
Isoform-level gene expression patterns in single-cell RNA-
sequencing data 

Trung Nghia Vu1, Quin F Wills2,3, Krishna R Kalari4, Nifang Niu5, Liewei Wang5, Yudi Pawitan1 and 
Mattias Rantalainen1,* 

1Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE 17177, 
Sweden 
2Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK 
3Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK 
4Department of Health Science Research, Mayo Clinic, Rochester, 55905, USA 
5Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, 55905, USA 
 
* To whom correspondence should be addressed. Tel: +46 (0) 8-524 824 65; Fax: +46 (0)8-31 49 75; Email:	
mattias.rantalainen@ki.se	 

ABSTRACT		

RNA-sequencing of single-cells enables characterization of transcriptional heterogeneity in seemingly 

homogenous cell populations. In this study we propose and apply a novel method, ISOform-Patterns 

(ISOP), based on mixture modeling, to characterize the expression patterns of pairs of isoforms from 

the same gene in single-cell isoform-level expression data. We define six principal patterns of isoform 

expression relationships and introduce the concept of differential pattern analysis. We applied ISOP 

for analysis of single-cell RNA-sequencing data from a breast cancer cell line, with replication in two 

independent datasets. In the primary dataset we detected and assigned pattern type of 16562 

isoform-pairs from 4929 genes. Our results showed that 78% of the isoform pairs displayed a mutually 

exclusive expression pattern, 14% of the isoform pairs displayed bimodal isoform preference and 8% 

isoform pairs displayed isoform preference. 26% of the isoform-pair patterns were significant, while 

remaining isoform-pair patterns can be understood as effects of transcriptional bursting, drop-out and 

biological heterogeneity. 32% of genes discovered through differential pattern analysis were novel 

and not detected by differential expression analysis. ISOP provides a novel approach for 

characterization of isoform-level expression in single-cell populations. Our results reveal a common 

occurrence of isoform-level preference, commitment and heterogeneity in single-cell populations. 

INTRODUCTION 

The emergence of single-cell RNA sequencing (scRNAseq) enables characterization of gene 

expression variability on the single-cell level (1, 2). Prior to the advent of scRNAseq, typical gene 

expression measurements were only possible based on the average expression level over a large 

number of cells (bulk-cell RNAseq), which effectively excluded the possibility to study gene 

expression heterogeneity at the single cell level. 

Single-cell sequencing has been applied in a wide range of research areas to date, including studies 

of circulating tumor cells (1, 3), breast cancer (4), prostate cancer (5), transcriptional dynamics (6), 

cell cycle (7), tissue heterogeneity (8) and cell-to-cell variation in alternative splicing via isoform-level 
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expression analysis (9–11). Multiple recently published reviews (2, 12, 13) provide excellent and 

broad introduction to single-cell sequencing. 

Transcriptional isoforms are defined as mRNA molecules of different length and exon composition 

originating from the same locus, which code for multiple forms of the corresponding protein. 

Transcriptional isoforms arise as mRNAs are produced from different transcriptional starting sites, 

terminated at different polyadenylation sites or as a consequence of alternative splicing (14, 15). 

There are numerous studies of alternative splicing in the context of bulk-cell RNAseq, including 

studies of tissue-level regulation of isoform expression (16) and prediction and quantification of 

alternative isoforms (17, 18). 

To date there are relatively few studies published that are focused on characterization of isoform-level 

expression at the single-cell level. Potentially novel splice junctions were discovered after studying 

alternative splicing in single cells (10, 19). Shalek et al. (9) described bimodality in the expression of 

genes and isoforms in scRNAseq data and preference of individual cells to express a particular 

isoform from genes with multiple isoforms was investigated, although this study was based on a 

limited dataset with RNAseq data from only 18 cells. In another study (11), statistical modeling was 

applied to characterize 3’ isoform choice variability in single cells via a transcriptome-wide analysis of 

scRNAseq data from 48 single-cells using BATSeq (11), which is a sequencing methodology with a 

prominent 3’ end sequencing bias. Recently, Welch et al (20) introduced a statistical model to detect 

isoform usage that shows significant biological variation through the contrast of variance of isoform 

ratios to technical noise estimated from alternative splicing modules. 

