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Abstract

We study geometric properties of horopters defined by the criterion
of equality of angle. Our primary goal is to derive the precise geometry
for anatomically correct horopters. When eyes fixate on points along
a curve in the horizontal visual plane for which the vergence remains
constant, this curve is the larger arc of a circle connecting the eyes’
rotation centers. This isovergence circle is known as the Vieth-Müller
circle. We show that, along the isovergence circular arc, there is an in-
finite family of horizontal horopters formed by circular arcs connecting
the nodal points. These horopters intersect at the point of symmetric
convergence. We prove that the family of 3D geometric horopters con-
sists of two perpendicular components. The first component consists
of the horizontal horopters parametrized by vergence, the point of the
isovergence circle, and the choice of the nodal point location. The sec-
ond component is formed by straight lines parametrized by vergence.
Each of these straight lines is perpendicular to the visual plane and
passes through the point of symmetric convergence. Finally, we evalu-
ate the difference between the geometric horopter and the Vieth-Müller
circle for typical near fixation distances and discuss its possible signif-
icance for depth discrimination and other related functions of vision
that make use of disparity processing.
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1 Introduction

In the primate visual system, basic concepts of binocular projection include
the horopter and the Cyclopean eye. The horopter is the locus of points in
space seen singly by the two eyes. The Cyclopean eye is an abstract eye
that represents the visual axes of the two eyes by a single axis of perceived5

direction.
An eye model that still influences theoretical developments in binocular

vision assumes that the optical nodal point coincides with the center of rota-
tion for eye movements. This anatomically incorrect assumption was origi-
nally made about two centuries ago in the construction of Müller’s horopter,10

known as the Vieth-Müller circle (V-MC). The primary goal of our study
is to derive the precise geometry of binocular projections when the nodal
point is placed at the anatomically correct location.

It should be noted that there is no single horopter. The shape and form
of the horopter depends on its definition and the procedure used to measure15

it. We refer to Tyler (2004) for the historical and background information on
binocular vision, including a comprehensive discussion of the many different
notions of the horopter.

In particular, the empirical longitudinal horopter deviates from the V-
MC. This so-called Hering-Hillebrand horopter deviation can be accounted20

for by asymmetry in the effective spatial positions of the corresponding
elements in the two eyes. This deviation’s dependence on fixation distance
is consistent with fixed corresponding points in retinal coordinates (Hillis &
Banks, 2001).

The classical results of Helmholtz (1866) on the geometrical aspects of25

the horopter were recently extended by Schreiber and colleagues (2006). In
particular, because of the extended Listing’s Law’s torsional adjustments at
near distances, the horopter’s vertical component remains a straight line but
with increasing slant with increases in fixation distance.

Here we study the geometric horopter based on the equality of visual30

angles between the two eyes. The visual angle between two external points
is the angle subtended on the retina by the projecting rays toward those ex-
ternal points passing through the eye’s nodal point. We assume a simplified
eye model with coincident visual and optical axes and an optical nodal point
that is anterior to the eye’s rotation center. Further, we exclude cyclotorsion35

and assume that the eyes fixate on a single point in the visual plane. This
plane contains the visual axes of the two eyes and is assumed, for simplicity,
to be coplanar to the transverse (horizontal) visual plane of the head.

According to Müller (c. 1826), who was aware of Vieth’s geometrical work
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Figure 1: Eye model with the nodal point N and the eye rotation center C.
The nodal point is located on the principal visual axis at a distance 17 mm
anterior to the fovea f and the center of rotation is on the same axis at a
distance 11 mm anterior to the fovea. These values are taken from Gulick
and Lawson (1976).

in binocular vision, the horizontal horopter is the circle through the fixation40

point and the nodal points of the two eyes, usually referred to as the V-MC.
However, Müller assumed that the nodal point and the eye rotation center
are coincident. An important implication of Müller’s assumption is well-
known: When the fixation point changes along the V-MC, the vergence must
be constant and the circle unchanged. Thus, the V-MC is the isovergence45

circle.
Gulick and Lawson (1976) realized that Müller’s assumption should be

rejected because the anatomically correct locations of the nodal point and
the rotation center are different. Their geometric analysis of the horopter
used values averaged from several studies to locate the optical node of the50

primary visual axis to be at a point 6 mm anterior to the center of rotation
and 17 mm anterior to the fovea. Figure 1 shows a schematic eye diagram
with the nodal point N and the center of rotation C placed accordingly.
Unfortunately, as we demonstrate here, their geometric study is flawed.

