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Exome sequencing is becoming a standard tool for gene mapping of genetic diseases. Given the vast 
amount of data generated by Next Generation Sequencing techniques, identification of disease causal 
variants is like finding a needle in a haystack. The impact assessment and the prioritization of potential 
pathogenic variants are expected to reduce work in biological validation, which is long and costly. 
One of the possible approaches to determine the most probable deleterious variants in individual exomes 
is to use protein function alteration prediction. We propose in this paper to use a machine learning 
approach, the random forest to build a new meta-score based on five previously described scores (SIFT, 
Polyphen2, LRT, PhyloP and MutationTaster) and compiled in the dbNSFP database. 
The functional meta-score was trained on a dataset of 61 500 non-synonymous Single Nucleotide 
Polymorphisms (SNPs). The random forest method (rfPred) appears to be globally better than each of the 
classifiers separately or in combination in a logistic regression model, and better than a newly described 
score (CADD) on independent validation sets. 
RfPred scores have been pre-calculated for all the possible non-synonymous SNPs of human exome and 
are freely accessible at the web-server http://www.sbim.fr/rfPred/ 
 

Keywords: genetic variant prediction; random forest; deleteriousness score; sequence analysis; SNP  

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 20, 2016. ; https://doi.org/10.1101/037127doi: bioRxiv preprint 

http://www.sbim.fr/rfPred/
https://doi.org/10.1101/037127
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

 

1. Introduction 

Exome sequencing is a recent and important innovation for the exploration of patients affected by a 
genetic disease, in particular in situations when the other approaches have failed. The difficulty is often to 
find the disease causal variant(s), and it may be useful to focus on computational approaches like 
functional alteration predictors, to synthesize all available a priori information for variants prioritization 
before further functional studies. 
Many different methods have been developed and published over the past fifteen years, each of these has 
distinct advantages and disadvantages, but none can be considered as the gold standard 123.  The 
prediction scores of some of these methods have been compiled in the dbNSFP database for all known 
protein coding genome positions 4. Besides, Li and colleagues proposed to combine five of them in a 
logistic regression framework 5 in order to globally improve predictive performance in comparison with 
individual scores. 
The idea of this contribution is twofold. First, we propose to combine the scores of different functional 
predictors using a machine learning method (random forest) that should be more suited to the nature of 
the problem than the logistic regression framework of Li and colleagues 5. The performance of this method 
will be compared to the five models taken separately, to a logistic regression framework and to the 
recently published CADD method6. Second, we make available to the scientific community the pre-
calculated prediction scores of our approach for all possible missense SNPs in the human exome. 

 
2. Materials and Methods 

2.1 Data collection for model building  

First, we constructed a Single Nucleotide Variant (SNV) dataset with a status variable, taking values 
“neutral” or “deleterious”, in order to build the prediction model. For the deleterious variants, we used the 
OMIM database (Online Mendelian Inheritance in Man) 7 - 23/09/2001 version- available at 
https://main.g2.bx.psu.edu/library, which inventories variants and phenotypes associated with 
Mendelian diseases. It contains 9130 human genome variants using the hg19 map. These variants will be 
considered as deleterious. 
To build an assumed neutral variant set, we started with the 1000 genome database available via 
ANNOVAR 8 http://www.openbioinformatics.org/annovar/ (version from November 2010 updated in 
June 2011), which inventories the genetic data of supposed healthy subjects. Among these data, we 
selected the missense variants with the already existing hg19_avsift filter of ANNOVAR, and those with an 
allele frequency < 1% in the population (rare variants); their neutral nature is not obvious and 
corresponds to the reality with which researchers are faced. 
For each of these variants, a score has been attributed with the five following methods: SIFT (released 
August 2011) 9, Polyphen2 (HumDiv classifier model v2.1.0) 10, Mutation Taster (released March 2010) 11, 
LRT (released November 2009) 12 and PhyloP 13 thanks to the dbNSFP public database 
https://sites.google.com/site/jpopgen/dbNSFP. 4. This database contains all possible SNPs within human 
genome coding regions, which have been determined by the CCDS project 14, and for each of the 87 million 
SNPs, the scores of the five predictors have been pre-calculated and made available. The scores are used 
raw (directly calculated by the softwares) or processed such that the pathogenicity probability increases 
with increasing score.   
We have kept in this training dataset only variants with the five available scores, which can be reduced to 
6 254 deleterious SNPs and 55 223 neutral SNPs. 

