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Abstract 15 

Whole genome sequencing (WGS) of bacteria is becoming standard practice 16 

in many laboratories. Applications for WGS analysis include phylogeography and 17 

molecular epidemiology, using single nucleotide polymorphisms (SNPs) as the 18 

unit of evolution. The Northern Arizona SNP Pipeline (NASP) was developed as 19 

a reproducible pipeline that scales well with the large amount of WGS data 20 

typically used in comparative genomics applications. In this study, we 21 

demonstrate how NASP compares to other tools in the analysis of two real 22 

bacterial genomics datasets and one simulated dataset. Our results demonstrate 23 

that NASP produces comparable, and often better, results to other pipelines, but 24 

is much more flexible in terms of data input types, job management systems, 25 

diversity of supported tools, and output formats. We also demonstrate differences 26 

in results based on the choice of the reference genome and choice of inferring 27 

phylogenies from concatenated SNPs or alignments including monomorphic 28 

positions. NASP represents a source-available, version-controlled, unit-tested 29 

method and can be obtained from tgennorth.github.io/NASP.    30 

 31 
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Introduction 32 

Whole genome sequence (WGS) data from bacteria are rapidly increasing in 33 

public databases and have been used for outbreak investigations [1, 2], 34 

associating phylogeny with serology [3], as well as phylogeography [4]. WGS 35 

data are frequently used for variant identification, especially with regards to 36 

single nucleotide polymorphisms (SNPs). SNPs are used because they provide 37 

stable markers of evolutionary change between genomes [5]. Accurate and 38 

reliable SNP identification requires the implementation of methods to call, filter, 39 

and merge SNPs with tools that are version controlled, unit tested, and validated 40 

[6]. 41 

Multiple pipelines are currently available for the identification of SNPs from 42 

diverse WGS datasets, although the types of supported input files differ 43 

substantially. There are few pipelines that support the analysis of both raw 44 

sequence reads as well as genome assemblies. The ISG pipeline [7] calls SNPs 45 

from both raw reads, primarily from the Illumina platform, and genome 46 

assemblies, but wasn’t optimized for job management systems and only exports 47 

polymorphic positions. While only polymorphic positions may be adequate for 48 

many studies, including monomorphic positions in the alignment has been shown 49 

to be important for various phylogenetic methods. A commonly used SNP 50 

analysis software method is kSNP, which has been discussed in three separate 51 

publications [8-10]. The most recent version of kSNP (v3) doesn’t directly support 52 

the use of raw reads in the identification of SNPs. kSNP is a reference-53 

independent approach in which all kmers of a defined length are compared to 54 

identify SNPs. The all-versus-all nature of the algorithm can result in a large RAM 55 

footprint and can stall on hundreds of bacterial genomes [7]. Finally, REALPHY 56 

was published as a method to identify SNPs using multiple references and then 57 

merging the results [11]. The authors claim that single reference based methods 58 

bias the results, especially from mapping raw reads against a divergent reference 59 

genome. 60 

Additional methods have also been published that only support specific input 61 

formats. Parsnp is a method that can rapidly identify SNPs from the core 62 
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genome, but currently only processes closely related genome assemblies [12]. 63 

SPANDx is a method that only supports raw reads, but does run on a variety of 64 

job management systems [13]. The program lyve-SET has been used in 65 

outbreak investigations and uses raw or simulated reads to identify SNPs [14]. 66 

Finally, the CFSAN SNP-pipeline is a published pipeline from the United States 67 

Food and Drug Administration that only supports the use of raw reads [15]. There 68 

have been no published comparative studies to compare the functionality of 69 

these pipelines on a range of test datasets. 70 

In this study, we describe the Northern Arizona SNP Pipeline (NASP). NASP 71 

is a source-available, unit-tested, version-controlled method to rapidly identify 72 