In this study we propose a novel method, ISOform-Patterns (ISOP), for analysis and characterization 

of single-cell isoform-level gene expression data. ISOP enables analysis of single-cell preference, 

commitment and heterogeneity of isoform level expression. Based on this method, we defined a set of 

six principal patterns of isoform expression relationships between isoforms from the same gene, 

including isoform preference, bimodal isoform preference, and mutually exclusive expression 

commitment. We apply ISOP for analysis of scRNAseq data from a breast cancer cell line (MDA-MB-

231, N=327 cells), with replication in two independent single-cell datasets, with the aim of 

systematically characterizing the extent and nature of single-cell isoform-level expression patterns. 

We also assess to what extent isoform patterns arise randomly due to the distributional properties of 

single-cell RNA expression, and finally we demonstrate how ISOP can be applied for differential 

isoform pattern (DP) analysis. 

MATERIAL AND METHODS 

Datasets 

The primary dataset include 384 single-cell RNA sequencing samples from triple-negative breast 

cancer cell line (MDA-MB-231) of which half were treated with metformin.  Specifically, MDA-MB-231 

cell was cultured in ATCC-formulated Leibovitz's L-15 Medium (Manassas, VA) supplemented with 

10% fetal bovine serum (FBS, Atlanta Biologicals, Flowery Branch, GA) and incubated at 37°C 
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without CO2. Cells were plated into 6-well plate at a seeding density of 6×104 cells/well and were 

treated with or without 1mmol/L metformin (Sigma-Aldrich, St. Louis, MO) after 24 hours of incubation. 

Fresh medium and drug were replaced every 24 hours. After 5 days of drug treatment, cells were 

resuspended and single-cells were captured using the Fluidigm C1 system immediately. Two 

independent cell culture batches were used from which 2 x 96 untreated cells (control) were captured, 

and 2 x 96 treated cells were captured. Furthermore, cells were captured on two different C1 

machines in an orthogonal design in relation to the treatment groups. Sequencing libraries were 

prepared using the standard Fluidigm protocol based on SMARTer chemistry and Illumina Nextera 

XT. RNA sequencing of 100 bp paired-end reads was carried out on an Illumina HiSeq with 4.9 million 

reads / cell on average. 

The first public dataset consists of 96 cells from HTC116 cell-line extracted from a public dataset (21). 

Single-cells were captured using the Fluidigm C1 system and sequencing libraries for Illumina 

sequencing were prepared based on SMARTer chemistry and Illumina Nextera XT. The 96 libraries, 

divided into two pooled samples of 48 libraries and sequenced on two lanes on a Illumina HiSeq. For 

further details, see the original paper (21). 

The second public dataset include 305 cells from primary human myoblasts (6) after eliminating 

samples with debris, without cells and or many cells (bulk-cell). Single-cells were captured using the 

Fluidigm C1 system and sequencing libraries for Illumina sequencing were prepared based on 

SMARTer chemistry and Illumina Nextera XT. The further details, see the original publication (6). 

Data preprocessing 

The Fastq files from the primary dataset (MDA-MB-231) for single-cell RNAseq were processed 

through MAP-RSeq pipeline (22) to assess the quality of reads which includes determination of cells 

with no or low reads, assessment of duplicate reads, inspection of gene-body coverage, estimation of 

distance between paired-end reads, and evaluation of sequencing depth. The Fastq files were 

mapped to human hg19 UCSC annotation reference using Tophat (23) and Bowtie (24) to create bam 

files. In all further analyses, we used the same type of annotation reference but updated from 

igenomes (http://support.illumina.com/sequencing/sequencing_software/igenome.html). In practice, 

only annotation information of chromosomes chr1 to chr22, chrX and chrY were used to extract 

isoform and gene expression. Cufflinks (18) version 2.2.1 were used to estimate the abundances of 

gene and isoform expression from the bam files. For the public datasets, we also applied Tophat (23) 

and Bowtie (24) with the same annotation reference for read alignments, and further Cufflinks (18) for 

quantifying isoform level expression values. 

The MDA-MB-231 dataset was subsequently preprocessed further by excluding 57 samples 

corresponding to empty wells (39 samples) and atypical samples (18 outliers) identified by Principal 

Component Analysis. In addition, the isoforms expressed in less than 1% of samples were filtered out 

from the further analysis. Isoforms were considered as expressed if their read counts were ≥ 3 in a 

cell. After pre-processing the isoform-level dataset contained 21728 isoforms, of which 13863 
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isoforms from 4929 genes were multiple-isoform genes, and scRNAseq data from 327 single-cells 

were available for analysis, of which 162, nearly a half of samples, were from the metformin treated 

group. Gene-level gene expression of this dataset comprised 13073 genes that were also extracted 

from the Cufflinks. The HTC116 dataset consisted of 26723 isoforms from 96 single cells and the 

myoblast dataset included 25623 isoforms from 305 single cells. 

