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Abstract

In 2011, the “ADHD-200 Global Competition” was held with the aim of identifying biomark-
ers of attention-deficit/hyperactivity disorder from resting-state functional magnetic reso-
nance imaging (rs-fMRI) and structural MRI (s-MRI) data collected on 973 individuals.
Statisticians and computer scientists were potentially the most qualified for the machine
learning aspect of the competition, but generally lacked the specialized skills to imple-
ment the necessary steps of data preparation for rs-fMRI. Realizing this barrier to entry, the
Neuro Bureau prospectively collaborated with all competitors by preprocessing the data and
sharing these results at the Neuroimaging Informatics Tools and Resources Clearinghouse
(NITRC) (http://www.nitrc.org/frs/?group_id=383). This “ADHD-200 Preprocessed”
release included multiple analytical pipelines to cater to different philosophies of data anal-
ysis. The processed derivatives included denoised and registered 4D fMRI volumes, regional
time series extracted from brain parcellations, maps of 10 intrinsic connectivity networks,
fractional amplitude of low frequency fluctuation, and regional homogeneity, along with grey
matter density maps. The data was used by several teams who competed in the ADHD-200
Global Competition, including the winning entry by a group of biostaticians. To the best
of our knowledge, the ADHD-200 Preprocessed release was the first large public resource of
preprocessed resting-state fMRI and structural MRI data, and remains to this day the only
resource featuring a battery of alternative processing paths.

Keywords: preprocessed fMRI, data sharing, neuroimaging competition

∗Corresponding authors.
Email addresses: pierre.bellec@criugm.qc.ca (Pierre Bellec), carltonchu1@gmail.com (Carlton

Chu), francois.chouinard@gmail.com (François Chouinard-Decorte), margulies@cbs.mpg.de (Daniel S.
Margulies), ccraddock@nki.rfmh.org (R. Cameron Craddock)

URL: bellec.simexp-lab.org (Pierre Bellec), computational-neuroimaging-lab.org (R. Cameron

Preprint submitted to Neuroimage January 17, 2016

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 17, 2016. ; https://doi.org/10.1101/037044doi: bioRxiv preprint 

https://doi.org/10.1101/037044
http://creativecommons.org/licenses/by/4.0/


1. Introduction

In 2011, the “ADHD-200 Global Competition” was held with the aim of engaging
researchers from a variety of analytical backgrounds to identify biomarkers of attention-
deficit/hyperactivity disorder (ADHD) from resting-state functional magnetic resonance
imaging (rs-fMRI) and structural MRI (s-MRI) data [1]. The competition made use of
the “ADHD-200 Sample” data collection that was aggregated from eight independent sites
and shared through the Intenational Neuroimaging Datasharing Initiative (INDI) [2]. The
data includes rs-fMRI, structural MRI (s-MRI), and basic phenotypic information for 973
individuals (585 typically-developing controls (TDC), 362 ADHD, 26 unknown) [1]. Com-
petitors were given five and a half months to optimize a classification algorithm on training
data (776 individuals) and submit their predicted clinical labels on test data for which diag-
nostic information was withheld. The competition data was distributed in a raw form and,
before any analysis could begin, the images had to be preprocessed to make them compa-
rable across individuals and reduce noise. These preprocessing steps present a significant
hurdle for would-be competitors who do not have the specialist knowledge of neuroimaging
methods or access to high performance computing resources. Realizing this barrier to entry,
the Neuro Bureau prospectively collaborated with all competitors by preprocessing the data
and sharing these results.

The “ADHD-200 Preprocessed” is a repository of preprocessed rs-fMRI and s-MRI data
along with statistical derivatives from the ADHD-200 Sample. Rather than favoring a spe-
cific processing strategy, we followed a pluralistic approach by preprocessing the data using
multiple pipelines (called “Athena”, “Burner” and “NIAK”) that differed in the toolsets
used, the philosophy motivating choices of algorithms and parameters, and the statistical
derivatives calculated. The Athena pipeline processed rs-fMRI and s-MRI images using
a combination of AFNI [3] and FSL [4] neuroimaging toolkits. The Burner pipeline used
SPM8 [5] to process s-MRI data for voxel-based morphometry. The NIAK pipeline processed
rs-fMRI and s-MRI using the NeuroImaging Analysis Kit [6].