SNPs that works on a range of job management systems, incorporates multiple 73 

read aligners and SNP callers, works on both raw reads and genomes 74 

assemblies, calls both monomorphic and polymorphic positions, and has been 75 

validated on a range of diverse datasets. We compare NASP with other methods, 76 

both reference-dependent and reference-independent, in the analysis of three 77 

reference datasets. 78 

 79 

Methods 80 

 81 

NASP is implemented in Python and Go. NASP accepts multiple file formats as 82 

input, including “.fasta”, “.sam”, “.bam”, “.vcf”, “.fastq”, and “fastq.gz”. NASP can 83 

either function through a question/answer command line interface designed for 84 

ease of use, or through an argument-driven command-line interface. NASP was 85 

developed to work on job management systems including Torque, Slurm, and 86 

Sun/Oracle Grid Engine (SGE); a single node solution is available for NASP as 87 

well, but is not optimal. If filtering of duplicate regions in the reference genome is 88 

requested, the reference is aligned against itself with NUCmer [16]. These 89 

duplicated regions are then masked from downstream analyses, although are still 90 

available for investigation. If external genome assemblies are supplied, they are 91 

also aligned against the reference genome with NUCmer and SNPs are identified 92 

by a direct one-to-one mapping of the query to the reference. In the case of 93 
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duplications in the query but not the reference, all copies are aligned and any 94 

differences at any given base are masked with an “N” character to identify it as 95 

ambiguous. 96 

If raw reads are supplied, they can be adapter and/or quality trimmed with 97 

Trimmomatic [17]. Raw or trimmed reads are aligned against a FASTA-formatted 98 

reference using one of the supported short read aligners, including BWA-MEM 99 

[18], Novoalign, bowtie2 [19] and SNAP [20]. A binary alignment map (BAM) file 100 

is created with Samtools [21] and SNPs can be called with multiple SNP callers, 101 

including the UnifiedGenotyper method in GATK [22, 23], Samtools, SolSNP 102 

(http://sourceforge.net/projects/solsnp/), and VarScan [24]. Positions that fail a 103 

user-defined depth and proportion threshold are filtered from downstream 104 

analyses but are retained in the “master” matrices. A workflow of the NASP 105 

pipeline is shown in Figure 1 and a summary is shown in Supplemental Table 1. 106 

The results of the pipeline can include up to four separate SNP matrices. The 107 

first matrix is the master matrix (master.tsv), which includes all calls, both 108 

monomorphic and polymorphic, across all positions in the reference with no 109 

positions filtered or masked; positions that fall within duplicated regions are 110 

shown in this matrix, although they are flagged as duplicated. An optional second 111 

matrix (master_masked.tsv) can also be produced. This matrix is the same as 112 

the master matrix, although any position that fails a given filter (minimum depth, 113 

minimum proportion) is masked with an “N”, whereas calls that could not be 114 

made are given an “X”; this matrix could be useful for applications where all high-115 

quality, un-ambiguous positions should be considered. The third matrix 116 

(missingdata.tsv) includes only positions that are polymorphic across the sample 117 

set, but can include positions that are missing in a subset of genomes and not 118 

found in duplicated regions; these SNPs have also been processed with the 119 

minimum depth and proportion filters and are still high quality calls. The last 120 

matrix (bestsnp.tsv) is a matrix with only polymorphic, non-duplicated, clean calls 121 

(A,T,C,G) that pass all filters across all genomes. FASTA files are automatically 122 

produced that correspond to the bestsnp and missingdata matrices.  123 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2016. ; https://doi.org/10.1101/037267doi: bioRxiv preprint 

https://doi.org/10.1101/037267
http://creativecommons.org/licenses/by-nd/4.0/


 5

In addition to the matrices and FASTA files, NASP produces statistics that 124 

can be useful for the identification of potentially problematic genomes, such as 125 

low coverage or mixtures of multiple strains. These statistics can also be used for 126 

determining the size of the core genome, including both monomorphic and 127 

polymorphic positions, of a given set of genomes. 128 

Post matrix scripts are included with NASP in order to convert between file 129 

formats, remove genomes and/or SNPs, provide functional SNP information, and 130 

to convert into formats that can be directly accepted by other tools, such as Plink 131 

[25], a method to conduct genome wide association studies (GWAS). 132 

Documentation for all scripts is included in the software repository. 133 

 134 

Test datasets. To demonstrate the speed and functionality of the NASP pipeline, 135 

three datasets were selected. The first includes a set of 21 Escherichia coli 136 

genome assemblies used in other comparative studies [11, 26] (Supplemental 137 

Table 2). REALPHY was run on self-generated single-ended simulated reads, 138 

100bp in length. Additional pipelines were run with paired-end reads generated 139 

by ART chocolate cherry cake [27], using the following parameters: -l 100 -f 20 -p 140 

