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Abstract 

 

The complexity of cancer signaling networks limits the efficacy of most single agent 

treatments and brings about challenges in identifying effective combinatorial therapies. 

Using chronic active B cell receptor (BCR) signaling in diffuse large B cell lymphoma 

(DLBCL) as a model system, we established a computational framework to optimize 

combinatorial therapy in silico. We constructed a detailed kinetic model of the BCR 

signaling network, which captured the known complex crosstalk between the NFκB, 

ERK and AKT pathways; and multiple feedback loops.  Combining this signaling model 
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with a data-derived tumor growth model we predicted viability responses of many single 

drug and drug combinations that are in agreement with experimental data. Under this 

framework, we exhaustively predicted and ranked the efficacy and synergism of all 

possible combinatorial inhibitions of eleven currently targetable kinases in the BCR 

signaling network. Our work established a detailed kinetic model of the core BCR 

signaling network and provides the means to explore the large space of possible drug 

combinations. 

 

Author Summary 

Using chronic active B cell receptor (BCR) signaling in diffuse large B cell 

lymphoma(DLBCL) as a model system, we developed a kinetic-modeling based 

computational framework for predicting effective combination therapy in silico. By 

integrative modeling of signal transduction, drug kinetics and tumor growth, we were 

able to directly predict drug-induced cell viability response at various dosages, which 

were in agreement with published cell line experimental data. We implemented 

computational screening methods that identified potent and synergistic combinations in 

silico and validated our independent predictions in vitro. 

	
  

Introduction 

 

The activation of intracellular signaling pathways in response to environmental stimulus 

leads to important cell decisions such as proliferation. The amplitude and duration of 

pathway activation are precisely and robustly controlled by complex regulatory loops to 
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maintain cellular homeostasis. In cancer, activating mutations or deletion of signaling 

repressors frequently result in sustained and exaggerated pathway activation that drives 

uncontrolled tumor survival and proliferation. Targeted therapies that use small 

molecule inhibitors to repress specific signaling pathway members, e.g. kinases, can 

directly block oncogenic pathway activation and lead to tumor cell death. These 

targeted therapies are expected to provide improved efficacy and reduced toxicity 

compared to chemotherapy.    

 

However, clinical application of targeted therapy is facing several challenges such as 

low response rate and frequently acquired drug resistance. The limited efficacy of single 

agent targeted therapy is at least partially due to pathway crosstalks and compensatory 

circuits within signaling networks targeted by these agents[1]. Crosstalks and 

compensatory circuits allow signals to bypass drug inhibition and reactivate downstream 

effectors. By simultaneously repressing multiple nodes in a signaling network, 

combination therapy has the potential to completely extinguish oncogenic signaling and 

induce more potent and durable treatment response. Thus, novel drug combinations 

where two or more drugs work cooperatively to suppress corrupted signaling networks 

need to be identified to achieve maximum therapeutic efficacy. The complexity of 

signaling networks makes it difficult to simply guess which combinations will be effective 

and synergistic and which ones will not. Moreover, given the large number of possible 

drug combinations against complex signaling networks, comprehensive experimental 

screening – including exploration of multiple dosages – is not practically feasible.  
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Besides, results acquired from such screening may be specific to the cell line tested, 

thus lacking general applicability to highly variable primary tumors found in patients.  

 

Computational models of signaling networks that can accurately reconstruct signaling 

dynamics in silico may represent a useful alternative to experimental screening and 

trial-and-error experimental investigation. Once proven reliable, these models can be 

used to exhaustively test the efficacy of a large number of single drug and drug 

combinations by quantifying signaling output under corresponding network perturbations. 

Even though computational modeling has been widely used to study the dynamics of 

signaling network in the past decades, the development of cancer signaling models and 

its application to predicting effective combinatorial therapies is still lacking. Here we 

demonstrate the feasibility of this approach using chronic activation of B cell receptor 

(BCR) signaling in diffuse large B cell lymphoma (DLBCL) as a model system. We 

adopted a systems biology approach and established a computational framework to 

optimize anti-DLBCL combinatorial therapy in silico. The proposed approach is broadly 

applicable and can be used for other malignancies driven by aberrantly active signaling 

pathways. 