2. Organization and access to the repository

The ADHD-200 Preprocessed data was released in 2011 and can be downloaded from
NITRC1. No data usage agreement is required to access or download the data, the only
requirement is registering for a free NITRC account. This registration enables downloads to
be tracked for usage statistics users to be contacted in the event that errors are found in the
dataset. The ADHD-200 Sample allows unrestricted data usage for non-commercial research
purposes provided that the specific datasets included in an analysis be cited appropriately
and that their funding sources be acknowledged2. There are no more restrictions placed on
the preprocessed data or derivatives other than the request that the ADHD-200 Preprocessed

Craddock)
1http://www.nitrc.org/frs/?group_id=383
2http://fcon_1000.projects.nitrc.org/indi/ADHD-200/
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Initiative is cited appropriately and that the specific pipeline is acknowledged in publications
using the data. A forum is available on the Neuro Bureau’s NITRC project page for users
to ask questions or report problems3. Questions regarding data acquisition or phenotypic
variables should be directed to INDI’s support forum4.

3. Contents of the repository

The ADHD-200 Preprocessed repository contains preprocessed outputs and derivatives
for data from the ADHD-200 Sample, which includes 973 individuals (352 F) between the
ages of 7 and 27 aggregated from 17 different studies conducted across 8 different sites (for
a breakdown of age and sex by diagnosis see Table 1). For each individual, phenotypic
data includes sex, age, handedness, ADHD diagnosis (585 TDC, 362 ADHD, 26 unknown),
ADHD subtype (ADHD-combined, ADHD-inattentive, ADHD-hyperactive/impulsive), one
of three different measures of ADHD severity, one of five measures of intelligence, co-morbid
diagnoses, and whether or not they have used medication to treat their symptoms [1]. Imag-
ing data for each individual includes one or more T1-weighted high-resolution s-MRI scan
(s-MRI) and one or more rs-fMRI scan. The majority of data was acquired during a single
imaging session, although a second session is available for 15 individuals from the Wash-
ington University at Saint Louis (WUSTL) site. There is a substantial amount of variation
in data acquisition procedures across sites including the type of MRI system and scanning
parameters, the length of the rs-fMRI scans, and the instructions given to participants prior
to the scan (see Tables 2 and 3).

Nearly all of the imaging data from the ADHD-200 Sample was included in the pre-
processing effort, though some individuals were excluded for poor quality or missing data5.
The results of the preprocessing are made available as a collection of compressed tar files
that are organized by pipeline, sites of data collection, training and test samples, as well
as by derivatives. A group-level file containing the phenotypic data is available in comma-
separated-values format (.csv).

Shared preprocessed data and extracted features include:

• 3D grey matter density maps suitable for voxel-based morphometry – Athena and
Burner (see Figure 1,

• 4D preprocessed resting-state fMRI data including limited intermediaries and quality
assessment – Athena and NIAK,

• Average time series for brain regions from structurally defined parcellations – Athena
(see Figures 2 and 3),

3http://www.nitrc.org/forum/forum.php?forum_id=2046
4http://www.nitrc.org/forum/forum.php?forum_id=1735
5Further information regarding excluded data can be found at the respective pipeline wiki page: Athena:

http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline#Excluded_Data;
Burner: http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:BurnerPipeline; NIAK:
http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:NIAKPipeline.
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Figure 1: Grey matter density maps generated by the Burner pipeline. An example of an individual map
is presented, along with the average and standard deviation maps for all subjects in the test subsample of
ADHD-200 Preprocessed.

Figure 2: The brain parcellations used to generate regional time series in the NIAK (ROI1000 and ROI3000)
and Athena (all other parcellations) pipelines. Each region was randomly assigned to one color in the
colormap, and the in-plane outline of regions was painted white at 1 mm resolution.

• Average time series for brain regions for regions defined by functional parcellation –
Athena and NIAK (see Figures 2 and 3),

• Spatial maps for 10 intrinsic connectivity networks (ICNs), fractional amplitude of
low frequency fluctuations (fALFF), and regional homogeneity (ReHo) – Athena (see
Figure 4).

3.1. Athena Pipeline

The Athena pipeline6 processed rs-fMRI and s-MRI images using a custom BASH script
that combined AFNI [3] and FSL [4] neuroimaging toolkits and was run on the Athena
computer cluster at Virginia Tech’s Advanced Research Computing center7. The processing

6http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
7http://www.arc.vt.edu/
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Figure 3: The average functional connectivity matrix (Pearson’s correlation coefficient between regional time
series) was generated across all individuals of the KKI site, for all parcellations of the release (see text for
details). This matrix was further binarized by retaining connections with an average correlation larger than
0.3. The resulting binary adjacency matrices have been represented with an automated layout generated by
Yfan Hu’s multilevel algorithm, as implemented in the Gephi software [7]. The size and color of each node
was set proportional to its degree, relative to the min and max inside the graph.

scripts for each site are distributed in the repository, along with output log files for each
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Figure 4: Derivatives from the Athena pipeline including ten intrinsic connectivity networks (ICNs), frac-
tional amplitude of low-frequency fluctuations (fALFF), and regional homogeneity (ReHo). Asterisks (*) in
the latter two derivatives denote the difference in colorbar max/min values, as indicated.
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processed dataset.

