
  

  

Abstract— In this article, we present an example of how to 
parameterize a partial differential equation model of 
glioblastoma growth for individual patients. The parameters 
allow for a deeper understanding of individual patients which 
have all been labeled with the same disease based on the tumor 
growth kinetics.  

I. GLIOBLASTOMA IN THE CLINIC 

Glioblastoma is a deadly type of primary brain tumor. It 
is known that the cancer cells are diffusely present 
throughout the brain, but the degree of invasiveness is 
heterogeneous throughout the patient population. 
Unfortunately, there is not a currently accepted method to 
identify for each patient the extent of the tumor cells. 
Clinically, this results in patients being treated in a very 
aggressive, one-size-fits-all manner.  

Due to their location in the brain, these tumors are 
primarily monitored by magnetic resonance images (MRI). 
The main sequences that are used are the T1-weighted with 
gadolinium contrast enhancement (T1Gd) and T2-weighted 
sequences. It is commonly accepted that abnormalities on the 
T1Gd image highlights tissue primarily composed of tumor 
cells and the abnormalities on the T2 image highlight regions 
of lower tumor cell density and swelling. However, there is 
no way to determine the full extent of the tumor cells. 

In general, treatment for patients with glioblastoma 
begins with a surgeon trying to remove as much of the 
abnormality seen on the T1Gd as possible. As this surgery is 
quite invasive, the merits of such an aggressive surgery have 
been debated [1], [2]. However, the current consensus in the 
field, based on recent studies, is that this aggressive removal 
of tissue results in longer survival [3]. These studies focused 
on the population level rather than the individual.  

II. MODEL PARAMETERS IDENTIFY GLIOBLASTOMA 
PATIENTS WHO WILL BENEFIT FROM SURGERY 

Over the past decade, our group has harnessed a partial 
differential equation model, representative of glioblastoma 
growth, to try and glean insights on the heterogeneity of the 
disease and what it means for individual patients [4]–[7]. 
This model captures only the basic definition of cancer in 
that the cells are known to proliferate and to invade. Given 
just a few assumptions of how the MRI abnormalities relate 
to the tumor cell density (described more in the methods 
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section), we have been able to estimate net rates of 
proliferation and invasion for individual patients. These 
parameters can be used to estimate the nodularity of an 
individual tumor, that is, how much of the tumor is actually 
visible on the MRI. We hypothesized that the patients that 
were defined as more nodular by our model would receive 
greater benefit in terms of survival from an aggressive 
surgery trying to remove all of the abnormality on the MRI.  

To investigate our hypothesis, we retrospectively 
identified 243 contrast enhancing glioblastoma patients from 
our IRB approved database receiving a gross total resection 
(GTR), a subtotal resection (STR), or a biopsy (Bx) only. We 
then estimated our model defined net rate of proliferation 
and invasion based on imaging for each of the patients and 
separated them into three groups. Patients with nodular 
tumors, patients with diffuse tumors, and patients in 
between. Within each cohort, we then identified those that 
had an aggressive GTR versus those with only a STR or Bx. 
By comparing the survival curves within each nodularity 
group between the GTR patients and the STR/Bx patients, 
we were able to show that the only case where there was a 
significant difference in overall survival was for the nodular 
tumor group. These results were published in [8] 
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Figure 1. A) Examples of patients classified as having a diffuse (left) 
and nodular (right) tumor burden. The red line highlights what portion 
of the brain the surgeon would try and remove for a gross total 
resection and the green line highlights the model predicted region 
containing 99% of the tumor cells. B) Survival curves for the two 
identified patient populations (diffuse on left, nodular on right) 
demonstrating the difference in survival between those receiving a 
gross total resection (GTR) and a biopsy (BX) or subtotal resection 
(STR) only. Only in the nodular patients is a statistically significant 
difference observed. 
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III. PARAMETERIZING PARTIAL DIFFERENTIAL EQUATION 
MODELS 

A. Partial Differential Equation Models 
Partial differential equations (PDEs) are equations 

including multivariable functions and their partial 
derivatives. It is often the case that the partial derivatives are 
with respect to time and spatial dimensions. This is 
particularly true for partial differential equations 
representative of physical phenomena. Mathematical models 
based on PDEs generally must be augmented with initial 
conditions and boundary conditions. In a few cases, the 
functions solving such models can be solved for analytically 
but more often numerical methods are utilized to find 
approximate solutions [9]–[11].  

