proof of Lemma 3: Let q̄ = (I+R′)q
|(I+R′)q| , where q is the unit vector such that 456

q′AA′q = λmin(AA′). Then 457

σn
(
(I +R)−1A

)
(49)

= min
v∈Rn,|v|=1

√
v′(I +R)−1AA′(I +R′)−1v

≤
√
q̄′(I +R)−1AA′(I +R′)−1q̄

=

√
qAA′q

q′(I +R)(I +R′)q

=

√
λmin(AA′)

q′(I +R)(I +R′)q

≤ σn(A)

σn(I +R)
(50)
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which and (48) imply
σn
(
(I +R)−1A

)
< ||A||−1

H∞

Then by Lemma 1 one has rR((I +R)−1A) < rR(A). � 458

It is worth mentioning that the condition in Lemma 3 separates the retroactivity
matrix R and the system matrix A. From (47) and (50) one has

||(I +R)−1A||−1
H∞
≤ σn((I +R)−1A) ≤ σn(A)

σn(I +R)
< σn(A)

which implies that the condition (46) can not be satisfied in the case of independent 459

bindings. Numerical computations suggest that (45) holds in general, the proof of which 460

is quite challenging though. In the following we will look at serveral cases: 461

Case 1: Assume that retroactivities corresponding to all TF/promoter bindings in a
gene transcription network are balanced in the sense that r

r ≈ 1. Let

R̄ = (I +R)−1 − 1

1 + r
I

By (37), one has 462

rR
(
(I +R)−1A

)
(51)

= inf
s∈∂C−

(
inf

∆∈Rn×n
{|∆| : det(sI −

1

1 + r
A−∆− R̄A) = 0}

)
= inf

s̄∈∂C−

(
inf

∆̄∈Rn×n
{|

∆

1 + r
− R̄A| : det

(
s̄I −A− ∆̄)

)
= 0}

)
≤ inf

s̄∈∂C−

(
inf

∆̄∈Rn×n
{
|∆|

1 + r
+ |R̄||A| : det

(
s̄I −A− ∆̄)

)
= 0}

)
=

rR(A)

1 + r
+ (

1

1 + r
−

1

1 + r
)σ1(A) (52)

Since r
r ≈ 1, then

1− r

r
<
||A||−1

H∞

σ1(A)

It follows that

(
1

1 + r
− 1

1 + r
)σ1(A) < (1− 1

1 + r
)||A||−1

H∞

from which, ||A||−1
H∞
≤ rR(A) and (52), one has

rR
(
(I +R)−1A

)
< rR(A).

Then Σ1 is more robust than Σ2. 463

Case 2: Assume that there exists one TF/promoter binding which leads to
extremely large retroactivity, or in other words, r̄ →∞. Note that

lim
r̄→∞

σn
(
(I +R)−1A

)
= 0

By the continuity of eigenvalues of a matrix with respect to its entries, there must exist 464

a finite real number µ such that for all r ∈ [µ,∞), σn
(
(I +R)−1A

)
< ||A||−1

H∞
. Then 465

Σ1 is more robust than Σ2. 466

Case 3: Assume that the retroactivity corresponding to each TF/promoter binding 467

in a gene transcription network is sufficiently large. Since A is Hurwtitz stable, one has 468

||A||H∞ and σn(A) are bounded. Then when r is large enough, one has (48). 469
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Case 4: Assume that the H∞ norm of the matrix A is achieved at ω = 0, which in 470

practice suggests that Σ1 has a “low-pass filter” behavior. Because of its benefit to 471

ignore rapid variations and only respond to longer-lasting changes, this low-pass 472

filtering capacity is a common feature of regulation of transcription, as suggested in E. 473

coli theoretically [34], verified experimentally [35] and recently observed in 474

eukaryotes [36]. By Lemma 2 on has ||A||H∞σn(A) = 1. Note that 475

σn(I +R) = 1 + r > 1. Then (48) holds, which implies Σ1 is more robust than Σ2. 476

As a summary of the above findings, we have the following theorem 477

Theorem 1 In the case of independent bindings, let r and r denote the largest and the 478

smallest diagonal entry of R, respectively. Σ1 is more robust than Σ2 if any of the 479

followings holds: 480

� retroactivities corresponding to all TF/promoter bindings in a gene transcription 481

network are balanced in the sense that r
r ≈ 1; 482

� there exists one TF/promoter binding which leads to extremely large retroactivity 483

in the sense that r ≈ ∞; 484

� the retroactivity corresponding to each TF/promoter binding in a gene 485

transcription network is sufficiently large in the sense that r is large; 486

� the H∞ norm of the matrix A is achieved at ω = 0. 487

Supporting Information 488

S1 Fig 489

Supplementary figures to show the percentage numbers appearing in the pie figures are 490

the values that simulations results converge to. 491
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