Patterns of isoform expression 

To characterize isoform-level gene-expression patterns in scRNAseq data and to detect potential 

subpopulations of cells, log expression differences Δi,j,a,b (Eq 1) between pairs of isoforms {a, b} of a 

single gene (j) at cell i from a population of N cells (i = 1 … N) were modeled using a Gaussian 

mixture model approach (Eq 2-3). Where yi,j,a and yi,j,b represent the log expression of isoform a and 

isoform b in cell i, parameter wk is the mixing weight for component k in the model and K is the total 

number of components in the model. In our analyses K was constrained to ≤ 3. For simplicity, indexes 

relating to gene (j) and cell (i) were omitted from Eq 2 and Eq 3. 

Δ!,!,!,! = !!,!,! − !!,!,!  Eq 1  

! Δ!,! =  !! 

!

!!!
! Δ!,! !! ,!!  Eq 2  

!! 

!

!!!
= 1 (Eq 3) 

Model selection to determine the number of components of each mixture model was done by Akaike 

Information Criterion (AIC) scores with the additional requirement that the smallest weight (wk) had to 

be >0.025, and that the standard deviation of all components were greater than 0.01. Mixture models 

were fitted using a computationally efficient histogram-based method implemented in the OCplus 

package (25). Fitting of the mixture models using the OCplus algorithm reduces data to a histogram 

defined by equally spaced bins weighted by the number of data points in each bin, here the number of 

bins was set to the square root of the number of data points (number of cells). Based on the mixture 

model approach, we define six principal isoform-pair patterns (see Results section). The method, 

ISOform-Patterns (ISOP), was implemented in the R package ISOP (version 0.99.0 was used in the 

analyses in this study), available at (https://github.com/nghiavtr/ISOP) under a GPL-3 license. 

Test for non-randomness of isoform-pair distributions 

To test if an isoform pair distribution was significantly non-random, we applied the χ2 goodness-of-fit 

test combined with a permutation-based approach. For an isoform pair {a, b}, we permute the isoform 

vectors and calculate Δa,b,perm, which is the expression difference between the permuted isoform a and 

isoform b vectors, 10000 permutations were applied. Next, we estimate the mean, E(Δa,b,perm), from 

the permutations and for each bin. The permutation-based null distribution was derived from the χ2 

goodness-of-fit test of kth permuted isoform pairs Δa,b,perm(k) and E(Δa,b,perm). The observed test statistic 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 16, 2016. ; https://doi.org/10.1101/036988doi: bioRxiv preprint 

https://doi.org/10.1101/036988
http://creativecommons.org/licenses/by-nc-nd/4.0/


was derived from the χ2 goodness-of-fit test between Δa,b and E(Δa,b,perm). Finally, a p-value was 

computed by comparing the observed test statistic with the permutation-based null distribution of the 

χ2 statistic. To determine significant (non-random) isoform-pairs, false discovery rate (FDR) was 

estimated from p-values using Benjamini & Hochberg (BH) multiple testing method (26). 

Differential pattern analysis 

We test if a treatment effect (metformin exposure) was associated with the probability of cells of 

being clustered into a particular mixture model component in the isoform pattern models, which would 

suggest a treatment effect on the distribution of isoform pairs. For each mixture model with more than 

one component, we assigned individual cells to components (cluster labels) based on the estimate of 

the probability that cell i belongs to component k. Subsequently, we applied a permutation test to test 

the association between the cluster labels and the metformin treatment status. In the permutation test 

we permuted the metformin treatment factor (10000 permutations). Next, we established a null-

distribution from the χ2 statistics of chi-squared test between the cluster labels and the permuted 

group labels. Finally, we computed the χ2 statistic of chi-squared test between cluster labels and the 

true group labels, and compared it to the permutation-based null distribution to obtain a permutation-

based p-value. False discovery rate (FDR) was estimated from the p-values using Benjamini & 

Hochberg (BH) multiple testing method (26). 