-ss HS25 -m 300 -s 50. Unless otherwise noted, the reference genome for SNP 141 

comparisons was K-12 MG1655 (NC_000913) [28]. All computations were 142 

performed on a single node, 16-core server with 48Gb of available RAM. For 143 

kSNP, the optimum k value was selected by the KChooser script included with 144 

the repository. 145 

The second dataset includes a set of 15 Yersinia pestis genomes from North 146 

America (Supplemental Table 3). For those external SNP pipelines that only 147 

support raw reads, simulated reads were generated from genome assemblies 148 

with ART. A set of SNPs (Supplemental Table 4) has previously been 149 

characterized on these genomes with wet-bench methods (unpublished). This set 150 

was chosen to determine how many verified SNPs could be identified by different 151 

SNP pipelines. All computations were performed on a single node, 16-core 152 

server with 48Gb of available RAM. 153 
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    The last dataset includes simulated data from Yersinia pestis. Reads and 154 

assemblies from 133 Y. pestis genomes [29] were downloaded from public 155 

databases and processed with NASP using the CO92 genome as the reference 156 

to produce a reference phylogeny for WGS data simulation. Assemblies and 157 

reads were simulated from this reference phylogeny and a reference genome 158 

(CO92 chromosome) using TreeToReads 159 

(https://github.com/snacktavish/TreeToReads), introducing 3501 mutations. A 160 

phylogeny was inferred from the concatenated SNP alignment (3501 simulated 161 

SNPs produced by TreeToReads) with RAxML v8 to provide a ‘true’ phylogeny 162 

for the simulated data. Simulated reads (250bp) and assemblies were both 163 

processed with pipelines to identify how many of these introduced SNPs could be 164 

identified. 165 

To test the scalability of NASP on genome assemblies, a set of 3520 E. coli 166 

genomes was selected (Supplemental Table 5). Genomes were randomly 167 

selected with a python script 168 

(https://gist.github.com/jasonsahl/990d2c56c23bb5c2909d) at various levels 169 

(100-1000) and processed with NASP. In this case, NASP was run on multiple 170 

nodes across a 31-node cluster at Northern Arizona University. The elapsed time 171 

was reported only for the step where aligned files are compiled into the resulting 172 

matrix. Time required for the other processes is dependent on the input file type 173 

and the amount of available resources on a HPC cluster. 174 

  175 

External SNP pipelines. Multiple SNP pipelines, both reference-dependent and 176 

reference-independent, were compared with NASP, including kSNP v3.9.1 [10], 177 

ISG v0.16.10-3 [7], Parsnp v1.2 [12], REALPHY v112 [11], SPANDx v2.7 [13], 178 

Mugsy v1r2.2 [30], lyve-SET v1.1.6 [31], and CFSAN (https://github.com/CFSAN-179 

Biostatistics/snp-pipeline). Exact commands used to run each method are shown 180 

in Supplemental Data File 1. An overview of all tested methods is shown in Table 181 

1. Most of the methods output FASTA files, which were used to infer 182 

phylogenies. For Mugsy, the MAF file was converted to FASTA with methods 183 

described previously [32]. 184 
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 185 

Phylogenetics. Phylogenies were inferred using a maximum likelihood algorithm 186 

implemented in RAxML v8.1.7 [33], except where noted. The exact commands 187 

used to infer the phylogenies are shown in Supplemental Data File 1. Tree 188 

topologies were also compared on the same input data. Commands to infer 189 

these phylogenies using FastTree2 [34], ExaBayes [35], and Parsimonator 190 

(github.com/stamatak/Parsimonator-1.0.2) are shown in Supplemental Data File 191 

1. 192 

 193 

Dendrogram of multiple methods. To visually represent how well different 194 

methods relate, a dendrogram was generated. Each phylogeny was compared 195 

against a maximum likelihood phylogeny inferred from the reference test set with 196 