 

The deregulation of B cell receptor (BCR) signaling is central to the pathogenesis of 

many B cell malignancies. It is especially central in the activated B cell-like subtype of 

diffuse large B cell lymphoma (ABC-DLBCL). ABC DLBCLs exhibit chronic active BCR 

signaling, and are addicted to constitutive activation of downstream survival and 

proliferation signals such as NFκB [2]. It has recently been found that a subset of the 
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germinal center B cell like(GCB) subtype of DLBCLs are also dependent on BCR 

signaling through activation of the PI3K/AKT pathway [3]. Multiple small molecule 

inhibitors against BCR signaling were developed and proved effective in killing BCR-

dependent DLBCLs in vitro and in vivo [4,5,6]. However when tested in clinical trials, 

single agent treatments again demonstrated limited responsiveness and efficacy[7], 

suggesting an urgent need for the design of effective combination therapies.  

 

In this work, we present a kinetic modeling-based computational framework for 

predicting and optimizing combinatorial therapy against chronic active BCR signaling 

(Fig 1). We constructed a detailed kinetic model of the BCR signaling network 

parameterized by published signaling responses and protein concentrations.  

Mathematical models of proximal BCR signaling and downstream transcriptional 

network have been reported [8,9,10].  But to our knowledge, this is the first kinetic 

model to reconstruct the entire core BCR signaling network in silico. Using published 

drug response data in a BCR signaling-dependent cell line, we trained a tumor growth 

model which in combination with the kinetic model allowed us to simulate viability 

response upon various targeted treatments. Under this framework, we exhaustively 

tested the efficacy and synergism of all possible combinations of inhibition of eleven 

currently targetable kinases in the BCR signaling network. We discuss how these 

results pave the way for the discovery of effective drug combinations.  
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Fig 1.  Outline of the approach taken in the present study. The central BCR signaling 

network was constructed based on validated protein-protein interactions from 

experimental literature. Parameters of molecular reaction kinetics were estimated from 

phosphorylation time course data and protein concentrations were retrieved from 

MOPED protein expression database. A phenotypic tumor growth model was trained on 

cell viability assays of inhibitor treatments to link signaling response to viability outcome. 

In the end, simulation of the signaling model in combination with the tumor growth 

model was conducted to optimize treatment strategy.  The model’s prediction was 
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compared to published drug response data and new prediction-driven hypotheses were 

tested independently in vitro.  

 

Results 

 

Kinetic modeling of BCR signaling network reproduces normal BCR signaling in 

silico 

 

We first curated the central BCR signaling network by gathering experimentally 

validated protein-protein interactions from literature. The reconstructed network is 

shown in Fig 2, and includes three major signaling pathways downstream of BCR, 

namely NFκB, PI3K/AKT and RAF/RAS/ERK. We chose to include these three 

pathways because they have been reported to closely regulate cell survival and 

proliferation in B cells and B cell malignancies [11]. Antigen-induced BCR crosslinking 

allows SRC family kinases, mainly LYN, to phosphorylate the immuno-receptor tyrosine 

based activation motifs (ITAMs) of the intracellular BCR subunits Igα (CD79A) and 

Igβ (CD79B)[12].  Dually phosphorylated ITAM motifs then recruit SYK and activate it 

via tyrosine phosphorylation[13].  Activated SYK phosphorylates adapter BLNK, which 

recruits BTK to the plasma membrane to facilitate its phosphorylation and subsequent 

activation by SYK and LYN[14]. Activated BTK further phosphorylates PLCγ2 , which 

catalyzes the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P
2
) into 

diacylglycerol (DAG) and inositol trisphosphate (IP
3
)[15].  DAG together with elevated 

intracellular calcium induced by IP3 triggered endoplasmic reticulum (ER) calcium 
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release activates PKCβ[16], which then stimulates two diverge pathways that activate 

NFκB and ERK respectively.  Phosphorylation of CARD11 by PKCβ leads to the 

assembly of the CBM complex composed of CARD11, BCL10 and MALT1[17]. CBM 

acts as a scaffolding complex that facilitates IKK phosphorylation by TAK1, which in turn 

phosphorylates IKB and induces its degradation, releasing NFκB into the nucleus to 

elicit transcriptional activity[18]. Additionally, protease activity of MALT1 positively 

regulates NFκB signaling by cleaving and inactivating inhibitors against NFκB activation 

such as A20 and RELB[19,20]. In the meantime, PKCβ and DAG activate RASGRP, 

which triggers the canonical MAPK signaling cascade, leading to eventual 

phosphorylation and activation of ERK[21]. On the other hand, SYK and LYN 

phosphorylate BCAP and CD19 respectively, which activate PI3K by membrane 

recruitment[22,23]. PI(3,4,5)P
3 synthesized by PI3K further facilitates PDK1 catalyzed 