Differential expression analysis 

To identify differentially expressed (DE) isoforms, we applied a linear model as implemented in the 

limma package version 3.22.1 (27), accounting for the mean-variance trend in the data, which has 

also be applied for analysis of RNAseq data (28). Prior to the differential expression analysis, the 

count dataset was expressed as log-counts per million (cpm) using functionality in the edgeR package 

version 3.8.2 (29). We accounted for culture batch effect and machine effect in the experimental 

design matrix in the limma analysis of the primary dataset. We applied a permutation test to identify 

DE isoforms. First, 100 permuted datasets were generated by randomly permuting group labels. Next, 

the moderated t-statistics (extracted from limma) of isoforms from the actual dataset and the 

population of the moderated t-statistics of the isoforms from permutated datasets were used to 

calculate empirical p-values of the isoforms. Finally, false discovery rate (FDR) were estimated by 

adjusting empirical p-values using Benjamini & Hochberg (BH) correction (26). DE isoforms were 

defined as isoforms with FDR values less than or equal to 5%. 

RESULTS 

We developed and applied a method (ISOP) for transcriptome-wide analysis of the co-variability of 

expression levels in pairs of isoforms (a and b) from the same gene in scRNAseq data. ISOP utilizes 

a Gaussian mixture model approach to model isoform expression difference (Δa,b) on a log scale (see 

Methods for details). Based on the estimated mixture model parameters including the number of 

components and the location of the components, expression patterns of pairs of isoforms in individual 
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genes can be systematically characterized and described by a small set of principal isoform 

expression patterns. The isoform expression patterns can be interpreted in terms of single cell isoform 

expression preference, commitment and heterogeneity. 

Principal patterns 

Based on ISOP, we define six distinct patterns of isoform expression (Figure 1) with characteristics 

outline in the rest of this section. 

I-pattern 

A single-component model defines this pattern. Thus, there is no cell-to-cell heterogeneity in the 

isoform pair. However, if the mean of the mixture component is distant from zero, this indicates that 

one isoform is preferred over the other isoform (preference). 

II-pattern 

This pattern is an extension of the I-pattern with an additional mixture component capturing the zero-

inflation of cells where isoform expression is not detected, or where isoforms are expressed at close 

to equal amounts in both isoforms. The II-patterns represents isoform preference in a subset of cells. 

V-pattern 

A two-component mixture model defines the V-pattern, in which the means of the two components 

share the same sign. However, unlike the I-pattern, which has a unimodal distribution in both 

isoforms, the V-pattern generally has a unimodal expression in one of the isoforms, while the other 

isoform bimodal distribution. Thus, the V-pattern is defined by a bimodal isoform preference that 

indicates cell-to-cell heterogeneity caused by prominent bimodality in one of the two isoforms. 

VI-pattern 

This pattern is an extension of the V-pattern with an additional component in the mixture model with 

its mean close to zero (in analogy to how the I-pattern extends the II-pattern). Thus, the VI-pattern 

represents the bimodal isoform preference of a subset of cells in population. 

X-pattern 

A three-component mixture model defines the X-pattern. Different from the previous pattern types, the 

X-pattern has two components with the location parameters (mean) of opposite sign and a third 

component accounting for the zero-inflation. This pattern captures pairs of isoforms with mutually 

exclusive expression (mutually exclusive isoforms, MXIs), with similarities to the concept of mutually 

exclusive exons (MXEs) (16). The X-pattern represents a mutually exclusive expression commitment 

that can be interpreted as an indication of commitment of individual cells to express either one of the 

isoforms, but not both, representing a particular type of inter-cell heterogeneity. 

XI-pattern 
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This is an extension to the X-pattern where the component located close to zero accounts for both 

zero-inflation and cells where the two isoforms are expressed at close to equal. Thus, the XI-pattern 

represents a mutually exclusive expression commitment in a subset of the cell population. 

Classification and observed frequencies of isoform patterns 

We applied ISOP for analysis of 13863 isoforms from 4929 multiple-isoform genes in the MDA-MB-

231 single-cell dataset. We detected and assigned pattern type to 16562 isoform-pairs (Figure 2a). 

We found that 0.2% of the isoform pairs were classified as I-pattern and 8.1% pairs were classified as 

the related II-pattern. More than a half (55.2%) of the I-patterns were consistent with isoform 

preference, defined by the absolute mean of the mixture component >0.5 on the log scale, marked by 

stars in the panel I-pattern of Figure 3a. In contrast, the V-pattern and its extension, the VI-pattern, 

had proportions in a similar range, 5.7% and 8.2%, respectively (13.9% in total). The X-pattern and 

XI-pattern were the most common patterns, accounting for 77.9% of the isoform pairs, of which 17.2% 

were MXIs. 