compare2trees. A UPGMA dendrogram was then calculated with Phylip [36] on 197 

the resulting similarity matrix.  198 

 199 

Results 200 

 201 

Pipeline functionality and post-matrix scripts. NASP is a reference-202 

dependent pipeline that can incorporate both raw reads and assemblies in the 203 

SNP discovery process; NASP was not developed for the identification and 204 

annotation of short insertions/deletions (indels). NASP can use multiple aligners 205 

and SNP callers to identify SNPs and the consensus calls can be calculated 206 

across all methods. An additional strength of NASP is that it can run on multiple 207 

job management systems as well as on a single node. A complete workflow of 208 

the NASP method is shown in Figure 1. Several post-matrix scripts are included 209 

with NASP in order to convert between file formats, including generating input 210 

files for downstream pipelines, including Plink [25]. An additional script can 211 

annotate a NASP SNP matrix using SnpEff [37] to provide functional information 212 

for each SNP. 213 

 214 
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NASP run time scalability. To visualize how NASP scales on processing 215 

genome assemblies, a set of 3520 E. coli genomes was sampled at 100 genome 216 

intervals and processed with NASP with 10 replicates. The results demonstrate 217 

that the matrix building step in NASP scales linearly with the processing of 218 

additional genomes (Figure 2A). The memory footprint of this step also scales 219 

linearly (Figure 2B) and doesn’t exceed 4Gb on a large set of genomes (n=1000). 220 

If raw reads are used, additional time is required for the alignment and SNP 221 

calling methods, and the overall wall time would scale with the number of reads 222 

that needed to be processed. The matrix-building step, where assemblies and 223 

VCF files are merged into the matrix, would scale linearly regardless of the SNP 224 

identification method chosen. 225 

 226 

Pipeline comparisons on E. coli genomes data set. To test differences 227 

between multiple pipelines, a set of 21 E. coli genomes used in other 228 

comparative genomics studies [11, 26] were downloaded and processed with 229 

Parsnp, SPANDx, kSNPv3, ISG, REALPHY, CFSAN, lyve-SET, Mugsy, and 230 

NASP. For methods that do not support genome assemblies, paired end reads 231 

were simulated with ART, while single end reads were used by REALPHY, as 232 

this method is integrated into the pipeline. 233 

To identify how well the simulated paired end reads represent the finished 234 

genomes, a NASP run was conducted on a combination of completed genome 235 

assemblies as well as simulated raw reads. The phylogeny demonstrates that 236 

assemblies and raw reads fall into identical locations (Supplemental Figure 1), 237 

suggesting that the paired end reads are representative of the finished genome 238 

assemblies. 239 

The authors of REALPHY assert that their analysis of this dataset 240 

demonstrates the utility of using their approach to avoid biases in the use of a 241 

single reference genome by using multiple references [11]. However, in our tests, 242 

we could only get REALPHY to complete when using a single reference. To test 243 

differences between methods, SNPs were identified with multiple reference-244 

dependent and -independent methods, and maximum likelihood (ML) 245 
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phylogenies were compared. The results demonstrate that all methods, with the 246 

exception of kSNPv3 and lyve-SET, returned a phylogeny with the same 247 

topology as the published phylogeny [11] (compare2trees topological score = 248 

100%) (Table 2). The run wall time demonstrates that most other methods were 249 

significantly faster than REALPHY (Table 2), even when REALPHY was called 250 

against a single reference. Wall time comparisons between methods are 251 

somewhat problematic, as some pipelines infer phylogenies and others, including 252 

NASP, do not. Additionally, using raw reads is generally expected to be slower 253 

than using a draft or finished genome assembly. Finally, some methods are 254 

optimized for job management systems, whereas others were designed to run on 255 

a single node. For these comparisons, all methods that have single node support 256 

were run on a single node. Only SPANDx seems to be dependent on job 257 

management systems and could not be successfully run on a single node. 258 

One of the other assertions of the REALPHY authors is that phylogenies 259 

reconstructed using an alignment of concatenated SNPs are unreliable [11, 26], 260 

especially with regards to branch length biases [38]. However, the phylogeny 261 

inferred from a NASP alignment of monomorphic and polymorphic sites was in 262 

complete agreement with the topology of the phylogeny inferred from a 263 

concatenation of only SNPs (compare2trees topological score = 100%); tree 264 

lengths were indeed variable by using these two different input types using the 265 