3.1.1. Structural processing

Athena’s s-MRI pipeline began with skull-stripping to remove non-brain tissue and back-
ground from the images [8] and segmenting the results into white matter (WM), cerebro-
spinal fluid (CSF), and grey matter (GM) probability maps [9]. A non-linear warp was cal-
culated between the skull-off image and MNI space as represented by the NIHPD 4.5–18.5y
age-specific assymmetric template [10] using a two step procedure that calculates a lin-
ear transform [11] that is subsequently refined by a non-linear registration procedure [12].
Shared s-MRI outputs include: skull-stripped whole-brain images and smoothed (by a 6
mm FWHM Gaussian) and unsmoothed GM density maps in MNI space at 1×1×1 mm3

resolution, along with the FSL fNIRT non-linear warp, as compressed NIfTI files (.nii.gz).

3.1.2. Functional processing

Preprocessing. Athena’s rs-fMRI pipeline involved removing the first four volumes to allow
for magnetization to reach equilibrium, site-specific slice timing correction to the middle
slice, re-aligning each volume to the first volume to correct for motion [13], and calculating
a linear transform between the mean functional volume and the corresponding s-MRI [11].
The rs-fMRI to s-MRI transform was then combined with the s-MRI to MNI non-linear
warp to write the functional data into MNI152 space at 4 × 4 × 4 mm3 resolution. Mean
WM and CSF signals extracted using the masks calculated during s-MRI processing were
included along with 6 head motion parameters and a third-order polynomial in voxelwise
nuisance regression models to remove variation due to physiological noise, head motion and
scanner drifts from the time series[14, 15]. The resulting denoised time series were band-
pass filtered (0.009 Hz < f < 0.08 Hz) to limit the data to the frequencies implicated
in resting state functional connectivity [16, 17] and then spatially smoothed with a 6 mm
FWHM Gaussian filter. Shared rs-fMRI outputs include: denoised rs-fMRI volumes, with
and without temporal bandpass filtering, in MNI space (compressed 4D NIfTIs, nii.gz), the
mean rs-fMRI image and brain mask in template space (.nii.gz), and six parameter head
motion traces (tab-separated values, AFNI .1D files).

Time series for structurally defined brain areas. Regional time series were extracted for the
automated anatomical labeling (AAL) [18], Eickhoff-Zilles (EZ) [19], Harvard-Oxford (HO)
[20–23], and Talairach and Tournoux (TT) [24] parcellations. The EZ parcellation was
derived from the max-propagation parcellation distributed with the SPM Anatomy Toolbox8

and was transformed into template space using the Colin 27 template (also distributed
with the toolbox) as an intermediary. The HO parcellation was constructed from 25%
thresholded cortical and subcortical max-propagation parcellations distributed with FSL.
The parcellations were bisected into left and right hemispheres at the midline (x = 0), ROIs
representing left/right WM, left/right GM, left/right CSF and brainstem were removed

8http://www.fz-juelich.de/inm/inm-1/EN/Forschung/_docs/SPMAnatomyToolbox/

SPMAnatomyToolbox_node.html
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from the subcortical parcellation and then the subcortical and cortical ROIs were combined
into a single parcellation. The AAL parcellation distributed with the SPM8 version of
the AAL Toolbox9 and the TT parcellation distributed with AFNI were coregistered and
warped into template space. Each of the structural parcellations were resampled into the
functional space using nearest-neighbor interpolation. The average time series within each
parcel were extracted from both the filtered and unfiltered data and are distributed in tab-
separated values format (AFNI .1D). Each of the conformed ROI parcellations are available
as compressed 3D NIfTI files (.nii.gz).

Time series for functionally defined parcellations. The CC200 and CC400 functional brain
parcellations were constructed using a two-stage spatially-constrained spectral clustering
procedure [25] applied to unfiltered preprocessed rs-fMRI data from a subset (N = 650)
of the participants in the training dataset. Participants were chosen for inclusion based on
registration quality and after excluding participants with more than 3 mm translation or 3
degrees rotations in their motion parameters. To reduce computation time, the clustering
was restricted to grey matter using a group GM mask that was constructed by averaging
individual GM masks derived from FreeSurfer automated segmentation [26]. Although 200
and 400 ROIs were specified in the functional parcellation procedure, the normalized cut
algorithm resulted in 190 and 351 clusters respectfully. Time series were extracted for each
parcellation from both the filtered and unfiltered data by averaging the voxel time series
contained within each labeled region and are distributed in tab-separated values format
(AFNI .1D). CC200 and CC400 brain parcellations are available as compressed 3D NIfTI
files (.nii.gz).