2.2 Data Collection for external validation 

In order to evaluate the prediction model on independent datasets, we have used 2 general and 2 more 
precise datasets: 
 A published variant dataset – EXOVAR – already used to evaluate similar methods (available at 

http://statgenpro.psychiatry.hku.hk/limx/kggseq/download/ExoVar.xls) including both 4752 
neutral (from 1000 Genomes Project15, with a derived allele frequency <1%) and 5340 disease 
causing variations (with known effects on the molecular function causing human Mendelian diseases 
from the UniProt database) 16, but only 1740 neutral and 3601 disease causing variants not included 
in our learning dataset with all necessary scores available. 

 A validation dataset composed of 1100 pathogenic non-synonymous variations coming from ClinVar 
database (annotated as “Pathogenic”) and of 5412 variations coming from 1000 Genomes Project15 
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with a minor allele frequency between 5% and 20% , considered as non-deleterious and for which the 
5 predictors give a score. None of these variations are part of our learning dataset. 

Two more specific missense genetic variant datasets coming from two genes having many deleterious or 
polymorphic known variants: 
 The first one is the COL4A5 gene on the X chromosome which is composed of 51 exons making up a 

total length of 257kb. Many variants in this gene are implied in the Alport syndrome [MIM 301050], 
but SNPs without known disease association are also reported in public databases. After having 
discarded the SNPs included in our learning dataset, this first validation dataset contains: 

o 34 neutral variants coming from the dbSNP database – build 137 17, with  the “clinical 
significance” annotation in the database different from “probable pathogenic” 

o 168 deleterious variants coming from dbSNP database - build 137 also, annotated 
“probable pathogenic”, and from HGMD database (public version) 18. 

 The second analyzed gene is the COL7A1 gene on the chromosome 3 which is composed of 118 exons 
making up a total length of 32kb. Some variants in this gene are associated in the dystrophic 
epidermolysis bullosa [MIM 131750]. Our validation dataset contains: 

o 325 neutral variants coming from the dbSNP database – build 137, with the “clinical 
significance” annotation in the database different from “probable pathogenic” 

o 162 deleterious variants coming from dbSNP database – build 137 annotated “probable 
pathogenic” and the col7info database 19.  

2.3 Statistical method 

Relationships between the five scores on the training dataset were analyzed by computing the Spearman's 
rank correlation matrix. The meta-score rfPred was derived from the five individual scores using the 
predictions of a random forest model20.  
Briefly a random forest is based on a set of classification trees trained on a random subset of observations 
and variables of the complete dataset. Each tree votes for a given class, here either neutral or deleterious 
variant, and the final classification is based on the trees vote’s majority. In fact, more precise information 
is provided by the proportion of tree votes in favor of the deleterious class and it can be used as a 
credibility index of the classification. So we used this vote proportion as a predictive meta-score of 
functional alteration. 
We generated a random forest model composed of 5 000 trees based on two random scores among the 
five available for splitting at each tree node, using the model deviance as classification criterion. Each tree 
was trained against an equal sampling of 2000 variants of each class (deleterious and neutral). 
All the analyses were made with R software version 2.15.0, and in particular with the package named 
“randomForest” 2122. 