same substitution model (Supplemental Figure 2). We also employed an 266 

ascertainment bias correction (Lewis correction) implemented in RaxML [38], in 267 

order to correct for the use of only polymorphic sites, and found no difference 268 

between tree topologies using substitution models that did not employ this 269 

correction (data not shown). For this dataset of genomic E. coli assemblies, there 270 

appears to be no effect of using a concatenation of polymorphic sites on the 271 

resulting tree topology, although branch lengths were affected compared to an 272 

alignment containing monomorphic sites.  273 

To understand how the choice of the reference affects the analysis, NASP 274 

was also run using E. coli genome assemblies and simulated reads against the 275 

outgroup, E. fergusonii, as the reference. The results demonstrate that the same 276 
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tree topology was obtained by using a different, and much more divergent, 277 

reference (compare2trees topology score = 100%). However, in both cases, 278 

fewer SNPs were identified by using a divergent reference (Table 2).  279 

Some authors suggest that reference-independent approaches are less 280 

biased and more reliable than reference dependent-approaches [8]. For the case 281 

of this E. coli dataset, the phylogeny inferred by Mugsy, a reference-independent 282 

approach, was in topological agreement with other reference-dependent 283 

approaches (Table 2). In fact, kSNPv3 was one of the only methods that returned 284 

a tree phylogeny that was inconsistent with all other methods (Table 2); an 285 

inconsistent kSNP phylogeny has also been reported in the analysis of other 286 

datasets [15]. To analyze this further, we identified SNPs (n=826) from the NASP 287 

run using simulated paired-end reads that were uniquely shared on a branch of 288 

the phylogeny that defines a monophyletic lineage (Supplemental Figure 3). We 289 

then calculated how many of these SNPs were identified by all methods and 290 

found widely variable results (Table 2). Using kSNP with only core genome SNPs 291 

identified only 5 of these SNPs, which explains the differences in tree topologies. 292 

In many cases, the same tree topology was returned even though the number 293 

of identified SNPs differed dramatically (Table 2). This result could be due to 294 

multiple factors, including if and how duplicates are filtered from the reference 295 

genome or other genome assemblies. With regards to NASP, erroneous SNPs 296 

called in genome assemblies are likely artifacts from the whole genome 297 

alignments using NUCmer. The default value for aligning through poorly scoring 298 

regions before breaking an alignment in NUCmer is 200, potentially introducing 299 

many spurious SNPs into the alignment, especially in misassembled regions in 300 

draft genome assemblies.  By changing this value to 20, the same tree topology 301 

was obtained, although many fewer SNPs (n=~100,000) were identified (Table 302 

2). This value is easily altered in NASP and should be tuned based on the 303 

inherent expected diversity in the chosen dataset. Additional investigation is 304 

required to verify that SNPs in divergent regions are not being lost by changing 305 

this parameter. Another option is to use simulated reads from the genome 306 

assemblies in the SNP identification process. 307 
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 308 

Phylogeny differences on the same dataset. Previously, it has been 309 

demonstrated that different phylogenies can be obtained on the same dataset 310 

using either RAxML or FastTree2 [15]. To test this result across multiple 311 

phylogenetic inference methods, the NASP E. coli read dataset was used. 312 

Phylogenies were then inferred using a maximum likelihood method in RAxML, a 313 

maximum parsimony method implemented in Parsimonator, a minimum evolution 314 

method in FastTree2, and a Bayesian method implemented in Exabayes [35]. 315 

The results demonstrate variability in the placement of one genome (UMN026) 316 

depending on the method. FastTree2 and Exabayes agreed on their topologies, 317 

including 100% congruence of the replicate trees. The maximum likelihood and 318 

maximum parsimony phylogenies were slightly different (Supplemental Figure 3) 319 

and included low bootstrap replicate values at the variable node. The correct 320 

placement of UMN026 is unknown and is likely confounded by the extensive 321 

recombination observed in E. coli [39]. 322 

 323 

Pipeline comparisons on a well characterized dataset. To test the 324 

functionality of different SNP calling pipelines, a set of 15 finished Yersinia pestis 325 

genomes were compared. This set of genomes was selected because 26 SNPs 326 

in the dataset have been verified by wet-bench methods (Supplemental Table 4). 327 