ICN time series and spatial maps. Time series and spatial maps were derived for 10 ICNs
that have been found to be consistent across resting-state datasets and a variety of neu-
roimaging tasks [27] by applying a modified dual-regression approach [28] to the unfiltered
preprocessed data. A spatial multiple regression was first used to extract time series corre-
sponding to each network. In a second step, each time course was independently correlated
with whole-brain time series to generate subject-specific functional connectivity maps for
each network. Alternatively, all time series were entered simultaneously into a multiple
(temporal) regression, and the regression coefficients associated with each time series con-
stituted the functional connectivity maps. The resulting ICN time series are distributed as
tab-separated values (AFNI .1D) files and the spatial maps for both temporal regression
approaches are distributed as compressed 4D NIfTI files (.nii.gz).

fALFF and ReHo. Whole brain fALFF maps were generated by dividing the variance of
each voxel’s bandpass-filtered time series by the variance of its unfiltered time series [29].
ReHo was estimated from the unfiltered data at each voxel by the Kendall’s Coefficient of
Concordance [30] between the voxel and its 26 face-, edge-, and corner- touching neighbors.
The resulting fALFF and ReHo whole brain maps are distributed as compressed 3D NIfTI
files (.nii.gz).

9http://www.cyceron.fr/index.php/en/plateforme-en/freeware
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3.1.3. Quality Control

With the exception of a few datasets that were missing data, and one dataset that was
corrupted, all of the ADHD-200 Sample was processed and released by Athena, regardless of
data quality. This was done to accomodate differing opinions as to what qualifies as usable
data, and to provide poor quality data that may be used by others to develop methods that
are robust to noise. Files containing the six mostion parameters for each rs-fMRI data and
anatomical and mean EPI images in template space have been included in the release to
enable users to determine high-motion data or poor registrations. Additional quality metrics
derived from the s-MRI, GM masks, mean rs-fMRI images, fALFF maps and FC maps were
also included to help with the QC process.

For each data type a mean and standard deviation image was calculated from all of
the scans from all of the subjects. These images were used to perform a voxelwise z-score
transformation on each data type for each subject zi =

(vi−mi)
σi

. The absolute values of these
z-scores were thresholded at 3, and summed across voxels for a quality score for that image.
The higher the resulting sum, the larger the number of voxels a image has that are ≥ 3 and
the more likely the images are outliers. Using this metric it is possible to rank images, and
allows for a more directed search for poor quality scans. These metrics are distributed in
participant-specific text files along with the BASH scripts that implement the procedure.

3.2. Burner Pipeline

The Burner pipeline10 used SPM8 [5] to process s-MRI data for voxel-based morphometry
[31] style analyses.

3.2.1. Structural processing

Processing began by segmenting s-MRI images into GM and WM probability maps using
SPM8’s unified segmentation procedure, which iteratively registers the data to a template
and performs tissue classification until both are optimized [32]. Next, SPM8’s DARTEL
toolbox [33] was used to register the s-MRI of all participants into a common space using
an iterative method. Initially, all WM and GM maps were rigidly aligned, and the initial
GM and WM templates were created by averaging all aligned maps. Then, all WM and
GM maps were non-linearly registered to the templates. New templates were created after
each such iteration of registration. The procedure was repeated six times (i.e. template
creation and registration) to generate sharper templates and warping all participant WM
and GM maps to the template space. The final (6th iteration) non-linear deformations were
applied to each participant’s GM probability maps to transform them into the space of the
population average at 1.5 × 1.5 × 1.5 mm3 resolution and modulated to conserve the global
tissue volumes after normalization. The resulting grey matter density maps are distributed
as 3D NIfTI files (.nii).

10http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:BurnerPipeline
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3.2.2. Quality Control

Stringent quality control was not applied to the data in order to accommodate different
opinions on what constitutes poor quality data. Images for four participants were excluded
after visual inspection by Dr. Chu because they were determined to be of insufficient quality
for further processing.

3.3. NIAK Pipeline

The NIAK11 is a collection of workflows, implemented in the Pipeline System for Octave
and Matlab (PSOM) [34], that perform s-MRI and rs-fMRI processing using a combination of
generic medical image processing modules, the MINC tools12, and custom Matlab/Octave
scripts. The ADHD-200 Sample was processed using NIAK version 0.6.4.1, running on
a server of the Canadian Brain Imaging Research Platform (CBRAIN) [35]. The NIAK
is distributed as an open-source software under MIT license and the code is available on
NITRC13 and Github14. The processing scripts for ADHD200 are available on github15.
The log files for execution were included with the derivatives and can be accessed through
the PSOM interface16.