AKT phosphorylation by binding to both proteins via their plextrin homology (PH) 

domains[24].  Importantly, LYN negatively regulates PI3K signaling by activating SHIP1, 

which hydrolyzes PI(3,4,5)P
3
  into PI(4,5)P

2
[25].  
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Fig 2.  The central BCR signaling network constructed from literature. Antigen binding 

induces BCR aggregation and subsequent phosphorylation, which further triggers a 

complex signaling cascade initiated by phosphorylated LYN and SYK. The BTK-PLCγ2-

PKCβ pathway activates downstream NFκB and ERK through divergent paths, while 

membrane recruitment of PI3K leads to AKT activation. Pathway crosstalks and 

feedback regulations are highly abundant in the network.   
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Besides major signal transduction pathways as described above, our model includes 

key regulatory interactions in the BCR signaling network such as pathway crosstalks 

and feedback loops. The PI3K pathway positively regulates NFκB and ERK signaling by 

enhancing BTK membrane recruitment via PI(3,4,5)P
3
 binding. In the meantime, it 

conversely attenuates ERK signaling via AKT catalyzed RAF phosphorylation[26].  It 

has recently been found that MEK negatively regulates PI3K/AKT signaling by recruiting 

PTEN to the plasma membrane [27], which dephosphorylates PI(3,4,5)P
3
 into PI(4,5)P

2
. 

BTK amplifies BCR signaling by two coupled positive feedback loops. It recruits PIP5K 

to the plasma membrane, which produces PI(4,5)P
2
 to sustain both PI(3,4,5)P

3
 

synthesis and PI(4,5)P
2
 hydrolysis[28]. Additionally, BTK phosphorylates BCAP, further 

facilitating the membrane recruitment of PI3K[23]. The activity of BTK is attenuated by 

active PKCβ  via disruption of its membrane localization, constituting a negative 

feedback loop[29]. Besides, another indirect feedback from PKC to SYK was added into 

the model as knockdown of PKCδ  was shown to mediate hyperphosphorylation of 

SYK[30]. Furthermore, multiple negative feedback loops exist within the MAPK signaling 

cascade to fine-tune its activation amplitude and duration[31].  

 

Instead of directly applying mass action kinetics to characterize elementary reactions in 

the network, we chose to adopt more streamlined mathematical representations derived 

from mass action law under reasonable assumptions (see Materials and Methods).  

This strategy greatly reduced the number of variables, equations and most importantly 

parameters required in the mathematical model. As elementary protein-protein binding 

reactions generally reach equilibrium within seconds, we modeled them by deriving the 



steady-state relationships from mass action law (see Materials and Methods).  For 

enzymatic reactions such as phosphorylation or dephosphorylation, we adopted a 

classic Michaelis-Menten kinetic framework.  To parameterize the model, we first 

retrieved protein concentrations in B lymphocytes quantified by mass-spectrometry from 

the MOPED protein expression database [32]. We modeled LYN and SYK as two 

independent input signals that triggered a downstream response. Their activation 

kinetics were approximated by double exponential functions (see Materials and 

Methods) where parameters in the functions were estimated by fitting to the 

phosphorylation time course data[33]. We then used genetic algorithms to optimize the 

remaining 72 kinetic parameters within bounded biologically reasonable ranges (S1 

Table) by minimizing residual sum of squares between simulated phosphorylation time 

courses and published western blot data[33]. Experimental data and simulated results 

were each normalized to their respective maximum value for comparison. 10 sets of 

kinetic parameters were identified from 5000 independent runs that fit almost equally 

well.  Simulated trajectory under these 10 parameter sets together with phosphorylation 

time course data are shown in Fig 3A. Parameter sensitivity analysis was performed as 

described in Materials and Methods (S1 Fig). Of note, we were independently able to 

find 39 kinetic parameter values from the literature, and we compared these values with 

the range of estimated 10 parameter sets (Fig 3B). By shuffling the literature-retrieved 

parameters 10,000 times, we found that the literature-retrieved parameter values fall 

within the estimated parameter ranges significantly more often than random 

(p=0.05)(Fig 3C, 3D). We note however that many discrepancies were found between 

estimated and published parameters (Fig 3B). We speculate that many of these 



discrepancies are likely due to in vitro nature of the experiments used to quantify kinetic 

parameters. 