We applied a permutation test (see Methods) to assess to what extent isoform-pair patterns were 

significant (non-random, FDR ≤ 0.05). We found 4309 (26.0%) significant isoform patterns in total 

(Table 1). The I-pattern and II-pattern were the least common patterns (Figure 2a), while they had the 

highest proportions of significant isoform-pair patterns, 62.1% and 39.3% for I-pattern and II-pattern 

respectively. The X-patterns were the second most common pattern (Figure 2a), while only 3.1% of 

these were statistically different from the permutation-based null distribution. A total of 3213 (32.0%) 

of the XI-pattern isoform-pairs were found to be significant, representing the most commonly 

observed significant isoform pattern. 

Next, we investigated how common expression sparsity induced isoform patterns were. We define 

sparsity of expression as the proportion of cells where expression levels were below detection limit, 

so that an isoform with low sparsity has detectable expression levels from most cells. We found that 

the X-pattern was mainly detected in isoform pairs with high sparsity (Figure 3a), suggesting that the 

great majority of X-pattern isoform pairs are likely to arise as a direct consequence of sparsity, which 

can be caused by e.g. transcriptional bursting, biological cell-to-cell heterogeneity or due to the 

sensitivity limitations of scRNAseq (including transcript drop-out effects). Next, we assessed the 

distribution of the proportion of cells with zero detected reads in both isoforms in a pair, a quantity 

directly related to the sparsity of Δa,b, which is the quantity modeled in the mixture models (Figure 3b). 

It is evident that the significant patterns (in red color) usually consist of two low sparsity isoforms, with 

the exception of the I-pattern and II-pattern. Thus, overall 26.0% of all isoform-pairs were found to be 

significant (non-random), while a large fraction of non-significant isoform-pairs are likely to be induced 

by sparsity in the isoform-level expression data. 

To replicate these results, we applied the ISOP method for analysis of two additional public datasets 

(HTC116 dataset and myoblast dataset, see Methods) and found that the same patterns were also 

present in these data sets. There were 23712 and 22763 isoform pairs in the HTC116 dataset and 
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myoblast dataset respectively. The proportions of patterns in these datasets (Figure 4a and Figure 

4b) were similar to the proportions observed in the MDA-MB-231 dataset, where the X-pattern and the 

XI-pattern were the most common. The HTC116 dataset and the myoblasts dataset (Table 2) had 

5.1% and 22.8% significant patterns, respectively. Similar to the results of the MDA-MB-231 dataset, 

the non-random isoform-pairs that were annotated as X-patterns in the both datasets account for the 

smallest proportions as compared to other patterns, 0.6% in the HTC116 dataset and 3.0% in the 

myoblast dataset. 

Association of isoform patterns with genomic features 

We then assessed if isoform patterns were associated with different transcription start site (TSS), the 

number of annotated isoforms of the gene, chromosome location and average expression level. In 

following analyses we merge I, V and X patterns with their corresponding extension patterns. We 

observed that the number of isoform pairs originating from the same TSS is more than twice as 

common (2.38 times, across all patterns) compared with pairs originating from different TSS, 

compared to a ratio of 1.63 times observed in the reference transcriptome (Figure 2b). Thus, across 

all detected patterns, isoform pairs from the same TSS are more frequently observed than those 

originating from different TSS. The number of isoforms in each gene positively correlates with the 

proportion of the X-pattern (r = 0.92), negatively correlates with the proportion of I-pattern and V-

pattern (r = -0.82 and r = -0.94) (Figure 2c). Hence, genes with many isoforms tend to have a higher 

proportion X-patterns and lower proportion I-pattern and V-pattern. There was no association between 

pattern type and the chromosome on which the gene is located (Figure 2d). Finally, we investigated to 

what degree the different isoform patterns were associated with gene-level expression. We grouped 

genes into three groups: low, medium and high expression defined by quartiles of average gene 

expression (<1st quartile, >1th quartile & <3rd quartile, >3rd quartile). Most isoform pairs belonged to the 

high expression group (45.6%) or the medium expression group (46.8%); while only a small 

proportion  (7.6%) of these are from low expression group (Figure 2e). 