2.4 Statistical model evaluation 

To compare the predictors’ performances with the rfPred one, we have used the individual prediction 
scores (Polyphen2, SIFT, LRT, PhyloP and MutationTaster) coming from dbNSFPv2.0 23 and CADD scores 
computed via its web-interface6. We have then  computed the ROC curves and the areas under the curves 
of the different classifiers thanks to the R package “Hmisc”24 on the learning dataset and on the validation 
datasets. 
In order to have a more useful comparison between the classifiers, we have considered also two particular 
scenarii corresponding to the reality faced by molecular biologists: 
In the one hand, the classification model is used on a very long variants list coming directly from the 
exome alignment on the reference genome in order to establish a list a potentially pathogen variants. The 
purpose in this case is to keep all potentially deleterious variants and not to exclude any potential 
candidate. We favor in this case the sensitivity to the detriment of the specificity. 
In the other hand, a variant selection process has been made beforehand by other methods (typically 
existing methods in pipelines of next-generation sequencing platforms and/or prior knowledge about the 
genetic basis of the disease), and the classification model will be used in a second time to prioritize the 
work areas. The goal is to minimize false positives variant rates to concentrate biological efforts on 
variants with a high probability of pathogenicity. We thereby favor specificity.  
For these specific scenarii, partial AUC (Areas Under Curve) restricted to False Negative Rates < 10% for 

the first scenario and to False Positive Rates < 10% for the second one, as well as the ratio  
𝜕𝐴𝑈𝐶

𝑚𝑎𝑥⁡(𝜕𝐴𝑈𝐶)
 

(partial area index) have been calculated. 
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MutationTaster has not been evaluated on the ClinVar-1000Genomes dataset because a very large part of 
the variants have been used to train the method.  

2.5 Missing data handling 

For some exome positions, one or several pre-calculated scores were missing in dbNSFP 2.0 23. Because 
we wanted to be able to use rfPred even if one of the score is missing for a variant position, we have 
imputed the missing score value by a random forest approach implemented in the R package “yaImpute” 
25, based on a k-NN algorithm. We have used k=1 in our procedure. 

3. Results 

Spearman’s correlation matrix for the individual predictors is given in Table 1. It shows low to moderate 
correlation between scores (0.18 for the minimal and 0.66 for the maximal correlation) on the learning 
dataset, indicating that the information contained in the five prediction scores should not be completely 
redundant and that a combination of them could therefore be pertinent.  
 

 
Table 1: Spearman correlation coefficients matrices on learning dataset with OMIM deleterious variants and neutral 

variants with allele frequençy < 1% 

3.1 Model prediction performance 

The random forest prediction model (rfPred) has an AUC of 0,849 on the “Out of bag” learning dataset 
(unbiased AUC), whereas the best individual predictor on the same dataset, MutationTaster, obtains only 
0,804 of AUC. The simple logistic model meanwhile obtains a maximal AUC of 0,827, even if the AUC is 
computed on the totality of the sample used to build the model. About CADD, it reaches the AUC of 0,770. 
We can note that rfPred ROC curve lies above all the others on the whole curve. (Figure 1) 
The variable importance is measured in the rfPred model by the mean decrease in Gini coefficient.  
It is a measure of how each variable contributes to the homogeneity of the nodes and leaves in the 
resulting random forest. Each time a particular variable is used to split a node, the Gini coefficient for the 
child nodes are calculated and compared to that of the original node. The Gini coefficient is a measure of 
homogeneity from 0 (homogeneous) to 1 (heterogeneous). The changes in Gini are summed for each 
variable and normalized at the end of the calculation. Variables that result in nodes with higher purity 
have a higher decrease in Gini coefficient. 
Table 2 indicates that the two main predictors are Mutation Taster and SIFT scores for rfPred model. This 
is consistent with the layout of the observed ROC curves. 
 
 

Table 2: Variables importance in rfPred model 

Variable  
Mutation 

Taster 
SIFT PhyloP LRT Polyphen 2 

Mean Gini 
coefficient 
Decrease 

607 364 340 306 299 

  

Datasets  PhyloP SIFT Polyphen2 LRT MutationTaster 

Neutral Variants 
From 1000 genomes 
(Allele frequency < 

1%) 

PhyloP 1 0.28 0.43 0.6 0.47 
SIFT  1 0.58 0.28 0.32 
Polyphen2   1 0.45 0.47 
LRT    1 0.66 
MutationTaster     1 

       

Deleterious Variants 
From OMIM 

PhyloP 1 0.18 0.22 0.35 0.23 
SIFT   1 0.52 0.33 0.38 
Polyphen2     1 0.43 0.42 
LRT      1 0.53 