 

 

 

Fig 3.   Simulation of normal BCR signaling and estimation of kinetic parameters. (A) 

Simulated trajectory of ten parameter sets in comparison with published 

phosphorylation time course data. (B) Comparison between literature-retrieved 

parameter values with simulation-estimated parameter ranges. Box-plot indicates the 

simulation-estimated parameter ranges while red dots represent literature-retrieved 

parameter values. (C) Shuffling of the literature-retrieved parameters 10,000 times to 
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obtain a distribution of number of parameters that would fall within simulation-estimated 

parameter ranges by chance. (D) Empirical cumulative distribution of the number of 

parameters that would fall within simulation-estimated parameter ranges by chance.  

 

 

Combining BCR signaling model with a tumor growth model predicted cell 

viability response upon single and combinatorial drug treatments in a BCR 

signaling-dependent ABC-DLBCL cell line  

 

We next sought to simulate the effect of various small molecule inhibitors on ABC 

DLBCL cell viability and to compare simulation results with published drug response 

data in a BCR signaling dependent ABC-DLBCL cell line TMD8 [34]. We selected TMD8 

because of the extensive drug combinatorial data available on this cell line[34]. We first 

made several modifications to the model to accommodate the differences between 

normal BCR signaling and aberrant BCR signaling in ABC-DLBCL. Instead of applying a 

temporal upstream stimulus, we assumed constitutive LYN and SYK phosphorylation as 

observed both in ABC DLBCL cell lines and in primary DLBCL patient samples [2,35] 

(see Materials and Methods). Additionally, we accounted for genetic alterations in 

members of the BCR signaling network in TMD8 compared to normal B cells. 

Specifically, TMD8 was shown to carry CD79B mutation that attenuates LYN activity by 

approximately 80%[2]. Correspondingly we decreased the enzymatic activity of LYN in 

the model to the same extent (see Materials and Methods).  

To predict cell viability response from signaling output, we formulated a tumor growth 



model in which the growth rate of tumor cells is dependent on the weighted sum of the 

three downstream survival and proliferation signals NFκB, ERK and AKT through a Hill 

function (see Materials and Methods).  Similar formalism has been used to 

characterize tumor growth of ERBB-amplified breast cancer driven by ERK and AKT 

activation [36]. We used published viability response data in TMD8 to parameterize the 

tumor growth model, where cells were treated with IKK, AKT and MEK inhibitors at 

multiple dosages[34]. Specifically, using the median effect equation [37], we calibrated 

the percent activity left on the targeted kinase for each inhibitor at a given dosage based 

on the inhibitor’s IC50 value (see Materials and Methods, S2 Table). We then reduced 

the activity of the targeted kinase to the same level in the model and simulated steady-

state signaling output. Parameters in the tumor growth model were estimated by 

minimizing residual sum of squares between predicted viability response and 

experimental data.  

We first simulated single drug viability response of inhibitors covering the NFκB, 

PI3K/AKT and MAPK pathway and compared to experimental data. We observed that in 

silico simulation with the BCR signaling model and the tumor growth model 

recapitulated the viability response of the three training single drug response, namely 

IKK, AKT, MEK inhibitors [34] (Fig 4A). This is not surprising since the growth model 

was fitted based on training data. As independent predictions, we also simulated drug 

response of inhibitors targeting other kinases in the network, e.g. CAL-101 against PI3K, 

Ibrutinib against BTK, and found that predicted viability response matched favorably 

with TMD8 drug response data[34]  (Fig 4B). At the same time, we found simulated 

viability response of SYK inhibition to deviate from experimental data(grey line), yet this 



discrepancy can be partially rescued by adding a negative feedback from SYK to 

LYN(blue line). It has been reported that SYK functions as a negative regulator of BCR 

signaling by phosphorylating Ig-α[30,38,39]. Since Ig-α primarily interacts with LYN, we 

assumed in the model that SYK indirectly negatively regulates LYN.  

 

 

Fig 4.    Training and prediction of single drug viability response in ABC DLBCL cell line 

TMD8. (A) Tumor growth model parameterization using single drug viability response of 

inhibitors targeting NFκB, AKT and MEK. Gray dashed lines correspond to simulation 

results of model without SYK to LYN negative feedback, while brown dashed lines 
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correspond to simulation results of model without PI3K-NFkB crosstalk. (B) Single drug 

viability response of inhibitor targeting various kinases against BCR signaling network.  

