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ABSTRACT  

Large-scale data collection and processing have facilitated scientific discoveries in fields such as 

genomics and imaging, but cross-investigations between multiple big datasets remain 

impractical. Computational requirements of high-dimensional association studies are often too 

demanding for individual sites. Additionally, the sheer size of intermediate results is unfit for 

collaborative settings where summary statistics are exchanged for meta-analyses. Here we 

introduce the HASE framework to perform high-dimensional association studies with dramatic 

reduction in both computational burden and storage requirements of intermediate results. We 

implemented a novel meta-analytical method that yields identical power as pooled analyses 

without the need of sharing individual participant data. The efficiency of the framework is 

illustrated by associating 9 million genetic variants with 1.5 million brain imaging voxels in 

three cohorts (total N=4,034) followed by meta-analysis, on a standard computational 

infrastructure. These experiments indicate that HASE facilitates high-dimensional association 

studies enabling large multicenter association studies for future discoveries.   
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MAIN TEXT  

INTRODUCTION 

Technological innovations have enabled the large-scale acquisition of biological information 

from human subjects. The emergence of these big datasets has resulted in various ‘omics’ fields.  

Systematic and large-scale investigations of DNA sequence variations (genomics)
1
, gene 

expression (transcriptomics)
2
, proteins (proteomics)

3
, small molecule metabolites 

(metabolomics)
4
, and medical images (radiomics)

5
, among other data, lie at the basis of many 

recent biological insights. These analyses are typically unidimensional, i.e. studying only a single 

disease or trait of interest.  

Although this approach has proven its scientific merit through many discoveries, jointly 

investigating multiple big datasets would allow for their full exploitation, as is increasingly 

recognized throughout the ‘omics’ world
5–8

. However, the high-dimensional nature of these 

analyses makes them challenging and often unfeasible in current research settings. Specifically, 

the computational requirements for analyzing high-dimensional data are far beyond the 

infrastructural capabilities for single sites. Furthermore, it is incompatible with the typical 

collaborative approach of distributed multi-site analyses followed by meta-analysis, since the 

amount of generated data at every site is too large to transfer. 
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Some studies have attempted to combine multiple big datasets
5,8–10

, but these methods generally 

rely on reducing the dimensionality or making assumptions to approximate the results, which 

leads to a loss of information. 

Here we present the High-dimensional Association Studies with Efficiency (HASE) framework, 

which is capable of analyzing high-dimensional data at full resolution, yielding exact association 

statistics (i.e. no approximations), and requiring only standard computational facilities. 

Additionally, the major computational burden in collaborative efforts is shifted from the 

individual sites to the meta-analytical level while at the same time reducing the amount of data 

needed to be exchanged and preserving participant privacy. HASE thus removes the current 

computational and logistic barriers for single- and multi-center analyses of big data.
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RESULTS 

Overview of the methods 

The methods are described in detail in the Online Methods. Essentially, HASE implements a 

high-throughput multiple linear regression algorithm that is computationally efficient when 

analyzing high-dimensional data of any quantitative trait. Prior to analysis, data are converted to 

an optimized storage format to reduce reading and writing time. Redundant calculations are 

removed and the high-dimensional operations are simplified into a set of matrix operations that 

are computationally inexpensive, thereby reducing overall computational overhead. While 

deriving summary statistics (e.g., beta coefficients, p-values) for every combination in the high-

dimensional analysis would be computationally feasible at individual sites with our approach, it 

would be too large to share the intermediate results (>200GB per thousand phenotypes) in a 

multi-center setting. Therefore, extending from a recently proposed method, partial derivatives 

meta-analysis
17

, we additionally developed a method that generates two relatively small datasets 

(e.g. 5GB for genetics data of 9 million variants and 20MB of thousand phenotypes for 4000 

individuals) that are easily transferred and can subsequently be combined to calculate the full set 

of summary statistics, without making any approximation. This meta-analysis method 

additionally reduces computational overhead at individual sites by shifting the most expensive 

calculation to the central site. The total computational burden thus becomes even more efficient 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 22, 2016. ; https://doi.org/10.1101/037382doi: bioRxiv preprint 

https://doi.org/10.1101/037382
http://creativecommons.org/licenses/by-nc/4.0/


relative to conventional methods with additional sites. The HASE software is freely available 

from our website www.imagene.nl/HASE/. 

Comparison of complexity and speed 

We compared the complexity and speed of HASE with a classical workflow, based on linear 

regression analyses with PLINK (version 1.9)
11

 followed by meta-analysis with METAL
12

; two 

of the most popular software packages for these tasks.  