MutationTaster         1 
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Fig 1:  Classifiers’ ROC curves on learning dataset 

 
 
In order to address the two above named specific situations (avoiding missing a potential deleterious 
variant, or on the contrary, identifying only variants with a very high pathogenicity probability), we have 
calculated a partial AUC for very high sensitivity or specificity (between 0,9 and 1), and compared these 
results with the partial area index. These indices can be interpreted as the mean sensitivity (specificity) of 
each classifier for the studied specificities (sensitivities)26.  
In Table 3, we can see that rfPred has a higher index than the logistic regression model on the learning 
dataset in both cases. 
 

Table 3: Partial Area Index calculated on the learning dataset 

Models  
rfPred 
(OOB*) 

Logistic 
regression 

CADD 
Mutation 

Taster 
SIFT Polyphen 2 

Sensitivity 
between  
0,9 and 1 

0,316 0,285 0,246 0,241 0,197 0,220 

Specificity 
between  
 0,9 and 1 

0,414 0,375 0,196 0,311 0,202 0,210 

*OOB = Out of bag data 

3.2 Model Validation on independent data 

 On the four validation datasets, each time rfPred is in par with the best performing predictors (Figure 2).  
The rfPred AUC is 0,90 on EXOVAR dataset (vs 0,84 for Polyphen2 and 0,86 for Mutation Taster), of 0,86 
on COL7A1 (vs 0,85 for Polyphen2), of 0,95 on COL4A5 (vs 0.946 for SIFT). On the ClinVar-1KG validation 
set, rfPred is clearly more accurate than the logistic regression framework. Although the most reliable 
predictor seems to be Mutation Taster on the EXOVAR dataset, on the two specific gene-based validation 
datasets, SIFT and Polyphen2 give better results (Table 4). The strength of rfPred is that in all these 
datasets, it is the only one to remain among the most accurate ones. 
If we consider now the partial AUC for high sensitivity or high specificity, the rfPred method is especially 
effective to detect disease causing variants with a minimum of false positives (high specificity). The 
logistic regression model outperforms the rfPred model for partial AUC with high sensitivity in two 
datasets from the four. 
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Table 4: Models comparison on the different validation datasets 

Models rfPred Logistic 
regression 

Mutation 
Taster 

SIFT Polyphen 2 CADD 

Total AUC (EXOVAR) 0,90* 0,90 0,86 0,80 0,85 0,84 

Partial AUC Index 
Sensitivity between 

0,9 and 1  (EXOVAR) 
0,46 0,50 0,41 0,25 0,37 0,39 

Partial AUC Index 
Specificity between 

0,9 and 1 (EXOVAR) 
0,58 0,55 0,45 0,22 0,39 0,31 

Total AUC (ClinVar-1KG) 0,91 0,82 NA 0,58 0,76 0.83 

Partial AUC Index 
Sensitivity between 

0,9 and 1  (ClinVar-1KG) 
0,52 0,48 NA 0,02 0,14 0.41 

Partial AUC Index 
Specificity between 

0,9 and 1 (ClinVar-1KG) 
0,52 0,35 NA 0,20 0,34 0.40 

Total AUC (COL4A5) 0,95 0,95 0,92 0,95 0,94 0,87 

Partial AUC Index 
Sensitivity between 
0,9 and 1  (COL4A5) 

0,72 0,72 0,53 0,75 0,70 0,66 

Partial AUC Index 
Specificity between 

0,9 and 1  (COL4A5) 
0,73 0,71 0,74 0,62 0,63 0,13 

Total AUC (COL7A1) 0,86 0,84 0,76 0,83 0,85 0,75 

Partial AUC Index 
Sensitivity between 
0,9 and 1 (COL7A1) 

0,29 0,40 0,21 0,28 0,36 0,26 

Partial AUC Index 
Specificity between 
0,9 and 1 (COL7A1) 

0,48 0,30 0,16 0,31 0,50 0,18 

*Figures in bold are corresponding to the best result of the row 
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Fig 2: ROC curves on validation datasets for best classifiers 