We prove that, along the binocularly visible Vieth-Müller circular arc55

connecting the eye rotation centers, there is an infinite family of horizontal
horopters. They are parametrized by vergence, the specific fixation point
along the corresponding isovergence (Vieth-Müller) arc, and the choice of
the nodal point location. All the horizontal horopters for a constant ver-
gence intersect at the point of symmetric convergence on the V-MC. Fur-60

ther, there is an infinite family of vertical horopters formed by straight lines
parametrized by vergence. Each line is perpendicular to the visual plane
and passes through the point of symmetric convergence. Thus, the com-
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plete picture is an infinite family of 3D geometric horopters (GHs) with two
perpendicular components as described above. Further, we see that only the65

V-MC can be identified with the isovergence circle.
If we choose the location of the Cyclopean eye’s center to be on the

shorter isovergence circular arc midway between the eyes’ rotation centers,
then it follows that the fixation axis of the cyclopean eye is given by the
version. Then, the Cyclopean visual axis’ rotation is simply the average of70

the left and right eyes’ rotations. Our choice of the Cyclopean eye location
is motivated by this mathematical simplicity.

The main distinction between the GH and the V-MC is the relative dis-
parity’s dependence on eye position when the nodal point has the anatom-
ically correct location. We evaluate the difference between the GH and75

the V-MC for typical near fixation distances and discuss its significance for
depth discrimination and other related functions of vision that make use of
disparity processing.

2 The Horopter and Cyclopean Eye

In this section, we present a detailed geometric analysis of binocular pro-80

jections. Table 1 gives a summary of the notation and important geometric
facts used in this paper.

2.1 Geometric Formulation and Conjectures

We start with an introduction of the necessary notation and then discuss
the definition of the GH in the visual plane.85

The visual plane, according to our assumptions, contains the two eyes’
fixation points, nodal points, rotation centers and foveal centers. In Fig-
ure 2, the orientation of this plane is given by the right hand rule in the
two-dimensional coordinate system (X3, X1) such that the head-centered co-
ordinate system (X1, X2, X3) at origin O is positively oriented. For example,90

when the left and right eye fixate F, their positions are specified with re-
spect to the head coordinates by ϕR > 0 and ϕL > 0, respectively. Then,
by definition, the vergence is η = ϕR − ϕL.

The GH is the set of points in the visual plane subtending the same
angle with the visual axes of both eyes. However, we explicitly demand that95

this definition involves the anatomically correct location of the nodal point,
although later the proof is carried out for any nodal point located between
the pupil center and the rotation center. As shown in Figure 2, the fixation
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Table 1: Summary of the notation and important geometric facts used in
the text.

NR, NL Right, left eye optical nodes (nodal points)
OR, OL Right, left eye rotation centers
ρ, λρ Eye radius, nodal point distance anterior to ro-

tation center
(X1, X2, X3) Head-centered coordinate system

(X3, X1) Horizontal visual plane coordinate system
a Ocular separation
OC Cyclopean eye rotation center
F, eC Fixation point, fixation direction
S Point of symmetric convergence

ϕR, ϕL Right, left angles of fixation point relative to
head coordinates

η, γ Vergence, version angles
V-MC, GH Vieth-Müller circle (also referred to as isover-

gence circle), geometric horopter
CV, CH V-MC, GH centers
R, K V-MC, GH radii

αR (βR), αL (βL) Right, left visual angles for corresponding points
ψnP Binocular subtense of P for anatomically correct

nodal point
ψcP Binocular subtense of P for nodal point at rota-

tion center
δnP = ψnP − η Retinal disparity of P for anatomically correct

nodal point
δcP = ψcP − η Retinal disparity of P for nodal point at rotation

center
σnPQ = |δnP − δnQ| Relative disparity between P and Q in the case

of anatomically correct nodal point
σcPQ = |δcP − δcQ| Relative disparity between P and Q in the case

of nodal point at rotation center
�σn,12 = σnPQ,1 − σnPQ,2 Difference of relative disparities of a point for

two fixation points F1 and F2 in the case of
anatomically correct nodal point

�σnc = σnPQ − σcPQ Difference between relative disparities for
anatomically correct nodal point and nodal
point at rotation center

Fact 1 There is a unique circle containing three non-
colinear points

Fact 2 The center of a circle is at the intersection of
two lines, each passing perpendicularly through
the midpoint of the chords connecting two of the
three points on the circle

Fact 3 The Central Angle Theorem. The central angle
from two points on a circle is twice the circle’s
inscribed angle from those points

5

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2016. ; https://doi.org/10.1101/037069doi: bioRxiv preprint 

https://doi.org/10.1101/037069
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2: The GH is the curve containing the fixation point F and both
the right and left nodal points NR and NL. As explained in the text, all
binocularly visible points on the curve subtend the same angle η relative to
the two eyes’ nodal points (only one point P is shown).
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point is F and the nodal points are NR and NL for the right and left eye,
respectively.100

We show now that if a point P is on the GH, then the disparity αR−αL =

0. The angles αR and αL are the visual angles of the point P in the right
and left eye, respectively. It follows that the GH is formed by the circular
arc that contains the point of fixation F and connects the nodal points NR

and NL. In fact, by the Central Angle Theorem, the angle at any point P on105

the circular arc is η. Therefore, η = ϕR −ϕL = ϕ ′
R −ϕ ′

L. From the second
equality we get ϕR − ϕ ′

R = ϕL − ϕ ′
L. Taking into account the signs of the

angles, this means that αR = αL, i.e., the relative disparity is zero for all
points on the GH as claimed.