Table 1 shows that HASE dramatically reduces the complexity for the single site analysis and 

data transfer stages. For conventional methods, the single site analysis and data transfer have a 

multiplicative complexity (dependent on the number of phenotypes and determinants), whereas 

this is only additive for HASE.  Our approach requires 2×10
6
-fold less time on the single site 

stage and 3.500-fold less data to transfer for a high-dimensional association study. Additionally, 

the time for single site analysis does not increase significantly from analyzing a single phenotype 

to a million phenotypes (Table 1). This is due to the fact that speed is determined by the highest 

number of either the determinants or phenotypes. Therefore, in this case with nine million 

genetic variants, the complexity of  (    ) is the primary factor influencing the speed, whereas 

 (     )  plays a secondary role. 

This drastic increase in performance is made possible through the shift of the computationally 

most expensive regression operation to the meta-analytical stage. For the meta-analytical stage, 
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the HASE complexity is therefore slightly higher. However, it outperforms the classical meta-

analysis using METAL (total computation time reduced 35 times), owing to the efficient 

implementation of our algorithm. Additionally, if HASE is only used for a high-dimensional 

association study of a single site, i.e. without subsequent meta-analysis with other sites, the 

computation time would be reduced 1400 times due to the removal of redundant calculations (for 

details see Online Methods).    

Application to real data 

We used HASE to perform a high-dimensional association study in 4,034 individuals from the 

population-based Rotterdam Study. In this proof of principle study, we relate 8,723,231 million 

imputed genetic variants to 1,534,602 million brain magnetic resonance imaging (MRI) voxel 

densities (see Online Methods). The analysis was performed on a small cluster of 100 CPUs and 

took 17 hours to complete. 

To demonstrate the potential of such high-dimensional analyses, we screened all genetic 

association results for both hippocampi (7,030 voxels) and identified the voxel with the lowest p-

value.  The most significant association (rs77956314; p = 3 x 10
-9

)
 
corresponded to a locus on 

chromosome 12q24 (Figure 1), which was recently discovered in a genome-wide association 

study of hippocampal volume encompassing 30,717 participants
13

. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 22, 2016. ; https://doi.org/10.1101/037382doi: bioRxiv preprint 

https://doi.org/10.1101/037382
http://creativecommons.org/licenses/by-nc/4.0/


Additionally, we performed the high-dimensional association studies separately in the three 

subcohorts of the Rotterdam Study and meta-analyzed the results using the HASE data reduction 

approach. It took on average 40 minutes for each subcohort to generate intermediate data for 

subsequent meta-analysis on a single CPU for all genetic variants and voxels. The meta-analysis 

was performed on the same cluster and took 17 hours to complete. Next, we compared the 

association results of the pooled analysis with the meta-analysis. Figure 2 shows that the results 

are identical as it was predicted by theory (see Online Methods). 
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DISCUSSION 

We describe a framework that allows for (i) computationally-efficient high-dimensional 

association studies within individual sites using standard computational infrastructure and (ii) 

facilitates the exchange of compact summary statistics for subsequent meta-analysis for 

association studies in a collaborative setting. Using HASE, we performed a genome-wide and 

brain-wide search for genetic influences on voxel densities, and illustrate both its feasibility and 

potential for driving scientific discoveries. 

When using HASE, it is first necessary to convert the multi-dimensional data to a format that is 

optimized for fast reading and writing. This particular format, «hdf5», is not dependent on the 

architecture of the file system and can therefore be implemented on a wide range of hardware 

and software infrastructures. To facilitate this initial conversion step, we have built-in tools 

within the HASE framework for processing common file format of such big data. Furthermore, 

this is easily generalizable to other large data matrices in general and we foresee this initial 

conversion step not to form an obstacle for researchers to implement HASE.  

In addition to the data format, a large improvement in efficiency comes from the reduced 

computational complexity. High-dimensional analyses contain many redundant calculations, 

which were removed in the HASE software. Also, we were able to further increase efficiency by 

simplifying the calculations to a set of matrix operations, which are computationally inexpensive, 
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compared to conventional linear regression algorithms. Furthermore, the implementation of 

partial derivatives meta-analysis allowed us to greatly reduce the size of the summary statistics 

that need to be shared for performing a meta-analysis. Another advantage of this approach is that 

it only needs to calculate the partial derivatives for each site instead of the parameter estimates 

(i.e., beta coefficients and standard errors). This enabled us to develop within HASE a reduction 

approach that encodes data prior to exchange between sites, while yielding the exact same results 

after meta-analysis as if the original data were used. The encoding is performed such that tracing 

back to original data is impossible.  This guarantees protection of participant privacy and 

circumvents restrictions on data sharing that are unfortunately common in many research 

institutions.  