3.3.1. Structural processing

The NIAK implements a variant of the CIVET pipeline [36]. Each individal s-MRI scan
was first corrected for intensity non-uniformities [37] and the brain was extracted using a
region growing algorithm [38]. Individual scans were then linearly registered (9 parameters)
with the T1 MNI symmetric template [10], restricted to the brain with the previous mask.
Note that, by selecting a symmetric template, it is possible to study functional connectivity
between homotopic regions by simply flipping the x axis in stereotaxic space, e.g. [? ]. The s-
MRI scans were again corrected for intensity non-uniformities in stereotaxic space, this time
restricted to the template brain mask. An individual brain mask was extracted a second
time on this improved image [38] and combined with template priors. An iterative non-
linear registration was estimated between the linearly registered s-MRI and the template
space, restricted to the brain mask [39]. A final brain mask of the T1 image in native
space was extracted from the template brain mask by inverting the linear and non-linear
transformation. This final mask was used for registration between rs-fMRI and sMRI data
(see below). Shared s-MRI outputs include: non-uniformity corrected T1 volumes in native
and stereotaxic space (after linear or non-linear transformations) at 1 mm isotropic resolution
and brain masks in all spaces, in compressed NIFTI format (.nii.gz), as well as the linear
and non-linear transformations from native to template space, as .xfm MINC files.

11http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:NIAKPipeline
12http://en.wikibooks.org/wiki/MINC
13http://www.nitrc.org/frs/?group_id=411
14https://github.com/SIMEXP/niak
15https://github.com/SIMEXP/Projects/tree/master/adhd200
16http://psom.simexp-lab.org/how_to_use_psom.html
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3.3.2. Functional processing

Preprocessing. The NIAK rs-fMRI pipeline involved removing the first three volumes to
allow for magnetization to reach equilibrium, site-specific slice timing correction to the
middle slice, and estimating the parameters of a rigid-body motion between each time frame
and the median volume of a run, followed by spatial resampling across frames. The fMRI
time series were then corrected from slow time drifts (high-pass filter with a 0.01 Hz cut-off,
using a discrete cosines transform) and physiological noise using an automated labeling of
noise components in an individual independent component analysis, ICA [40]. Finally, the
median volume of one selected fMRI run for each subject was coregistered (restricted to
the brain) with the corresponding s-MRI scan using Minctracc [39]. The rs-fMRI to s-MRI
transform and s-MRI to template (non-linear) transform were combined to resample the rs-
fMRI volumes into MNI space at a 3 mm isotropic resolution and the results were spatially
smoothed with a 6 mm FWHMGaussian filter. Shared rs-fMRI outputs include: denoised rs-
fMRI volumes in MNI space (compressed 4D NIfTIs, nii.gz), the mean / standard deviation
rs-fMRI volumes and brain mask in native and template space (.nii.gz), six parameter head
motion traces (HDF5 .mat files) as well as individual ICA reports (.pdf).

Time series for functionally defined regions. A region-growing algorithm [41] based on the it-
erative merging of mutual-nearest-neighbours was implemented to generate functional brain
parcellations. The spatial dimension was selected arbitrarily by specifying the size where the
growing process should stop, measured in mm3. Two parameters (1000 mm3 and 330 mm3)
were selected, resulting in the ROI1000 and ROI3000 parcellations, which include roughly
1000 and 3000 ROIs covering the grey matter, respectively. The region growing was applied
on the time series concatenated across all participant’s rs-fMRI data (after correction to
zero mean and unit variance) from the KKI site (training data only). The homogeneity of
regions was thus maximized on average for all subjects, and the regions were identical for all
subjects. To limit the amount of memory required by the region-growing procedure, it was
applied seperatedly in each of the 116 areas of the AAL template [18]. The average time
series for each ROI were extracted for both parcellations and are distributed in individual
HDF5 (.mat) files. The ROI1000 and ROI3000 parcellations are also available as compressed
3D NIfTI files (.nii.gz).