Next, we explain the construction of the GH and V-MC for a given fix-110

ation point. The geometric facts used in the construction are the following.
First, there is a unique circle containing three non-colinear points. These
points in Figure 3 are F, NR and NL. Second, the circle’s center is located
at the intersection point of two different lines, both of which pass perpen-
dicularly through the midpoint of the chord connecting two (of the above115

three) points. This condition also specifies the radius of the circle.
Further, by the Central Angle Theorem, we have the same angles η and

η/2 at each of the vertices F and S. Finally, we note that the angle ∠OCORO

is equal to η/2 because �OOROC and �ORSOC are similar triangles.
The dashed lines show the results suggested by the drawing. Conjecture120

1 : The point S, taken where the X3 axis intersects with the V-MC, lies on
the geometric horopter as well. Conjecture 2 : The line through points CV

and CH, the centers of the V-MC and the GH, is parallel to the line through
OC and F, and M is the midpoint of the line segment FS.

Obtaining conjectures from precise drawings is a nice feature of our ap-125

proach and this is how we ‘discovered’ the correct geometry of binocular
projection. Next, we will prove these conjectures.

2.2 Preliminary Results

In Figure 4, using the previously described method, we draw the GHs for
the two fixations F and F ′ on the V-MC (shown in green for F and brown for130

F ′). It is enough to prove the conjectures for only one fixation point, say F.
We first prove that, for all fixation points with a constant vergence, the

corresponding GHs intersect at the symmetric convergence point S located
on the V-MC. To prove this fact, we demonstrate that both the green triangle
�SNRNL and the triangle �SOROL have the angle η at the vertex S. To135

this end, it is enough to show that the triangles �SNROR and �SNLOL are
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Figure 3: The construction of the GH and V-MC for the fixation point F
in the visual plane. For the GH (solid line) two chords are FNR and FNL.
The perpendicular lines passing through the corresponding midpoints AH

and BH intersect at the horopter center CH. A similar construction is used
for the V-MC (dot-dashed line) with the center CV. When the eyes fixate
on the points of the V-MC, the vergence remains constant. Conjectures
inferred from the drawing are shown as dashed lines.
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Figure 4: The GHs constructed by the previously described method are
shown for the fixation points F and F ′ on the V-MC. The point S of sym-
metric convergence is the point of intersection between the GHs and the
V-MC. The proof of this fact is given in the text.
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congruent. Since |ORS| = |OLS| and |OLNL| = |ORNR|, we only need to show
that |NRS| = |NLS|.

Complex numbers significantly simplify proofs and are used whenever
appropriate. To complete the proof, we introduce the following complex-140

number notation in (X3, X1) coordinates of the visual plane.
For the right eye,

−−→
ORS = beiη/2,

−−−−→
ORNR = λρeiϕR ,

and for the left eye,

−−→
OLS = be−iη/2,

−−−→
OLNL = λρeiϕL .

Then,

|NRS|
2 = |

−−→
ORS −

−−−−→
ORNR|2

= (beiη/2 − λρeiϕR )

(be−iη/2 − λρe−iϕR)

= b2 + (λρ)2 − λρb(eiη/2e−iϕR

+ e−iη/2eiϕR )

= b2 + (λρ)2 − λρb(eiγ + e−iγ)

and, in a similar way,145

|NLS|
2 = b2 + (λρ)2 − λρb(eiγ + e−iγ),

where we substituted version γ given by the expression

γ = 1/2(ϕR +ϕL). (1)

Thus, |NRS| = |NLS|, showing that�SNROR and �SNLOL are congruent
and hence that the vertex S must be on both the green horizontal horopter
and the V-MC. This proves Conjecture 1.

The proof that was just completed clarifies two aspects of the GH. The150

first is that, in the visual plane, the locus of points lying on the horopter
is the circular arc containing the fixation point and connecting the nodal
points. It intersects the corresponding V-MC only at two points, the fixation
point and the point of symmetric convergence. The second is that, elsewhere,
the locus of these points is the line that is perpendicular to the visual plane155

and passes through the point of symmetric convergence. In particular, the

10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2016. ; https://doi.org/10.1101/037069doi: bioRxiv preprint 

https://doi.org/10.1101/037069
http://creativecommons.org/licenses/by-nc/4.0/


GH is not the V-MC, unless one assumes an anatomically incorrect location
for the nodal point, one that is coincident with the center of rotation.

2.3 Infinite Family of GHs

So far, the nodal point has been assumed to be located on the principal visual160

axis a distance λρ = 6 mm anterior to the eye rotation center. However, in
our study of binocular geometry, we will assume an arbitrary 0 ≤ λ ≤ 1 to
capture the way in which the GH depends on the choice of λ. Referring to
Figure 1, the eye radius ρ and λ are well approximated by 11 mm and 6/11,
respectively. Also, λ = 0 corresponds to Müller’s assumption that the nodal165

point is coincident with the eye rotation center and λ = 1 means that the
nodal point is at the pupil center.