Alternative methods for solving the issues with high-dimensional data take one of two 

approaches. One approach is to reduce the dimensionality of the big datasets by summarizing the 

large amount of data into fewer variables
2
. Although this increases the speed, it comes at the 

price of losing valuable information, which these big data were primarily intended to capture. 

The second approach is to not perform a full analysis of all combinations of the big datasets, but 

instead make certain assumptions (e.g., a certain underlying pattern, or a lack of dependency on 

potential confounders) that allow for using statistical models that require less computing time. 

Again, this is a tradeoff between speed and accuracy, which is not necessary in the HASE 
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framework, where computational efficiency is increased without introducing any 

approximations. 

Unidimensional analyses of big data, such as genome-wide association studies, have already 

elucidated to some extent the genetic architecture of complex diseases and other traits of 

interest
1,14–16

, but much remains unknown. Cross-investigations between multiple big datasets 

potentially hold the key to fulfill the promise of big data in understanding of biology
7
. Using the 

HASE framework to perform high-dimensional association studies, this hypothesis is now 

testable. 

URLs. Framework for efficient high-dimensional association analyses (HASE), 

https://github.com/roshchupkin/HASE/; description of the framework and protocol for meta-

analysis, www.imagene.nl/HASE;  
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Table 1. Comparison of complexity and speed between the HASE framework and a classical workflow.  

Stage 

Complexity
c
 

Time
a,b

 

(hours) 

   =1   =10
6
 

Classical workflow HASE 
Classical 

workflow 

HASE Classical 

workflow 

HASE 

Single site analysis O(      ) max(  (    )  (     ) ) 2.46 0.63 2.46×10
6
 0.70 

Data transfer O(    ) O(         ) 0.04  0.07
*
 4×10

4
 11.6 

Meta-Analysis O(    ) O(      ) 0.06 0.03 6×10
4
 1.7×10

3
 

 

a 
Based on a model with three covariates and 9 million genetic variants, for a total of 4034 participants from three sites. For the 

classical workflow we used the PLINK software for single site analysis and METAL for the meta-analysis.  

b 
For single site analysis and meta-analysis the time is given in CPU hours; for the data transfer stage this is in hours  using an average 

network speed of 10Mbps.    

c 
Complexity for CPU hours is given in terms of classical computation time complexity; complexity for data transfer is shown in terms 

of how the size of the to be transferred data depends on the size of the input data.    

*
 This time is derived from the transfer of partial derivatives only, because for an association analysis with relatively few phenotypes it 

is not necessary to transfer encoded data.    

  - number of individuals in the study;    - number of phenotypes of interest;    - number of tests (genetic variants);    - number of 

sites in the meta-analysis. In standard analysis   <<   and   <<   
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Figure 1. Manhattan plot of the hippocampus voxel with the most significant association after screening all 7030 hippocampal voxels. 

The most significant association (rs77956314; p = 3 x 10
-9

)
 
corresponded to a previously identified locus on chromosome 12q24. Such 

voxel-wise hippocampus screening would take less than 8 hours on standard laptop.
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Figure 2.  Correlation plot of voxel GWAS t-statistic estimated from pooled together data and voxel GWAS t-statistic estimated from 

meta-analysis of partial derivatives and encoded matrix.  It took 40 min for single site to pre-compute data instead of 280 years to 

compute summary statistics; average data size to transfer was 17.5GBs instead of 300TBs. 
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ONLINE METHODS 

HASE 

In high-dimensional associations analyses we test the following simple regression model: 

        

where Y is a ni× np matrix of phenotypes of interest, ni denotes the number of samples in the 

study, np the number of phenotypes of interest, and ε denotes the residual effect.  X is a three 

dimensional matrix ni× nc × nt of independent variables, with nc representing the number of 

covariates, such as the intercept, age, sex and, for example genotype as number of alleles, and nt 

the number of independent determinants.  

In association analyses we are interested in estimating the p-value to test the null hypothesis that 

β=0. The p-values can be directly derived from the t-statistic of our test determinants. We will 

rewrite the classical equation for calculating t-statistics for our multi-dimensional matrices, 

which will lead to a simple matrix form solution for high-dimensional association analysis:   

   ( )  (    ) (    ) 

    

  
     (    ) 

 ̂  (   )      

   ( )          (   )      

  
 

  
 

 

√    ((   )  )
   
  

 
(   )       

√    ((   )  )
        (   )     
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Where T is np× nc × nt matrix of t-statistics and df is degree of freedom of our regression model. 