The specific model used for the presented results is a 
relatively simple model capturing the basic definition of 
cancer: cells proliferate uncontrollably and they invade the 
surrounding tissue. Mathematically, this can be written as: 

Here c is a multivariable function of time and space 
representative of tumor cell density evolving over time. To 
complete the model, this equation is augmented with 
Neumann boundary conditions representative of cells not 
being able to leave the domain and a point source initial 
condition or one more reflective of a particular patients 
disease burden. It can be solved as a three-dimensional 
spherically symmetric problem or in an anatomically 
accurate setting representative of the brain.  

This model is general, but can be made specific to an 
individual patient by specifying the two parameters D 
[mm2/yr], the net rate of invasion (also known as diffusion), 
and ρ [1/yr], the net rate of proliferation. K is the carrying 
capacity and is assumed to be constant for all patients. 

B. Calibrating Parameter Values 
In general, PDE models are applicable in different 

scenarios (i.e. prediction of two different tumors’ growth 
patterns) by modifying key parameters. The process of 
finding the best parameters to match a particular scenario is 
referred to as parameter calibration and requires data 
representative of the scenario of interest for model 
prediction comparison. Determining the best data with 
which to calibrate can be a challenge, however, often the 
data available is limited which means the greater challenge 
is how to use the data available to calibrate the model 

For (1), under reasonable assumptions regarding the 
initial condition, the solution is known to set up a traveling 
wave, that is the function that solves the equation has the 
same shape that moves outward in time [12] (Chapter 11). 
The shape is uniquely determined by the parameters D and 
ρ. Further, it can be shown that in one-dimension this wave 
moves precisely at the radial velocity of 2

p
D⇢ [12] 

(Chapter 11). In spherical symmetry, an analytic solution 
sadly does not exist. However, as predicted tumor size 
increases, the solution tends asymptotically to a travelling 
wavefront with a radial velocity 2

p
D⇢.   

Despite the non-spherical shape of many glioblastomas 
seen on MRIs, we have found that considering patients’ 
tumors in this way is still very instructive. Thus, for 
individualizing the two parameters of our model, D and ρ, 
to specific patients, we consider the model in its spherically 
symmetric form. For data, we restrict ourselves to what can 
reasonably be expected to exist for each patient clinically, 
namely pretreatment T1Gd and T2 MRIs from two time 
points. We further make the assumption that the T1Gd  and 
T2 regions of abnormality capture all regions with tumor 
cell density greater than or equal to 80% or 16% of the 
carrying capacity respectively. By converting the measured 
volumes of the abnormalities seen on the pretreatment 
images, we are able to directly estimate a radial velocity for 
individual patients. Further, we have developed a method 
leveraging the analytic expression for D/ρ derivable from 
the linearized version of (1) to estimate an individual’s 
D/ρ requires the T1Gd and T2 spherically equivalent radii 
measurements from the same day [13]. With these two 
equations involving two unknowns, one can solve for an 
individual’s D and ρ. 

This is a specific example of how one might calibrate 
parameters in a PDE which utilizes specific information 
about behavior of the model. If such information is not 
available, there are still numerous ways to calibrate the 
parameters all stemming from the concept, “Find the 
parameters that minimize the error between the model 
predicted data points and the observed data points.”  Thus, 
calibration problems often fall into the category of 
minimization problems. There are many algorithms to solve 
such problems such as steepest descent and newton-like 
methods [14], [15].  Of these two algorithms, steepest 
descent is based on first derivatives of the objective function 
and is so easier to implement but converges more slowly. In 
contrast, Newton-like algorithms utilize both the first and 
second derivatives of the objective function leading to faster 
convergence, though they are more difficult to implement. 
Both methods, however, are subject to finding local 
minimum rather than the global minimum when dealing 
with nonlinear problems.  

 

Figure 2. Process of data 
utilization for parameter 
calibration of the model 
for glioblastoma growth. 
Measured abnormality 
volumes on MRIs are 
converted to spherically 
equivalent radii. By 
using a T1Gd and T2 
radius from the same 
day, the slope of the cell 
density can be estimated 
providing a value for 
D/r. Using either T1Gd 
or T2 images from two 
time points, a radial 
velocity can also be 
estimated providing a 
value for 2√(Dρ).  
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