Figure 5 shows geometric details of the binocular projections for two
nodal point locations, one at the anatomically correct location (λ = 6/11),
and the other at the pupil center (λ = 1). It also shows our choice of position170

for the Cyclopean eye.
The geometric analysis we have described so far implies that the 3D

GH consists of an infinite family with these two components. In the first
component, the horopters in the horizontal visual plane are circular arcs
containing the fixation point and connecting the nodal points. They are175

parametrized by the vergence, the specific fixation point within the V-MC,
and the nodal point location (given by λ). For a fixed vergence value, all of
the horizontal horopters intersect the corresponding V-MC at the point of
symmetric convergence. The second component of the GR is the line that is
perpendicular to the visual plane and passes through the point of symmetric180

convergence.
We now proceed to a detailed description of the GHs and the Cyclopean

eye. Although our proof applies to all fixation points, we prove the results
for only one fixation point. Further, to simplify expressions, we introduce
the following vector notation (see Figure 5):185

gR = λρeiϕR , gL = λρeiϕL (2)

for the right and left eye’s nodal points, respectively.
We place the Cyclopean eye center on the V-MC at the intersection of

the ray bisecting the vergence angles at the fixation points, and we take its
orientation along the bisecting ray. It follows from the triangle �OOROC
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Figure 5: The detailed geometric description of the binocular projections.
The GH for the anatomically correct nodal point location (solid line) is the
circle of radius K and center CH. The horopter for which the nodal point is
assumed to be at the location of the pupil center (λ = 1) is shown by the
dashed lines. This horopter also intersects with the GH and the V-MC at
the point S of symmetric convergence.
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in Figure 5 that the Cyclopean eye center OC is at a distance190

cη = |OOC| =
a

2
tan

η

2
(3)

below the X1-axis passing through the eyes’ centers, where a is the ocular
separation and η is the vergence. The visual axis of the Cyclopean eye for
a fixation F is given by the version (Eq. 1).

According to the conventional theory, articulated originally by Hering
(Hering, 1870) and augmented by others, the Cyclopean eye center is lo-195

cated on the interocular axis midway between the eyes. Then, a perceived
direction, well-approximated by the version γ, is seen as if it were viewed
from the Cyclopean position between the eyes (see, e.g., Banks, Van Ee &
Backus, 1997).

Without resorting to discussion of ongoing theoretical and experimental200

studies on the many perceptual aspects related to the Cyclopean eye (in-
cluding controversies, see for example Erkelens & van Ee, 2002; Ono, Mapp
& Howard, 2002), its position as specified here is on the V-MC with the
viewing direction precisely equal to the version for all choices of the nodal
point location. This choice of the Cyclopean eye’s position is briefly dis-205

cussed in the last section; but note that its position changes with changes
in vergence.

To obtain the center of the horizontal horopter for the fixation point
F, we choose one chord to be between fixation point F and point S on the
X3-axis, and the other connecting the nodal points for arbitrarily chosen210

0 ≤ λ ≤ 1. Because S and F are both on the green and dot-dashed circles,
the line intersecting the centers of both circles is the line perpendicular to
the line segment FS that passes through its midpoint M.

Thus, this perpendicular line contains the vector h between the centers.
Further, FS is perpendicular to the bisecting ray at F that has the visual215

direction of the cyclopean eye given by the unit vector eC,

eC = ρ
eL + eR

|eL + eR|
= ρeiϕL

1+ eiη

|1+ eiη|

= ρeiϕLeiη/2 = ρeiγ,

where we used the fact that vergence η = ϕR−ϕL, version γ = 1/2(ϕR+ϕL)

and

1+ eiη = |1+ eiη|eiη/2 = 2 cos
η

2
eiη/2. (4)
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This proves that line segment OCF is parallel to CVCH, thus proving Con-
jecture 2.220

Next, we demonstrate that, for a constant value of vergence, each hor-
izontal horopter’s center lies on the circle whose center coincides with the
center of the V-MC. First, we notice that the vector g, going from the head
coordinates’ center O to the midpoint of the line segment connecting the
nodal points, is the average vector225

g =
gL + gR

2
= λρeiϕL

1+ eiη

2
= λρ cos

η

2
eiγ (5)

where we used (Eq. 4).
Thus, eC, g and h are parallel vectors. Next, using the fact that |OS| =

2R − cη, where R is the radius of the dot-dashed circle (V-MC) and cη is
given in Eq. 3, we conclude from the corresponding similar triangles (one
with sides |OS| and |g| and the other with sides |CVS| and |h|), that the230

following proportion

|g|

2R− a
2 tan η

2

=
|h|

R
(6)

holds true.
Solving Eq. 6 for h and using Eq. 5, we obtain

|h| =
2λρR cos η

2

4R− a tan η
2

. (7)