Let’s define        ,               , so that we can write our final equation for t-

statistics:  

      √
  

    (   )(          )
 

The result of this derivation is that, rather than computing all combinations of covariates and 

independent determinants, we only need to know three matrices: A, B and C, to calculate t-

statistics and perform the full analysis. These results will be used in the section about meta-

analysis.  

The most computationally expensive operations here are the two multi-dimensional matrix 

multiplications (    ) and (      ), where     is a three dimensional matrix nc× nc × nt  and 

  is three dimensional matrix nc× np × nt . Without knowledge of the data structure of these 

matrices, the simplest way to write the results of their multiplication would be to use Einstein’s 

notation for tensor multiplication: 

(    )    ( 
  ) 

  
     

(      ) 
 
 (  ) 

  
(    )    

            ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗          ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗        ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗            ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

As you can see, the result is two matrices of nc× np × nt and np × nt elements respectively. 

Despite the seemingly complex notation, the first matrix just represents the beta coefficients for 

all combinations of covariates (nc by np × nt combinations) and the second is fitting values of the 

dependent variable for every test (np × nt independent determinants).  
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However, insight into the data structure of A and B can dramatically reduce the computational 

burden and simplify operations. First of all, matrix A depends only on the covariates and number 

of determinants, making it unnecessary to compute it for every phenotype of interest, so we just 

need to calculate it once. Additionally, only the last covariate (i.e., the variable of interest) is 

different between tests, meaning that the (np -1)×(np -1)×nt  part of matrix A remains constant 

during high-dimensional analyses. Matrix B consists of the dot product of every combination of 

the covariate and phenotype of interest. However, as we mentioned before, there are only (nt + nc 

1) different covariates, and thus we can split matrix B in two low dimensional matrices: the first 

includes dot products of non-tested covariates - (nc-1)× np elements; the second includes the dot 

products only of the tested covariates -  np × nt elements. All this allows us to achieve large gain 

in computation efficiency and memory usage. In Figure 1 we show a 2D schematic 

representation of these two matrices for standard genome association study with the covariates 

being an intercept, age, sex, and genotype. This example could be easily extrapolated to any 

linear regression model.  

Applying the same splitting operation to    it is possible to simplify tensor multiplication 

equation (8, 9) to a low-dimensional matrix operation and rewrite the equation for t-statistics: 

(    )    ( 
  ) 

  
     ( 

  ) 
  
     

(      ) 
 
 (  ) 

 
(    )    ( 

 ) 
  
(    )    

 

            ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗          ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗        ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗        (    )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗         
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Then, to compute t-statistics for high-dimensional association analyses we just need to perform 

several matrix multiplications.  

Meta-analysis 

In classical meta-analysis, summary statistics such as beta coefficients and p-values are 

exchanged between sites. For 1.5 million phenotypes, this would yield around 400TB of data at 

each site, making data transfer to a centralized site impractical. 

In the previous section we showed that, to compute all statistics for an association study, we just 

need to know the A, B and C matrices. As we demonstrated  before
6
, by exchanging these 

matrices between sites, it is possible to gain the same statistical power as with a pooled analysis, 

without sharing individual participant data, because these matrices consist of aggregate data 

(Figure 1). However, in high-dimensional association analyses, matrix B grows very fast, 

particularly the part that depends on the number of determinants and phenotypes (b4 in Figure 

1).   

If Y is a ni× np matrix of phenotypes of interest and G is a ni× nt matrix of determinants which 

we want to test (e.g., a genotype matrix in GWAS), then b4 = Y
T
× G. These two matrices, Y and 

G, separately are not so large, but their product matrix has np× nt elements, which in a real 

application could be 10
6
×10

7
 =10

13
 elements and thus too large to share between sites. We 

propose to create a random ni× ni nonsingular square matrix F and calculate its inverse matrix F
-

1
.  Then by definition F× F

-1
=I, where I is a ni× ni elements identity matrix with ones on main 

diagonal and zeros elsewhere.  Using this property, we can rewrite the equation for b4: 
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  (     )    

   ( 
   )  (     ) 

     
     

                                                                                                           

Therefore, instead of transferring TBs of intermediate statistics (b4), each side just needs to 

compute A, C, YF and GF.  