 

Beyond single drug viability response, we also simulated combinatorial drug response 

of Ibrutinib in combination with various other kinases targeting the BCR pathway, and 

observed the predicted response contour to match favorably with experimental 

results(Fig 5). These results demonstrate that our model can correctly capture the 

interaction between inhibitors as well. 
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Fig 5. Combinatorial drug viability responses of ibrutinib in combination with additional 

inhibitors targeting BCR network intermediates were predicted and compared with 

experimental data.  

 

Overall, these results suggest that viability response of small molecule inhibitors 

targeting the BCR signaling network can be predicted via in silico simulation of the BCR 

signaling model in combination with the tumor growth model.  

 

Crosstalk between PI3K and NFκB pathway mediates efficacy of PI3K inhibition in 

TMD8 

In both the drug response data and model’s simulation, we observed that PI3K inhibition 

is significantly more effective at inhibiting tumor growth than blockage of its downstream 

effector AKT. A similar phenomenon was reported in other studies, where PI3K 

inhibition was shown to attenuate NFκB transcriptional activity[3,40]. We hypothesized 

that the efficacy of PI3K inhibition is primarily attributed to suppression of NFκB 

signaling, which is mediated by upstream crosstalk between the PI3K and NFκB 

pathways. To test this hypothesis, we abolished the crosstalk between PI3K and NFκB 

by knocking out in silico PI(3,4,5)P
3
 -mediated membrane recruitment of BTK in the 

signaling model.  Under this condition we re-simulated the viability response of PI3K 

inhibition, which showed significant reduction compared to both experimental data and 

simulation with the full signaling model (Fig 4, brown line). This result supports the 



notion that the upstream crosstalk between PI3K and NFκB pathway is critical in 

mediating tumor growth inhibition by PI3K inhibitor. It also provides further rational 

support for the clinical use of PI3K inhibitors in DLBCL that are dependent in NFκB 

signaling[3,40].  

 

Computational optimization of targeted therapy against chronic active BCR 

signaling  

 

Using the above modeling framework, we sought to identify targeted therapies against 

the BCR signaling network that most effectively inhibit tumor growth. We exhaustively 

tested all drug pairs based on 11 small molecule inhibitors currently available that target 

various kinases in the network, yielding 55 treatment strategies in total.  In each 

scenario viability response was simulated at 10 by 10 virtual dosages where each 

targeted kinase was inhibited at 0% to 99% evenly spaced in log10 space. We 

calculated area under the combinatorial viability response surface as an overall 

indicator of drug combination potency. The smaller the value is, the more potent the 

drug target combination is(Fig 6A). We found that under the same inhibition potency, 

efficacy of different treatment strategies was highly variable, ranging from almost no 

growth inhibition to up to 80% reduction (Fig 6B). Specifically, inhibiting downstream of 

the NFκB signaling pathway, especially through MALT1 and IKK inhibitor, exhibited the 

most prominent efficacy, and combined MALT1 and IKK blockage yielded highest tumor 

growth inhibition. In comparison, tumor cell growth was relatively insensitive to blockage 



of MAPK pathway in our simulations.  In summary, this computational screening result 

suggests that various treatment strategies against a signaling network can yield highly 

variable therapeutic responses and that in silico simulation can help identify targets that 

confer intrinsic vulnerability.  

 

 

Fig 6.  Computational optimization of treatment strategy against chronic active BCR 

signaling (A) Viability response surface of three drug target combination. (B) Barplot of 

simulated viability response of all possible dual inhibition on 11 kinases in the BCR 
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signaling network that are currently targetable. Binary codes on the bottom indicate the 

treatments applied(black represents targeted inhibition).  

 

We then sought to identify drug combinations that are synergistic via computational 

simulations. For a given two-drug combination, the combinatorial drug response at 10 

by 10 virtual dosage as discussed above were used to estimate mode of drug 

interaction under the Bliss independence model (see Materials and Methods, Fig 7A). 

Computational screening predicted dual blockage of LYN and SYK as the most 

synergistic combination. To test this prediction, we treated TMD8 cells with LYN 

inhibitor Dasatinib and SYK inhibitor R406, at multiple doses. Comparing combinatorial 

drug response data to theoretical additive response predicted by the Bliss 

independence model (see Materials and Methods), we confirmed synergism between 

Dasatinib and R406 (Fig 7B).   