To simplify the last expression, we first obtain

R =
a

2 sinη
(8)

from the right triangle �OSOR and Eq. 3.235

Then, substituting Eq. 8 into Eq. 7, we derive

|h| =
λρ

2 cos η
2

. (9)

We see that h = |h|eiγ and |h| is constant for fixed values of η and λ,
i.e., it is independent of the version γ. Because Eq. 9 holds for all fixation
points along the V-MC, we denote |h| by r so that

r =
λρ

2 cos η
2

(10)
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is the radius of the circle on which the centers of the GHs are located.240

Moreover, this circle has the same center as the V-MC.
Vergence decreases as fixation distance increases, so that Eq. 10 is well

approximated by λρ/2 for large values of R. We take the fixation distance
as 2R, which is justified for version values less than 15 deg.

2.4 The Center and Radius of the GH’s Circles245

The GH center is the endpoint of the complex number

CH = R − cη + h

=
a

2 sinη
−
a

2
tan

η

2
+

λρ

2 cos η
2

eiγ

=
a

2
cotη+

λρ

2 cos η
2

eiγ

=

(
a

2
cotη +

λρ

2 cos η
2

cosγ
)

+ i
λρ

2 cos η
2

sinγ.

The radius K of the GH can be obtained from the identity

R − cη + h = i
a

2
+ gL + ZH

where ZH is the complex number representing the vector needed to obtain
the equality. Then

K = |ZH| =
∣∣∣R − cη + h − i

a

2
− gL

∣∣∣
=

√
(UH)2 + (VH)2 (11)

where250

UH =
a

2
cotη−

λρ

2 cos η
2

cos(γ − η) (12)

and
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VH = −
a

2
−

λρ

2 cos η
2

sin(γ− η). (13)

In the above expressions, we substituted Eqs. 2, 10, 8 and 3. Further,
we used ϕL = γ−η/2 and the fact that h is parallel to the vector g (Eq. 5).
We also have made use of standard trigonometric identities.

3 Numerical Study of the GHs255

From Eqs. 8 and 10 in Section 2, we see that when the fixation distance
(roughly in the range of 2R) increases, the vergence decreases to zero, while
the radius r (Eq. 10) of the circle containing the centers of the GHs ap-
proaches a constant value λρ/2, or 3 mm for the anatomically correct GH.

In the remaining part of the paper, we assume the human average values260

of a = 65 mm, ρ = 11 mm and λ = 6/11. Using the expressions in Eqs. 8,
11 and 10, in Table 2 we show the values of R, K and r. These values
are calculated for version values γ = 16◦, 8◦, 4◦ and vergence values of η =

6◦, 8◦, 10◦.

Table 2:
The values of R (Eq. 8), K (Eq. 11) and r (Eq. 10)
are shown in mm for the several values of η and γ.

η R r γ K

6◦ 310.920 3.004
16◦ 308.033
8◦ 307.946
4◦ 307.923

8◦ 233.522 3.007
16◦ 230.633
8◦ 230.545
4◦ 230.522

10◦ 187.160 3.011
16◦ 184.267
8◦ 184.179
4◦ 184.156

The fixation distance is defined here as the distance from the pointOC to265

the fixation point. We recall that, according to our choice for the Cyclopean
eye position, the point OC is the center of the Cyclopean eye and the visual
axis’ direction is given by the version.
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We estimate the fixation distance by 2R. From Table 2, the viewing
distance is a typical near fixation for η ≤ 10◦ (Wong, Woods & Peli, 2002).270

We see that, for all viewing distances larger or equal to this near distance,
the largest difference between the GH and the V-MC is about 3 mm near
the point diagonally opposite to the fixation point. This visually irrelevant
value is independent of the version.

Moreover, the largest distance between the GH and the V-MC that is275

visually relevant occurs midway between the fixation point and the point of
symmetric convergence, both on the GH. This can be easily seen in Figure 5.
Denoting this distance by εmax, we have from Figure 5

εmax = K+ r− R. (14)

Because εmax does not essentially change with the vergence when the
version is kept constant, their values calculated for all cases in Table 2 are280

shown in Table 3 only for version values of 16◦, 8◦ and 4◦.

Table 3:
The distance εmax (Eq. 14) in mm
for the cases shown in Table 2.

γ 16◦ 8◦ 4◦

εmax 0.118 0.030 0.007

The values of εmax in Table 3 are quite small. Their visual significance
is discussed in Section 6.

4 Relation to Previous Literature

Gulick and Lawson (1976) attempted to determine the effect the separation285

of the center of rotation from the optical nodal point has on binocular ge-
ometry. In Chapter 3 the authors first discuss Müller’s horopter (V-MC)
and the later modification by Graham (1965) that placed the coincident op-
tical nodal point and rotation center anterior to the geometrical center of
the eye. Because of these anatomically incorrect assumptions, they rejected290

both models and presented their binocular geometry under the assumption
that the nodal point is 6 mm anterior to the eye’s center of rotation, and
that the rotation center coincides with the eye’s geometric center (Figure 1).