Sharing just the encoded matrices does not provide information on individual participants and 

without knowing matrix F it is impossible to reconstruct the real data. However, it will be 

possible to calculate b4, perform a high-dimensional meta-analysis, and avoid problems with data 

transfer. Additionally, this method dramatically reduces computation time by shifting all 

complex computations to central site, where the HASE regression algorithm should be used to 

handle the association analysis in time efficient way.   
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Figure 1. Explanation of the achieved speed reduction in HASE framework by removing redundant 

computations. In HASE multi-dimensional A and B matrices need to be calculated to perform GWAS studies. 

In the figure grey color means elements are parts of the matrix that are not necessary to calculate, as the A 

matrix is symmetric. The green color indicates elements that need to be calculated only once. Blue elements 

only have to be calculated for every SNP and yellow only for every phenotype.  The red color indicates the 

most computationally expensive element, which needs to be calculated for every combination of phenotype and 

genotype. N denotes the number subjects in study.  
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Supplementary Note 

Study Population  

The Rotterdam Study is an ongoing population-based cohort study in the Netherlands investigating diseases in 

the elderly and currently consists of 14,926 residents of Rotterdam who were aged 45 years or more at baseline 

[1,2]. The initial cohort was started in 1990 and expanded in 2000 and 2005. The whole population is subject to 

a set of multidisciplinary examinations every four years. MRI was implemented in 2005 and 5430 persons 

scanned until 2011 were eligible for this study. We excluded individuals with incomplete acquisitions, scans 

with artifacts hampering automated processing, participants with MRI-defined cortical infarcts, and subjects 

with dementia or stroke at the time of scanning. This resulted in a final study population of 4071 non-demented 

persons with information available on both genome-wide genotyping and MRI data. The Medical Ethics 

Committee of the Erasmus MC, University Medical Center Rotterdam and the review board of the Netherlands 

Ministry of Health, Welfare and Sports both approved the study. Informed consent was obtained from all 

subjects. 

Imputation of genotypes 

The Illumina 550K and 550K duo arrays were used for genotyping. Samples with low call rate (<97.5%), with 

excess autosomal heterozygosity (>0.336) or with sex-mismatch were excluded, as were outliers identified by 

the identity-by-state clustering analysis (outliers were defined as being >3 standard deviation (SD) from 

population mean or having identity-by-state probabilities >97%). A set of genotyped input SNPs with call rate 

>98%, MAF >0.001 and Hardy–Weinberg equilibrium (HWE) P-value > 10
−6

 was used for imputation. The 

Markov Chain Haplotyping (MACH) package version 1.0 software (Imputed to plus strand of NCBI build 37, 

1000 Genomes phase I version 3) and minimac version 2012.8.6 were used for imputation.   

MRI data 

From August 2005 onwards, a dedicated 1.5 Tesla MRI scanner (GE Healthcare, Milwaukee, Wisconsin, USA) 

is operational in the Rotterdam Study research center in Ommoord. This scanner is operated by trained research 
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technicians and all imaging data are collected according to standardized imaging protocols[2]. Brain MRI scans 

included a high-resolution 3D T1-weighted fast RF spoiled gradient recalled acquisition in steady state with an 

inversion recovery pre-pulse (FASTSPGR-IR) sequence with thin slices (voxel size<1mm
3
)[2]Image processing 

Voxel based morphometry (VBM) was performed according to an optimized VBM protocol [3]. First, all T1-

weighted images were segmented into supratentorial gray matter (GM), white matter (WM) and cerebrospinal 

fluid (CSF) using a previously described k-nearest neighbor (kNN) algorithm, which was trained on six 

manually labeled atlases [4]. FSL software [5] was used for VBM data processing. First, all GM density maps 

were non-linearly registered to the standard GM probability template. For this study we chose the ICBM 

MNI152 GM template (Montreal Neurological Institute) with a 1x1x1 mm
3
 voxel resolution. The MNI152 

standard-space T1-weighted average structural template is derived from 152 structural images, which have been 

warped and averaged into the common MNI152 co-ordinate system after high-dimensional nonlinear 

registration.  

A spatial modulation procedure was used to avoid differences in absolute GM volume due to the registration. 

This involved multiplying voxel density values by the Jacobian determinants estimated during spatial 

normalization. To gain more statistic power and decrease signal to noise ratio, all images were smoothed using 

a 3mm (FWHM 8mm) isotropic Gaussian kernel. 

Statistical analysis 

Linear regression models were fitted with voxel values of GM modulation density as the dependent variable and 

age, sex, and the number of minor alleles as independent variables. In total 1,534,602 voxels were processed. 
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