3.3.3. Quality control

Outputs of the NIAK pipeline were subjected to a careful visual inspection and the
results quality calls, along with head motion statistics, are available on the NIAK description
page 17. Estimates of the maximum motion (translation and rotation) between consecutive
functional volumes for each rs-fMRI dataset were inspected to categorize the datasets as
containing minimal (¡1mm or degree), moderate (2 to 3 mm or degrees) or severe motion
(¿3 mm or degrees). The individual results of the NIAK pipeline were visually inspected
by M. Chouinard-Decortes for quality of the registration between rs-fMRI and s-MRI data,

17http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:NIAKPipeline#Quality_

control_of_the_preprocessing_-_Training_dataset
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registration of s-MRI data to template space, and for common artefacts such as ghosting and
signal loss. When substandard registration outcomes were identified, a parameter controlling
the non-uniformity correction of the s-MRI was adjusted and the analysis was repeated until
the coregistration results were satisfactory. To aid in further quality control, the motion
statistics are distributed in comma-seperated values format (.csv) for each site. Additionally
the average structural and functional scans after linear and non-linear transformations and
the average of all anatomical and functional brain masks for each site of the training and
test samples are included as compressed nifti format (.nii.gz)[42].

Table 1: ADHD-200 participants by site. BHBU: Bradley Hospital/ Brown University, KKI: Kennedy
Krieger Institute, NI: NeuroIMAGE sample, NYU: New York University Child Study Center, OHSU: Oregon
Health Sciences University, PKU: Peking University, Pitt: University of Pittsburgh, WUSTL: Washington
University at Saint Louis, avg.: average. ∗Diagnostic labels are currently not available for BHBU, they have
been listed as TDC in the table, but not included in the totals.

TDC ADHD
Site Sex N Age Range (avg.) N Age Range (avg.)

BHBU F 17∗ 8 - 18 (13.8) 0 -
M 9∗ 12 - 18 (16.1) 0 -

KKI F 28 8 - 12 (10.3) 10 8 - 13 (9.9)
M 41 8 - 13 (10.4) 15 8 - 13 (10.1)

NI F 25 12 - 26 (18.8) 5 12 - 20 (15.2)
M 12 13 - 25 (17.9) 31 11 - 21 (17.1)

NYU F 55 7 - 18 (12.2) 34 7 - 17 (10.1)
M 56 7 - 18 (12.0) 117 7 - 18 (11.2)

OHSU F 40 7 - 12 (9.0) 13 7 - 11 (8.9)
M 30 7 - 12 (9.5) 30 7 - 12 (8.9)

PKU F 59 8 - 15 (10.9) 10 9 - 16 (10.9)
M 84 8 - 15 (11.8) 92 8 - 17 (12.2)

Pitt F 44 10 - 20 (15.7) 1 15
M 50 10 - 19 (14.5) 3 14 - 17 (15.7)

WUSTL F 28 7 - 22 (11.3) 0 -
M 33 7 - 22 (11.5) 0 -

Totals F 279∗ 7 - 26 (12.3) 73 7 - 20 (10.4)
M 306∗ 7 - 25 (12.1) 288 7 - 21 (11.9)

4. Usage recommendations

The ADHD-200 Sample was originally created to identify rs-fMRI based biomarkers of
ADHD; however, the dataset provides ample opportunity for further analyses [43]. With 585
TDC participants between the ages of 7 and 26, and the inclusion of intelligence measures,
the ADHD-200 Preprocessed is a valuable resource for mapping developmental trajectories
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[44–46] and other sources of inter-individual variation [47]. Perhaps most exciting are new
methods that cluster individuals based on connectivity profiles [48, 49], which are provid-
ing new hope for using neuroimaging data to parse the heterogeneity within mental health
disorders [50]. One of the outstanding needs for neuroimaging, and connectomics in par-
ticular, is the development and validation of new analytical tools and processing strategies
[43, 51, 52]. In the service of this aim, the ADHD-200 Preprocessed repository has the
necessary components to become a benchmark dataset for evaluating new tools as they are
proposed.

The two biggest challenges for using the ADHD-200 Preprocessed data are head motion
[53–58] and inter-site variation in the acquisition equipment, parameters, and experimental
procedures [59, 60]. A variety of different approaches have been proposed for addressing head
motion in hyperkinetic populations [53, 61], and in the ADHD-200 Sample in particular [56],
that should be considered when analyzing the data. At the very least, some statistic that
characterizes individual motion (such as root mean square deviation [62]) should be included
as a nuisance regressor in the group-level model [55, 57]. Differences in the manner in which
data was collected at each site can introduce addition and multiplicative effects (batch
effects) to the data, which may obscure the underlying biological signal [59, 60]. Including
a regressor for acquisition protocol (see Tables 2 and 3 for a summary of the different
protocols), the average pairwise correlation between all regions in the brain (GCOR) [63], or
the whole-brain average of the feature under inquiry [60], have all been shown to be effective
for dealing with inter-site variation.