 

Fig 7. (A) Modes of interaction of all pairwise inhibitions under Bliss Independence 

model.  β<1, β=1, β>1 correspond to synergism, additive and antagonism respectively. 

(B) In vitro validation of predicted synergistic drug combination in TMD8. R406 and 

Dasatinib were inhibitors against SYK and LYN respectively.    
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It is increasingly acknowledged that aberrant BCR signaling plays a central role in the 

development and maintenance of many B cell malignancies[41,42].  Though a large 

panel of small molecule inhibitors against BCR signaling have been developed, rational 

methodologies that can predict effective combinatorial therapy and guide the design of 

specific treatment strategy in individual patients have been lacking. We aimed to bridge 

this gap by constructing the first kinetic model of the core BCR signaling network and 

using this model to investigate targeted therapy against BCR signaling. We showed that 

simulations with the signaling model reconstructed dynamics of normal B cell signaling 

in silico. Combining the signaling model with a data-trained tumor growth model 

successfully predicted viability response of multiple drug combinations, and identified 

novel synergistic drug combinations such as LYN and SYK inhibitor. 

 

As one of the most important signaling event in B cells, antigen triggered BCR activation 

has been intensively studied during the past decades. Detailed molecular interactions in 

the key signal transduction pathway as well as regulatory feedback loops were 

experimentally identified, providing a unique opportunity to establish a detailed kinetic 

model of the BCR signaling network. Prompted by the rich information available in 

literature, we attempted to establish the first kinetic model to quantitatively characterize 

BCR signaling in silico. The model is able to reproduce major kinetic features of BCR 

signaling observed in experiments. However, we note that simplifications and 

assumptions in the model may call for further improvements. First of all, how antigen 

recognition leads to proximal BCR activation, namely phosphorylation of BCR ITAM 

motif, LYN and SYK, was not addressed in the model. Integration of proximal BCR 



signaling with downstream signaling model characterized here can potentially provide a 

more comprehensive understanding of how different strengths of antigen stimulus might 

lead to various downstream effector activation and distinct cell fate decision. Critically, a 

negative feedback loop between downstream Ca2+ response and upstream 

phosphatase activity mediated by reactive oxygen species (ROS) may play an important 

role in determining the threshold and amplitude of BCR response[43]. Furthermore, we 

did not account for transcriptional regulation of key elements in the BCR signaling 

network that may influence long term signaling response. Expression of BLNK, CD79A, 

SYK, BTK, and CD19 is transcriptionally repressed by BLIMP-1, which is activated 

during germinal center to plasma B cell differentiation triggered by BCR activation[44], 

Additionally, chemical inhibition of SYK was shown to induce compensatory 

upregulation of SYK expression mediated by FOXO1[3]. Thus, these transcriptional 

feedbacks that attempt to upregulate expression of components in the BCR signaling 

network upon signaling attenuation may mediate resistance to BCR-targeted therapy to 

some extent.  

 

Oncogenic activation of intracellular signaling pathways drives tumor survival and 

proliferation by engaging regulators that antagonize apoptosis or drive cell cycle 

progression.  In the BCR signaling network, NFκB transcribes anti-apoptotic factors 

such as BCL2 and BCR-xL[45] and cell cycle regulators such as cyclin D2[46]. 

Conversely, AKT and ERK indirectly repress pro-apoptotic factors, e.g., BIM and BAD 

as well as negative regulators of CDKs such as p27kip1 and p21cip1[47,48].  A 

mechanistic characterization of how NFκB, AKT and ERK signal influences tumor 



survival and proliferation requires deep quantitative knowledge of apoptosis and cell 

cycle regulation. In this model, we addressed this question by parameterizing a 

phenotypic tumor growth model from drug response data in TMD8. This 

parameterization revealed TMD8 to be primarily dependent on NFκB signaling. Under 

this condition, dual inhibition of IKK and MALT1, two major kinases in the downstream 

of NFκB signaling cascade, was predicted to have highest growth inhibition efficacy. 

However, we note that the dependency of various survival and proliferation signals may 

vary from patient to patient and even dynamically evolve as tumors develop. Indeed, 

some GCB subtype DLBCL cell lines have been shown to be more sensitive to AKT and 

ERK inhibition than ABC-DLBCLs [49,50]. When one pathway is blocked by targeted 

therapy, tumors may adapt by utilizing alternative pathways that remain constitutively 

active. Consequently, simultaneous repression of all oncogenic pathways, e.g., through 

dual inhibition of BTK and PI3K, or sequential administration of agents targeting various 

pathways may ensure more durable response. Monitoring tumor growth and probing 

signaling dependency for longer periods would help establish mathematical models that 

can optimize for long- term benefits. 