However, with reference to our Figure 5, they erroneously concluded that
F falls on the horopter of S, but S does not fall on the horopter of F [see295
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page 81 and Figure 3.10 in Gulick and Lawson (1976)]. According to our
geometric analysis (Figure 5), the correct statement should be that S falls
on the horopter of F, but F does not fall on the horopter of S. This applies
to all fixation points on the V-MC such that F �= S. Gulick and Lawson
(1976) go on to conclude that the GH is irrelevant for a perceptual analysis300

of binocular vision. However, we have shown that with a correct geometric
analysis of the GH, retinal disparities depend on fixation within the V-MC,
a fact that is highly relevant for understanding the perceptual interpretation
of disparity.

5 Retinal and Relative Disparities305

Binocular disparity (or stereopsis) refers to the small differences in the per-
spective projections on the right and left eyes that result from the eyes’
lateral separation. When a point lies in front or behind the horopter curve
containing the fixation point, the difference in the angles subtended on each
retina between the image and the center of the fovea defines absolute retinal310

disparity. This difference provides a cue for the depth of the object from
an observer’s current point of fixation. The difference of retinal disparities
for a pair of points defines their relative disparity. The relative disparity
provides a cue for the perception of 3D structure such as relative depth and
shape. It is usually stated that relative disparity does not depend on the315

eye position (Marr, 1985).
Because binocular geometry is different for the anatomically correct GH

and for the V-MC, we need to investigate whether the relative disparity
is indeed independent of the eyes’ positions. In what follows, we use the
subscript ‘n’ for quantities obtained using the anatomically correct location320

of the nodal point at λρ = 6 anterior to the center of rotation, and the
subscript ‘c’ for quantities obtained when the nodal point coincides with
the eye rotation center (λ = 0).

The sign of visual angle conforms to the orientation of the fixation plane’s
coordinate system (X3, X1) discussed before. For example, in Figure 6, the325

visual angle of projections αnR and αnL for the endpoint P are negative
while the projection angles βnR and βnL for the endpoint Q are positive.

By definition, the retinal disparities of endpoints P and Q in the case of
the anatomical position of the nodal point (subscript n) are:

δnP,2 = αnR − αnL, δnQ,2 = βnR − βnL,

where the visual angles α of the endpoint P and the visual angles β for Q,330
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Figure 6: The drawing used to define and calculate disparities in terms of
the binocular subtense. The subtense of the points P and Q are the angles
ψnP,2 and ψnQ,2 for the case of λ = 6/11, and ψcP and ψcQ for the case
of λ = 0. The subtense angles are shown only for the fixation F2. We note
that the binocular subtense is independent of the eye’s position for the case
λ = 0.
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each angle for the right eye (subscript R) and for left eye (subscript L), are
shown in Figure 6.

From Figure 6 one can obtain the expressions for the retinal disparities
δnP,2 and δnQ,2 and the relative disparity σnPQ,2 in terms of the endpoints’
binocular subtense ψnP,2 and ψnQ,2 (see also page 37 in Howard and Rogers
(1995)), as follows:

δnP,2 = ψnP,2 − η, δnQ,2 = ψnQ,2 − η, (15)

and

σnPQ,2 = δnP,2 − δnQ,2 = ψnP,2 −ψnQ,2. (16)

However, because δnP,2 and δnQ,2 in Eq. 15 contain information about
the fixation point but σnPQ,2 in Eq. 16 does not, we choose relative disparity335

for the line segment with the absolute value

σnPQ,2 = |ψnP,2 −ψnQ,2|, (17)

avoiding reference to any retinal landmarks. This formula does not account
for the line segment orientation.

The formulas in Eqs. 15 and 17 are especially convenient because they
are easy to calculate either from the drawing or from geometric formulas340

when the coordinates of the points are known.
For the subscript c (i.e., for λ = 0),

δcP = ψcP − η, δcQ = ψcQ − η, (18)

and

σcPQ = |ψcP − ψcQ|, (19)

where ψcP and ψcQ are the angles between the dot-dashed lines at P and Q,
shown in Figure 6. We note that relative disparity (Eq. 19) is independent345

of the eye’s position.
In Figure 7, we show the geometric parameters of the binocular projec-

tions. Further, 2R/ρ = 25.3, where ρ is the eyeball radius and R is the radius
of the V-MC. Also, the ratio a/ρ = 6.0, where a is the interocular distance.
These values mean that if we scale the drawing such that ρ = 11 mm, the350

distance to fixation points F1 and F2 is about 2R = 28 cm, and a = 6.6 cm.
Also, in this case, the distance to the fixation point F3 is 23 cm.