Beyond personal ideology, or the availability of particular features, there is no clear rea-
son to prefer one pipeline over the other. Hopefully, the presence of multiple pipelines will
enable researchers to compare the robustness of their tools or analysis results to different
processing choices. It isn’t clear which of the parcellations provide the optimal time series,
although there is growing consensus that functionally-defined brain regions represent the
brain’s intrinsic connectivity better than structurally-defined parcellations [25, 64, 65]. Sim-
ilarly, it isn’t clear which scale of parcellation is optimal. While smaller parcels tend to be
better at representing connectivity present at the voxel-scale [25, 41, 65], fewer parcels may
be more manageable or adapted for specific algorithms [66, 67, e.g.].

5. Conclusions

The ADHD-200 Preprocessed initiative was successful in its primary objectives: the
derivatives shared in the repository were effectively used by many researchers during and
after the ADHD-200 Global Competition, with over 10,500 downloads by more than 600
users, as well as 49 resulting publications [34, 59, 68–114], three PhD theses [115–117], three
master’s dissertations [118–120] and one patent [121] derived from the release in just over
three years, with further publications in press or under review. The resource also expanded
the boundaries of the traditional neuroimaging community, with several publications in
engineering and statistics journals that do not routinely feature neuroimaging applications
[e.g. 68, 69, 71, 72, 75–78, 83, 95–97, 99, 108, 109, 111, 112]. In particular, the winning
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team of the ADHD-200 Global Competition was based at the Johns Hopkins Biostatistics
Department and used ADHD-200 Preprocessed to develop their diagnostic algorithm [91].

The impact of the ADHD-200 Preprocessed repository demonstrated the need for re-
ducing computational barriers to participation in discovery neuroscience, including but not
limited to machine learning competitions based on neuroimaging data. We do not plan to
expand or update the ADHD-200 Preprocessed release as such, which we hope will continue
to serve as a legacy benchmark dataset. We still believe that a much larger-scale effort will
be necessary to unlock the full potential of openly shared neuroimaging data in the service
of accelerating neuroimaging research. Current initiatives include a larger number of alter-
native analytical workflows as well as a careful harmonization of processing, quality control,
and data packaging strategies. Our hope is that ADHD-200 Preprocessed and future related
efforts will critically help fMRI researchers to identify optimal analytical paths for a given
task.
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Table 2: Structural MRI acquisition parameters by site. Seq: imaging sequence, FA: flip angle, TE: echo time, TR: repetition time, TI:
inversion recovery delay, PA: parallel acquisition, Res: voxel resolution, BHBU: Bradley Hospital/ Brown University, KKI: Kennedy Krieger
Institute, NI: NeuroIMAGE sample, NYU: New York University Child Study Center, OHSU: Oregon Health Sciences University, PKU: Peking
University, Pitt: University of Pittsburgh, WUSTL: Washington University at Saint Louis, Trio: Siemens TIM Trio 3T, Allegra: Siemens
Allegra, Avanto: Siemens Avanto, MPRAGE: magnetization prepared rapid gradient echo, S: sensitivity encoding (SENSE), G: generalized
auto-calibrating partially parallel acquisition (GRAPPA)

Site Scanner Seq FA TE TR TI PA Res.

BHBU Trio 3T 3D MPRAGE 9◦ 2.98 ms 2250 ms 900 ms None 1.00× 1.00× 1.00 mm3

KKI Phillips 3T 3D MPRAGE 8◦ 3.7 ms 3500 ms 1000 ms S ×2 1.00× 1.00× 1.00 mm3

NI Avanto 1.5T 3D MPRAGE 7◦ 2.95 ms 2730 ms 1000 ms G ×2 1.00× 1.00× 1.00 mm3

NYU Allegra 3T 3D MPRAGE 7◦ 3.25 ms 2530 ms 1100 ms None 1.30× 1.00× 1.30 mm3

OHSU Trio 3T 3D MPRAGE 10◦ 3.58 ms 2300 ms 900 ms None 1.00× 1.00× 1.10 mm3

PKU 1 Trio 3T 3D MPRAGE 7◦ 3.39 ms 2530 ms 1100 ms None 1.30× 1.00× 1.30 mm3

PKU 2 Trio 3T 3D MPRAGE 7◦ 3.45 ms 2530 ms 1100 ms None 1.00× 1.00× 1.00 mm3

PKU 3 (1) Trio 3T 3D MPRAGE 12◦ 3.67 ms 2000 ms 1100 ms None 0.94× 0.94× 1.00 mm3