 

Besides DLBCL, aberrant BCR signaling was shown to play a role in other B cell 

malignancies such as chronic lymphocytic leukemia(CLL)[51] and  mantle cell 

lymphoma(MCL)[52]. In Phase II studies of BTK inhibitor ibrutinib, 71% and 68% overall 

response rate(ORR) was reported in CLL and MCL patients respectively[53], suggesting 

targeting BCR signaling as promising treatment strategy. Correspondingly, predictions 



reported in this work may be of general guidance for CLL and MCL targeted treatment 

as well.  

 

Materials and Methods 

 

Cell viability assay 

In the published drug response experiment[34], cells were treated at time 0 and 

incubated for 48 hours. Viability response was normalized to the plate positive 

control(bortezomib) and negative control(DMSO) as previously described[34]. This 

normalized data was used for comparison with simulation results. 

 

For our independent validation of synergistic drug combinations, the DLBCL cell line 

TMD8 was grown in medium containing 90% RPMI and 10% FBS, supplemented with 

L-glutamine, HEPES and penicillin and streptomycin. R406 and Dasatinib were 

purchased from Selleck chemicals. Cells were grown at concentrations sufficient to 

keep untreated cells in exponential growth during the time of drug exposure. Cells were 

treated with 6 doses of each drug or combination in triplicate. Drug combinations were 

administered in constant ratio. Cell viability was determined by an ATP luminescent 

method (CellTiter-Glo, Promega). Luminescence was measured with the Syngery4 

microplate reader (BioTek). Cell viability in drug-treated cells was normalized to vehicle 

treated controls. 

 

Kinetic model of BCR signaling network 



Since protein-protein binding is in general a very fast process at the second time scale, 

we assumed that this type of reaction were under equilibrium and solved the steady-

state level analytically in the model. For a reversible protein-protein binding reaction,  

                                                                       k+ 

A+ B ⇌ AB 
                                                                       k- 

at steady-state, 

AB =
k!
k!

A B  

A]+ [AB = T!  

B]+ [AB = T!  

 

where [A] and [B] stand for the concentration of freed form of A and B; [TA] and [TB] 

stand for the total concentration of A and B; [AB] represents the concentration of the 

complex. By solving the above three equations, we have  

AB =
1+ K T! + T! − (1+ K( T! + T! ))! − 4K! T! T!

2K  

 

where 𝐾 = !!
!!

 , is the inverse of the dissociation constant Kd . 

 

Under a few circumstances where a protein may bind to more than one partner, the 

interactions were considered independently for simplification.  

For kinase catalyzed reaction, we adopted the classic Michaelis-Menten kinetics,  

 



𝑑𝑃
𝑑𝑡 =

𝑘!"# 𝐸 [𝑆]
𝐾! + [𝑆]  

 

where !"
!"

 is the rate of catalytic product formation, kcat is the turnover rate, Km is the 

Michaelis-Menten constant, [E] and [S] are concentration of enzyme and substrate 

respectively.  

 

Reactions in the BCR signaling network were written into corresponding equations 

according to rules discussed above. The full model consists of 28 state variables each 

representing concentration of a specific form of a protein species, depicted by 10 

steady-state equations and 18 ODEs (see S1 Text). Parameters of total protein 

concentrations are summarized in S3 Table. Kinetic parameters in the model are 

summarized in S4 Table. We performed parameter sensitivity analysis where each 

parameter was perturbed independently across four orders of magnitudes and viability 

response was recorded. We found overall robustness and identified the most sensitive 

parameters as parameters regulating main axis of the NFκB pathway (see S1 Fig).  

 

Input signal   

We imposed temporal pLYN and pSYK stimulus in normal BCR signaling modeled by 

two double exponential functions,  

𝑝𝐿𝑌𝑁 = 𝑓!"# ∗   𝑇!"# ∗ (𝐴 ∗ 𝑒!!/!! + 𝐵 ∗ 𝑒!!/!!) 

𝑝𝑆𝑌𝐾 = 𝑇!"# ∗   𝑇!"# ∗ (𝐶 ∗ 𝑒!!/!! + 𝐷 ∗ 𝑒!!/!!) 