The retinal disparities in Figure 7 can be calculated using data from
Table 4 and Eqs. 15 and 18.
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Figure 7: The binocular projection parameters for which the retinal and
relative disparities are calculated. Here, the version values for the fixation
points are γ1 = 12◦ and γ2 = 4◦, and the corresponding angles of the
endpoints are γP = 2◦ and γQ = 5◦36 ′. The vergence for the fixation points
F1 and F2 is η1 = η2 = 13◦45 ′11 ′′ and the vergence for the fixation point F3

is 16◦42 ′47 ′′. Also, the distance from OC to the fixation points F1 and F2 is
about 28 cm and the distance to the fixation point F3 is 23 cm.
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Table 4:
Binocular subtense of P and Q for the fixation points
F1, F2 and F3 calculated for parameters in Figure 7.

Model Vergence Point P Point Q

V-MC 13◦45 ′11 ′′
ψcP ψcQ

15◦00 ′36 ′′ 12◦39 ′58 ′′

GH
13◦45 ′11 ′′

ψnP,1 ψnQ,1

15◦02 ′42 ′′ 12◦38 ′53 ′′

ψnP,2 ψnQ,2

15◦01 ′55 ′′ 12◦38 ′42 ′′

16◦42 ′47 ′′
ψnP,3 ψnQ,3

14◦57 ′58 ′′ 12◦35 ′20 ′′

The relative disparities σnPQ,1, σnPQ,2, σcPQ, and their differences355

�σn,12 = σnPQ,1 − σnPQ,2, (20)

�σnc,1 = σnPQ,1 − σcPQ, (21)

and

�σnc,2 = σnPQ,2 − σcPQ, (22)

derived using the data in Table 4 are shown in Table 5.

Table 5:
Relative disparities for the endpoints of line segment PQ
and their differences (see text for definitions).

Relative Disparity
σnPQ,1 σnPQ,2 σnPQ,3 σcPQ

2o23 ′49 ′′ 2o23 ′13 ′′ 2o22 ′38 ′′ 2o20 ′38 ′′

Relative Disparities Difference
�σn,12 �σn,23 �σnc,1 �σnc,2

36 ′′ 35 ′′ 3 ′11 ′′ 2 ′35 ′′
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From the geometry that arises when the nodal point is placed at its
anatomical location, we see that relative disparity depends on eye position.

The significance of the dependence of relative disparity on the fixation360

point will be discussed in the next sections for retinal disparity calculated
for the fixation distance about 270 cm (for the radius R = 134.7 of the
corresponding V-MC) such that the vergence at F1 and F2 is 1◦22 ′55 ′′. The
object PQ is the same as in Figure 7 except that it is translated along the
line into the new position F2 (on the V-MC of radius 134.7 cm) so that365

the version angles (γ) shown in Figure 7 are preserved. The corresponding
retinal disparities are shown in Table 6.

Table 6:
Retinal disparities of P and Q for the fixation
points F1 and F2 as in Figure 7 but calculated
for the fixation distance of 270 cm

Model Vergence Point P Point Q

GH 1◦22 ′55 ′′

δnP,1 δnQ,1

14 ′46 ′′ −2 ′09 ′′

δnP,2 δnQ,2

14 ′28 ′′ −1 ′48 ′′

The relative disparities σnPQ,k, k = 1, 2 and their difference �σn,12 are
the following:

σnPQ,1 = δnP,1 − δnQ,1 = 16 ′55 ′′

σnPQ,2 = δnP,2 − δnQ,2 = 16 ′16 ′′

�σn,12 = 39 ′′

6 Discussion370

Conventional theory of binocular projection based on the V-MC incorrectly
assumes the eye’s nodal point and rotation center share the same location.
The precise, but simple, binocular projection geometry presented here cor-
rects this conventional theory. It is well known that, when the eyes fixate
on the points of the V-MC, the vergence and the circle remain unchanged.375

This property is not shared by the anatomically correct GH.
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Our geometric analysis showed that, when the eyes fixate a point on the
binocularly visible arc of the V-MC in the horizontal visual plane, there is an
infinite family of GHs. The horizontal horopters are formed by circular arcs
connecting the nodal points of the two eyes and they intersect at the point of380

symmetric convergence. Apart from that, for each constant vergence, there
is a vertical horopter consisting of a straight line that is perpendicular to
the visual plane and passes through the point of symmetric convergence.

Thus, the complete picture of the GH involves an infinite family of 3D
GHs with two perpendicular components, as described above. Although385

our geometric analysis has been made with the assumption that the visual
plane is horizontal, the same geometry applies when the fixation target is
elevated or depressed, as long as one ignores the typical cyclotorsion that
occurs outside the horizontal plane in binocular vision.