Additionally, 13 known errors in the reference genome, Y. pestis CO92 [40], have 328 

been identified (Supplemental Table 4) and should consistently be identified in 329 

SNP discovery methods. The small number of SNPs in the dataset requires 330 

accurate SNP identification to resolve the phylogenetic relationships of these 331 

genomes. 332 

The results demonstrate differences in the total number of SNPs called 333 

between different methods (Table 3). Most of the methods identified all 13 known 334 

sequencing errors in CO92, although Parsnp, REALPHY, and kSNPv3 failed to 335 

do so. The number of verified SNPs also varied between methods, from 21 in 336 

kSNPv3 to all 26 in multiple methods (Table 3). An analysis of wet-bench 337 

validated SNPs (n=9) that are identified in more than one genome demonstrated 338 
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that some methods failed to identify all of these SNPs, which could lead to a very 339 

different phylogeny than the phylogeny using these SNPs that are vital for 340 

resolving important phylogenetic relationships. These SNPs could represent 341 

differences that could differentiate between strains in an outbreak event. 342 

 343 

Pipeline comparisons on a simulated set of assemblies and reads. 344 

Simulated data for Y. pestis were used to compare SNP identification between 345 

pipelines. In this method, 3501 mutations (Supplemental Data File 2) were 346 

inserted into genomes based on a published phylogeny [41] and FASTA file. Raw 347 

reads were also simulated from these artificially mutated assemblies with ART to 348 

generate paired end sequences. Reads and assemblies were run across all 349 

pipelines, where applicable.  350 

The results demonstrate that NASP identified all of the inserted SNPs using 351 

raw reads, although 68 SNPs failed the proportion filter (0.90) and 232 SNPs fell 352 

in duplicated regions (Table 4); some of the duplicated SNPs would also fail the 353 

proportion filter. Of all other methods, only ISG identified all inserted mutations. 354 

SPANDx only identified 2248 SNPs when run with default values. Parsnp 355 

identified the majority of the mutations, although duplicate regions appear to 356 

have also been aligned. 357 

To understand how the SNPs called would affect the overall tree topology, a 358 

phylogeny was inferred for each set of SNPs with RAxML. A similarity matrix was 359 

made for each method based on the topological score compared to the ML 360 

phylogeny inferred from the known mutations. The UPGMA dendrogram 361 

demonstrates that the NASP results return a phylogeny that is more 362 

representative of the “true” phylogeny than other methods (Figure 3). Without 363 

removing SNPs found in duplicated regions, the NASP phylogeny was identical 364 

to the phylogeny inferred from the known SNPs. 365 

 366 

 367 

 368 

 369 
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Discussion 370 

Understanding relationships between bacterial isolates in a population is 371 

important for applications such as source tracking, outbreak investigations, 372 

phylogeography, population dynamics, and diagnostic development. With the 373 

large numbers of genomes that are typically associated with these investigations, 374 

methods are required to quickly and accurately identify SNPs in a reference 375 

population. However, no studies have conducted a broad analysis to compare 376 

published methods on real and simulated datasets to identify relevant strengths 377 

and weaknesses. 378 

Multiple publications have used a reference-dependent approach to identify 379 

SNPs to understand population dynamics [38]. While the specific methods are 380 

often published, the pipelines to run these processes are often un-published [42, 381 

43], which complicates the ability to replicate results. NASP has already been 382 

used to identify SNPs from multiple organisms, including fungal [44] and bacterial 383 

[45, 46] pathogens. The version-controlled source code is available for NASP, 384 

which should ensure the replication of results across research groups. 385 

Recently it has been suggested that the use of a single reference can bias the 386 

identification of SNPs, especially in divergent references [11]. In our E. coli test 387 

set, ~29,000 fewer SNPs were called by aligning E. coli reads against the 388 

reference genome of the outgroup, E. fergusonii, compared to the K-12 389 

reference, although the tree topologies were identical (Table 2). In the E. coli test 390 

set phylogeny, the major clades are delineated by enough SNPs that the loss of 391 

a small percentage is insufficient to change the overall tree topology, although 392 

the branch lengths were variable. In other datasets, the choice of the reference 393 

should be made carefully to include as many SNPs as needed to define the 394 

population structure of a given dataset. 395 

According to the authors of kSNP, a k-mer-based reference-independent 396 

approach, there are times where alignments are not appropriate in understanding 397 

bacterial population structure [8]. In our E. coli analysis, reference-dependent 398 

and reference-independent methods generally returned the same tree topology 399 

(Table 2), with the exception of kSNPv3 and lyve-SET, using only core genome 400 
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SNPs. Using all of the SNPs identified by kSNPv3 also gave a different tree 401 

topology than the other methods (Table 2). A detailed look at branch specific 402 