 



where 𝑇!"# and 𝑇!"# are total concentration of LYN and SYK respectively.  𝑓!"# and 𝑓!"# 

are the phosphorylated fraction of LYN and SYK respectively. 𝑓!"#  and 𝑓!"#  were 

estimated by fitting to the phosphorylation time course data using genetic algorithm(Fig 

3). A,B,C,D 𝜏!, 𝜏!, 𝜏!, 𝜏!.were estimated by fitting to the normalized pLYN and pSYK time 

course.  

 

In contrast, we imposed constitutive pLYN and pSYK stimulus in simulations of 

diseased ABC-DLBCLs, with negative feedback from SYK and PKC respectively.  

𝑝𝐿𝑌𝑁 = 0.2 ∗ 𝑓!"# ∗ 𝑇!"#/(100 ∗ 𝑝𝑆𝑌𝐾) 

𝑝𝑆𝑌𝐾 = 𝑓!"# ∗ 𝑇!"#/(1+ 100 ∗ 𝑃𝐾𝐶) 

𝑇ℎ𝑒  0.2 coefficient is to account for LYN attenuation effect due to CD79B mutation in 

TMD8[2]. The parameter for negative feedback is estimated by fitting to single drug 

viability response. 

 

 

Tumor growth model 

Assume a tumor cell population is at exponential growth phase, 

𝑁 = 𝑁!𝑒(!!!!)! 

where 𝑟! is basal death rate, while growth rate 𝑟 is dependent on three downstream 

survival and proliferation signals NFκB, pAKT, and pERK (normalized by untreated 

control),  

𝑟 = 𝑟∗ ∗
(𝑤! ∗ 𝑁𝐹𝜅𝐵 + 𝑤! ∗ 𝑝𝐴𝐾𝑇 + 𝑤! ∗ 𝑝𝐸𝑅𝐾)!

𝐾! + (𝑤! ∗ 𝑁𝐹𝜅𝐵 + 𝑤! ∗ 𝑝𝐴𝐾𝑇 + 𝑤! ∗ 𝑝𝐸𝑅𝐾)!
 



Therefore, viability response defined as the ratio of cell number monitored under treated 

condition 𝑁 (for a time span of 𝑇) and untreated control 𝑁! can be predicted as following,  

𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑁
𝑁!

= 𝑒!
∗∗!( !!∗!"#$!!!∗!"#$!!!∗!"#$ !

!!! !!∗!"#$!!!∗!"#$!!!∗!"#$ !!
(!!!!!!!!)!

!!!(!!!!!!!!)!
) 

Parameters required in this function were trained with viability data of three single drug 

viability responses, namely NFκB, AKT and MEK inhibitor respectively. First the level of 

the three downstream survival and proliferation signals were predicted via simulation of 

the signaling model, and then input into the tumor growth functions to compute the 

viability output. Parameters were chosen by minimizing the sum of residuals between 

the viability prediction and experimental data. 

 

Drug kinetics 

To simulate an inhibitor’s effect at a given dosage, percent activity of the targeted 

kinase was calculated via the medium effect equation, 

%𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
1

1+ (𝑑𝑜𝑠𝑎𝑔𝑒𝐼𝐶!"
)!

 

The drug’s IC50 was taken from literature (S2 Table), while m was assumed to be 1 

under a first order approximation. Then the activity of the targeted kinase (i.e. 

parameters representing catalytic or activation rate of targeted kinase) was reduced to 

the corresponding percentage in the kinetic model. We list perturbed parameters in 

each simulated inhibitor treatment in S2 Table.  

 



Synergy quantification 

Under the Bliss Independence model, the additive effect of two inhibitors is computed 

as the multiplication of the effect of individual inhibitors,  

𝐹!" = 𝐹!"! ∗ 𝐹!"! 

where 𝐹!" indicates the fraction unaffected. To evaluate mode of interaction between 

two inhibitors, we computed viability response at 10x10 virtual dosages by varying the 

percent inhibition of each targeted kinase independently from 0% to 90% at 10% 

interval. These viability values were used to estimate parameter that minimizes the 

following metric,  

(𝐹!"!!!! − 𝛽 ∗ 𝐹!"!! ∗ 𝐹!"!!)
! 

where x,y are virtual dosages for inhibitor 1 and 2 respectively. 𝛽 < 1,𝛽 = 1,𝛽 > 1 

indicates synergism, additive and antagonism respectively.  
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