PKU 3 (2) Trio 3T 3D MPRAGE 10◦ 2.60 ms 1950 ms 900 ms None 1.00× 1.00× 1.30 mm3

PKU 3 (3) Trio 3T 3D MPRAGE 7◦ 3.37 ms 2530 ms 1100 ms None 1.00× 1.00× 1.33 mm3

PKU 3 (4) Trio 3T 3D MPRAGE 12◦ 3.92 ms 1770 ms 1100 ms None 0.50× 0.50× 1.00 mm3

PKU 3 (5) Trio 3T 3D MPRAGE 8◦ 2.89 ms 845 ms 600 ms None 1.02× 1.02× 1.30 mm3

Pitt Trio 3T 3D MPRAGE 8◦ 3.43 ms 2100 ms 1050 ms None 1.00× 1.00× 1.00 mm3

WUSTL Trio 3T 3D MPRAGE 8◦ 3.08 ms 2400 ms 1000 ms G ×2 1.00× 1.00× 1.00 mm3
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Table 3: Resting state fMRI acquisition parameters by site. Seq: imaging sequence, FA: flip angle, TE: echo time, TR: repetition
time, PA: parallel acquisition, Nslc: number of slices, Th.: slice thickness, Slc. Acq.: slice acquisition order, NTR: number of measurements
(TRs), BHBU: Bradley Hospital/ Brown University, KKI: Kennedy Krieger Institute, NI: NeuroIMAGE sample, NYU: New York University
Child Study Center, OHSU: Oregon Health Sciences University, PKU: Peking University, Pitt: University of Pittsburgh, Pitt 2: U. Pitt.
parameters used for acquiring the testing data, WUSTL: Washington University at Saint Louis, EPI: echo planar imaging, PACE: Prospective
Acquisition CorrEction (EPI with prospective motion correction), S: sensitivity encoding (SENSE), G: generalized autocalibrating partially
parallel acquisition (GRAPPA), int+: slices were acquired interleaved ascending, seq+: slices were acquired sequentially ascending, var.:
the number of measurements varies across datasets, fixate: participants were asked to keep their eyes open and fixate on an image, closed:
participants were asked to keep their eyes closed, open: participants were asked to keep their eyes open.

Site Seq FA TE TR PA Nslc Th. Slc. Acq. Resolution NTR Instructions

BHBU PACE 90◦ 25 ms 2000 ms None 35 3 mm int+ 3.0× 3.0 mm2 256 fixate
KKI EPI 75◦ 30 ms 2500 ms S ×3 47 3 mm seq+ 3.0× 3.0 mm2 128 fixate
NI EPI 80◦ 40 ms 1960 ms G ×2 37 3 mm int+ 3.5× 3.5 mm2 266 eyes closed
NYU EPI 90◦ 15 ms 2000 ms None 33 4 mm int+ 3.0× 3.0 mm2 180 eyes closed
OHSU EPI 90◦ 30 ms 2500 ms None 36 3.8 mm int+ 3.8× 3.8 mm2 82 fixate
PKU 1 EPI 90◦ 30 ms 2000 ms None 33 4.2 mm int+ 3.1× 3.1 mm2 240 closed or fixate
PKU 2 EPI 90◦ 30 ms 2000 ms None 33 3.6 mm int+ 3.1× 3.1 mm2 240 closed or fixate
PKU 3 EPI 90◦ 30 ms 2000 ms None 30 4.5 mm int+ 3.44× 3.44 mm2 240 closed or fixate
Pitt EPI 70◦ 29 ms 1500 ms G ×2 29 4.0 mm int+ 3.1× 3.1 mm2 200 open or closed
Pitt 2 EPI 90◦ 30 ms 3000 ms None 46 3.5 mm int+ 3.8× 3.8 mm2 128 open or closed
WUSTL EPI 90◦ 27 ms 2500 ms None 32 4.0 mm int+ 4.0× 4.0 mm2 var. fixate
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Table 4: Summary of the characteristics of all brain parcellations used in the ADHD-200

Preprocessed release. Sizes for the parcels are reported in mm3.

Name Type # parcels mean size std size min size max size
AAL structural 116 16726 11896 768 55552
EZ structural 116 15880 11059 1344 52608
HO structural 111 14540 15342 64 99200
TT structural 97 17106 16164 64 70400
CC200 functional 190 11351 2001 2880 17856
CC400 functional 351 6144 1207 64 10048
ROI1000 functional 954 1404 366 27 2781
ROI3000 functional 2843 471 109 27 1026

24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 17, 2016. ; https://doi.org/10.1101/037044doi: bioRxiv preprint 

https://doi.org/10.1101/037044
http://creativecommons.org/licenses/by/4.0/