SNPs demonstrated that using kSNP with core SNPs failed to identify most of the 403 

branch specific SNPs for one of the major defining clades (Table 2). For datasets 404 

that are only defined by a small number of SNPs, a method should be chosen 405 

that includes as many SNPs as possible in order to maximize the relevant search 406 

space. While NASP cannot truly use the pan-genome if a single reference 407 

genome is chosen, it can incorporate data from all positions in the reference 408 

genome if missing data are included in the alignment. A true pan-genome 409 

reference can be used with NASP to more comprehensively identify SNPs, but 410 

curation of the pan-genome is necessary to remove genomic elements 411 

introduced by horizontal gene transfer that could potentially confound the 412 

phylogeny. 413 

Phylogenetics on an alignment of concatenated SNPs is thought to be less 414 

preferable than an alignment that also contains monomorphic positions [11, 38]. 415 

However, the inclusion of monomorphic positions can drastically increase the run 416 

time needed to infer a phylogeny, especially where the population structure of a 417 

species can be determined by a small number of polymorphisms. Substitution 418 

models are available in RAxML v8 that contain acquisition bias corrections that 419 

should be considered when inferring phylogenies from concatenated SNP 420 

alignments. In our E. coli test case, using concatenated SNPs did not change the 421 

tree topology compared to a phylogeny inferred from all sites, but did affect 422 

branch lengths (Supplemental Figure 2). For downstream methods that depend 423 

on accurate branch lengths, decisions must be made on whether or not to 424 

include monomorphic positions into the alignment. NASP provides the user with 425 

the flexibility to make those decisions in a reproducible manner. 426 

NASP represents a version-controlled, unit-tested pipeline for identifying 427 

SNPs from datasets with diverse input types. NASP is a high throughput method 428 

that can take a range of input formats, can accommodate multiple job 429 

management systems, can use multiple read aligners and SNP callers, can 430 
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identify both monomorphic and polymorphic sites, and can generate core 431 

genome statistics across a population. 432 

 433 

Figure Legends 434 

Figure 1. A workflow of the NASP algorithm. Optional steps are shown by 435 

dashed lines. 436 

 437 

Figure 2. NASP benchmark comparisons of walltime (A) and RAM (B) on a set of 438 

Escherichia coli genomes. For the walltime comparisons, 3520 E. coli genomes 439 

were randomly sampled ten times at different depths and run on a server with 440 

856 cores. Only the matrix building step is shown, but demonstrates a linear 441 

scaling with the processing of additional genomes. 442 

  443 

Figure 3. Dendrogram of tree building methods on a simulated set of mutations 444 

in the genome of Yersinia pestis Colorado 92. The topological score was 445 

generated by compare2trees compared to a maximum likelihood phylogeny 446 

inferred from a set of 3501 SNPs inserted by Tree2Reads. The dendrogram was 447 

generated with the Neighbor method in the Phylip software package [36]. 448 

 449 
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 601 

Table 1. An overview of commonly used SNP pipelines

Pipeline name Supported data types Output type Parallel Job management support?
NASP FASTA,BAM,SAM,VCF,FASTQ,FASTQ.GZ matrix, VCF, FASTA SGE,SLURM,TORQUE
ISG FASTA,BAM,VCF,FASTQ,FASTQ.GZ matrix, FASTA No

Parsnp FASTA gingr file, phylogeny, FASTA, VCF No
REALPHY FASTA*, FASTQ, FASTQ.GZ multi-FASTA, phylogeny No
SPANDx FASTQ.GZ Nexus file SGE,SLURM,TORQUE
CFSAN FASTQ, FASTQ.GZ SNP list, FASTA SGE,TORQUE
kSNPv3 FASTA Matrix, FASTA, phylogeny No
Mugsy FASTA MAF file No