A: EXOVAR validation set, B: ClinVar – 1Kg validation set, C: COL4A5 validation set, D: COL7A1 validation set (LRT and 
PhyloP are not shown because their ROC curves are below the other ones) 

 

4. Discussion and Conclusion 

The protein function alteration prediction of a genetic SNP variant located on a coding DNA domain is a 
real challenge today. Many parameters should be taken into account, more or less bounded to each other, 
and the existing pathogenicity prediction methods give complementary information. The added value of 
combining several existing predictors is well established.  
Although a logistic regression framework has already been proposed and seems to improve the accuracy 
of the five prediction scores, we have chosen a classification model based on a machine learning approach 
(random Forest) so that the method can take into account the nonlinear part of the link between variant 
pathogenicity and their prediction scores, and can model complex interactions between them. Such 
interactions would be complicated to define within a classical multiplicative model framework 
(Supplementary Data). The resulting rfPred model seems not only to be more accurate than the logistic 
regression framework already proposed and the CADD score for missense variants, but is also easily 
available to the scientific community. 
rfPred is built with 5 000 trees, which was found to be the best compromise between complexity and 
accuracy on our training dataset; with 10 000 trees, the classification errors do not decrease and the 
forest stability does not increase anymore significantly (data not shown).  
Concerning the learning dataset we have deliberately chosen to work with the neutral variants which have 
a frequency < 1% in the 1000 Genomes Project. Indeed, more frequent variants are easily excluded from 
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sets of possible causal variants in monogenic diseases without resorting to any statistical tool. According 
to us, the added-value of prediction methods for monogenic diseases appears precisely when a high 
number of variants remain potentially pathogenic even after filtering on the minor allele frequency in the 
general population. Our model is intentionally built on the more challenging dataset in term of 
classification; the implicit hypothesis is that the genetic variants with a frequency higher than 1% in the 
population are more often correctly classified as neutral by function alteration predictors. We have 
checked this hypothesis in comparing the rfPred scores distribution according to allele frequency of 
neutral variant (Supplementary data) and seen that the neutral variants with a MAF > 1% have globally 
lower rfPred scores than the rare neutral SNVs. 
rfPred has been compared with other classification models coming from machine learning or statistical 
learning communities as Support Vector Machine (SVM) or boosting technique 20. A recent example of 
such a tool is the CADD method 6, and rfPred seems really more performant on our different datasets. 
CADD offers the great advantage to provide scores for all the possible Single Nucleotide Variants of the 
human reference genome and not only for coding variants, but in the particular field of missense single 
nucleotide variations, it does not seem to be the most accurate one. 
It could be interesting to add other prediction scores in our composite model, in particular those which 
have demonstrated a very good accuracy in particular contexts, like Mutpred 27 or SNP&GO 28. The 
recently releases of dbNSFP v2 introduce a few others predictors which could be used as well. 
Another following step could be to integrate such a model in a more complex tool like ANNOVAR or 
VAAST 2.0 29 which allows finding candidate genes from phenotypically homogeneous exomes. VAAST 2.0 
enables to join several approaches: the approach linked to the variant prioritization based on the amino-
acid substitution (those which led us to develop rfPred), and the association analysis approach, based on 
the comparison between cases and controls. In the unified likelihood model of the tool, the variant 
prioritization is taken into account through an approach based on a conservation measurement 
PhastCons; a variant prioritization model like ours could further improve this tool, whatever its use in 
common diseases or in rare diseases. 
Finally, to decrease the request time, rfPred scores have been pre calculated for each possible variation in 
the human exome and are available in tabix files downloadable at http://www.sbim.fr/rfPred. A R 
package downloadable on Bioconductor.org queries the data files stored directly on the server website, or 
locally downloaded. For a query of 200 variations scores, the request time is about 1s if the data files are 
stored locally on the computer (versus 6s if the data files are on the website). It is also possible to 
download the random forest model (in R.Data format) to compute the rfPred scores directly from the five 
LRT, SIFT, Polyphen2, PhyloP and MutationTaster scores. 
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