Further, we chose the position of the Cyclopean eye by specifying its390

center’s location to be on the shorter isovergence circular arc that is midway
between the eyes’ rotation centers. Only for this choice does the Cyclopean
eye’s fixation axis’ direction correspond to the version. This position of the
Cyclopean eye has a particularly simple property: its rotation is the average
of the two eyes’ rotations. We note that if the Cyclopean eye’s location is395

assumed to be on the interocular line midway between the two eyes, the
visual axis’ rotation would be a complicated function of the left and right
eyes’ rotations. This simple properties of the Cyclopean eye position is
important in our modeling of binocular vision for anthropomorphic robots
(Turski, 2010).400

We carried out two numerical studies. First, we investigated the ques-
tion of how well the GH is approximated by the V-MC for typical near view-
ing distances. Second, we demonstrated an important consequence of the
anatomically correct binocular projections: relative disparity dependends
on the fixation point.405

However, to understand the impact these results could have on human
binocular vision, we need to discuss stereopsis and other visual functions
that make use of disparity processing.

We normally do not experience double vision for points in a narrow
band around the horopter, known as Panum’s fusional area. Originally,410

this area was proposed by Panum in 1858 for the empirical horopter (see,
e.g., Verhoeff, 1959) and is used here for V-MCs and GHs. Experiments
with empirical horopters found the width of this region to be about 0.5 deg
in the vicinity of the fovea (Ponce & Born, 2008) and slightly increasing
at larger eccentricities. However, some authors give smaller values. If an415

object falls within this region, it will be seen as a single object that is offset
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in depth relative to the fixation point. As disparity increases, fusion will be
lost at some point.

Nevertheless, the visual system can extract meaningful depth informa-
tion for disparities up to several degrees, depending on stimulus size, spatial420

and temporal frequency (see Ponce & Born, 2008). This could be important
for minimizing bothersome double vision when objects are projected into
the macula, the retinal region that extends about a few degrees from the
foveola center, the region that is responsible for detailed central vision.

The spatial range of stereopsis is set by the minimum retinal disparity425

that can be resolved. The stereoacuity threshold under ideal conditions
(high contrast, sharp edges and viewing at about 40 cm) is in the range
of 2-6 arc sec (or 0.004-0.01 mm) (Wilcox & Harris, 2010). Also, the best
stereoacuity is about 0.25 degrees (or 0.07 mm) from the foveola center.

How do these data compare with our analysis of the GH approximation430

by V-MC? Using the results in Table 3, we see that even for a version of
4◦, the maximum value of visually relevant distance between the GH and
V-MC of is about 0.007 mm and occurs at the horopter’s midpoint between
0◦ (the point of symmetric convergence) and 4◦ (the fixation point). Thus,
a point on the V-MC will have zero depth relative to another nearby point435

on the V-MC, but they could be seen as offset in depth relative to the GH
and maybe even relative to each other.

Given that the spacing between cones in the fovea is on the order of
30 arc sec, human discrimination of 5 arc sec of retinal disparity is ex-
traordinary and termed a hyperacuity. Visual computations that make use440

of fine-scale binocular disparity information include ‘breaking camouflage’
when the outline of an object with pattern matching surroundings ‘pops
out’ from the background because the object and the background are at
slightly different depth. This figure-ground segmentation’s use of disparity
processing is vividly demonstrated in the ‘Magic Eye’ images invented by445

Christopher Tyler in 1979, a postdoc of Bela Julesz.
A commonly held belief is that relative disparity is invariant under the

change of the eyes’ positions. However, this is true only in conventional
binocular theory, which is based on the V-MC. We show in Table 6 a de-
pendence of relative disparity on the eyes’ fixation. In particular, Table 6450

shows calculations for typical viewing parameters and suggests changes in
disparity that could have a noticeable impact on vision. They are well within
binocular acuity limits. We hypothesize that such disparity changes could
lead in changes of perceived object shape with changes in fixation (across a
saccade). This is an important observation because the eyes reposition gaze455

in natural viewing with, on average, 4 saccades per second. Even during
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fixation the eyes continually jitter, drift, and make micro-saccades. It was
proposed by Vlaskamp et al. (2011) that these tiny eye movements dur-
ing fixation cause changes in disparity estimation that are similar to spatial
blur.460

However, we wish to hypothesize that the small changes in perceived
size and shape due to eye movements may be needed, not only for the
perceptual benefits such as ‘breaking camouflage’, but also for the aesthetic
benefit of stereopsis. For example, this can be demonstrated by the following
quotations. Formerly stereoblind adults, when they became aware of the465

three-dimensionality of the visual world for the first time, are quoted by
Ponce and Born (2008). One person wrote, ‘Before my vision changed I
would not have said that the tree looked flat, but I had no idea just how
round a tree’s canopy really is ... When I began to see with two eyes,
everything looked crisper and much better outlined.’ Another person wrote,470

‘Everything has edges!’
Of course, the suggested impact of the dependence of relative disparity

on the fixation point can only be confirmed by experiments. Since stereopsis’
functional significance has been rather neglected from the time it was first
explained by Charles Wheatstone in 1838 (see Fielder & Moseley, 1996),475

such experiments are worth undertaking.
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