LYVE-set FASTQ.GZ, FASTA* matrix, FASTA, phylogeny SGE

*generates simulated reads

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2016. ; https://doi.org/10.1101/037267doi: bioRxiv preprint 

https://doi.org/10.1101/037267
http://creativecommons.org/licenses/by-nd/4.0/


 20

 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 
 610 

 611 
 612 

 613 

614 
 615 

 616 

Table 2. SNP calling results on a set of 21  E. coli genomes

Method Reference Data Type Parameters

#defining 

SNPs

NASP K12 MG1655 Assemblies Default 267978
a

2322434 10m00s 100% 809

NASP K12 MG1655 Assemblies NUCmer (-b 20) 162758a 1839583 10m00s 100% 744

NASP K12 MG1655 ART PE reads BWA, GATK,MinDepth=3,MinAF=0.90 170208
a

1984510 1h43m00s 100% 826

NASP E. fergusonii 35469 Assemblies Default 244262
a

2227038 10m00s 100% 741

NASP E. fergusonii 35469 ART PE reads BWA,GATK,MinDepth=3,MinAF=0.90 141238
a

1813349 1h17m10s 100% 748

ISG K12 MG1655 Assemblies Default 268524
a

N/A 6m47s 100% 810

ISG K12 MG1655 ART PE reads minaf 0.9, mindp 3 206193a N/A 14m45s 100% 824

Parsnp K12 MG1655 Assemblies "-c d" 151256
a

1682404 4m35s 100% 777

REALPHY K12 MG1655 REALPHY SE reads Default 171828
a

1897146 3h11m00s 100% 779

kSNPv3 N/A Assemblies -core 20587
a

N/A 27m58s 91.80% 5

kSNPv3 N/A Assemblies Default 284134 N/A 27m58s 95.80% 547

Spandx K12 MG1655 ART PE reads Default 95214
a

N/A N/A 100% 709

CFSAN K12 MG1655 ART PE reads Default 128512a N/A 1h56m00s 100% 808

Mugsy N/A Assemblies Default 307072
a

2478794 1h39m03s 100% unknown

lyve-SET K12 MG1655 ART PE reads min_coverate 3, min_alt_frac 0.9 163118
a

1183153 6h25m 85% 329

astrictly core genome SNPs

#SNPs 

considered

#Total 

sites

Walltime 

(single node - 

8 cores)

Topological 

score

Table 3. SNP calling results on a set of Y. pestis genomes

Method Data type Parameters
NASP ART simulated reads BWA,GATK,MinDepth=3,MinAF=0.90 147 13 26 9
NASP assemblies default 181 13 26 9
ISG ART simulated reads minaf=3, mindp = 0.9 151 13 26 9
ISG assemblies default 177 13 26 9

Parsnp assemblies default 141 12 23 7
REALPHY REALPHY simulated reads default 163 12 25 9
SPANDx ART simulated reads default 150 13 25 9
kSNPv3 assemblies k=19 130 11 21 5
CFSAN ART simulated reads default 250 13 26 9

lyve-SET ART simulated reads min_coverage 3, min_alt_frac 0.9 402 13 26 9

#CO92 
errors (n=13)

#verified 
SNPs (n=26)

Vital SNP
(n=9)

#called 
SNPs
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Table 4. Simulated data results

Method Data type
NASP simulated reads 3202 232 67 3501 98.50%
NASP simulated assemblies 3269 232 N/A 3501 98.50%
Parsnp simulated assemblies 3492 unknown N/A 3492 95.60%

ISG simulated reads 3258 126 8 3392 92.40%
ISG simulated assemblies 3266 235 N/A 3501 95.60%

SPANDx simulated reads 2132 unknown 116 2248 87.20%
CFSAN simulated reads 3290 unknown unknown 3290 95.30%

REALPHY simulated assemblies 3320 unknown unknown 3320 91.60%
kSNPv3 simulated assemblies 3304 unknown N/A 3304 91.90%
lyve-SET simulated reads 3460 unknown unknown 3460 95.80%

#called SNPs
SNPs in duplicated 

regions
Filtered 
SNPs

Total 
SNPs

Topologica
score
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