Isoform patterns provide a novel way to assess biological effects in scRNAseq data 

Next, we tested for associations between a treatment (metformin exposure) and proportion of cells in 

each mixture model component (see Methods for details). An association between a treatment effect 

and the proportion of the cells in each mixture component would indicate an effect of the treatment on 

the isoform-level expression pattern. Figure 2f displays the distribution of empirical p-values from the 

association tests, suggesting an enrichment of low p-values. A total of 80 isoform pairs were defined 

as significant (FDR ≤ 0.05) from 54 genes. We define these genes as differential-pattern genes (DP 

genes) to distinguish them from differentially expressed genes (DE genes). Of these isoform pairs 19 

(23.8%) were found to be significant and non-random (FDR ≤ 0.05) in respect to the distribution of Δa,b, 

using the previously described permutation test. However, non-significant results in respect to the 

distribution of Δa,b does not provide evidence that excludes the possibility of true treatment effects on 

the proportion of treated cells in the mixture components in these patterns, only that the overall 

distribution of Δa,b could have occurred by chance or induced by e.g. sparsity. A total of 37 (68.5%) of 
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the DP genes had at least one of the two isoforms differently expressed (DE), and 5 of these DP 

genes were from isoform pairs (9.3%) with two DE isoforms. Furthermore, 17 DP genes (31.5%) did 

not have either of the two isoforms differentially expressed. The DP unique genes were: NABP1, 

SMN2, BTN3A3, CLIC1, CEP85L, ERLIN2, CDK1, TMEM136, DAZAP2, PMP22, SPECC1, ACTG1, 

NFIC, TNPO2, NFATC2, CDC45, and BCAP31. 

DISCUSSION 

A unique property of single-cell transcriptomic profiling is the ability to characterize cell-to-cell 

heterogeneity in cell populations. Our objective was to investigate cellular heterogeneity in isoform-

level gene expression based on scRNAseq profiling. We proposed a novel method, ISOform-Patterns 

(ISOP), using a mixture model to model and categorize isoform pairs into principal isoform expression 

patterns. 

We described six principal patterns of isoform expression, which interpretation in respect to isoform 

preference, bimodal isoform preference and mutually exclusive isoform expression commitment. Each 

pattern type represents a specific expression relationship between a pair of isoforms from the same 

gene. The I-pattern characterizes isoform preference in the cell population of one isoform over the 

other isoform. The V-pattern expresses a bimodal isoform preference indicating cell-to-cell 

heterogeneity associate with one level of expression of one isoform and two levels of expression of 

the other isoform in the cell population. The X-pattern describes a mutually exclusive expression 

commitment pattern of the cells to express either one of the isoforms, but not both. The II-pattern, VI-

pattern and XI-pattern are extensions of I-pattern, V-pattern and X-pattern respectively where a 

subset of cells display the pattern. The type of isoform preference of cells reported in previous studies 

(9, 11) can be accounted for by the I-pattern, V-pattern, or their respective extensions. Isoform 

commitment, as defined by mutually exclusive isoform expression (the X-pattern and XI-pattern) was 

the most common patterns observed, assigned to 77.9% of the isoform pairs. We showed that a large 

proportion (26.0%) of isoform pair patterns were found to be statistically significant (non-random), 

while remaining patterns (74.0%) might have been stochastically generated, mainly as a function of 

the sparsity (zero inflation) or the degree of bimodality in the isoform expression distribution. Such 

sparsity can arise due to transcriptional bursting, biological heterogeneity or transcript drop-out effects 

or other technical limitations inherit to scRNAseq. 

We also outlined how the ISOP method can be applied to test for biological effects related to the 

principal isoform expression patterns, which was represented by a small molecule perturbation effect 

(metformin exposure) in the primary dataset. DP analysis provides a novel approach to detect 

isoform-related effects that may not have been discovered through conventional DE analysis. We 

discovered 54 significant DP genes, of which 31.5% were associated with isoforms that were not 

differentially expressed. Thus, significant DP genes constitute novel information that augments 

traditional analyses. 
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Our study has some limitations. Firstly, the analysis is focused on the set of annotated isoforms only 

and we indirectly assume that annotations are correct.  Secondly, the present study did not have 

ERCC spike-ins that could be used to establish levels of technical noise in the data. Furthermore, 

many algorithms have been proposed for quantification of isoform level gene expression from 

RNAseq data (18, 30, 31), and are all based on slightly different assumptions. In our analyses we 

applied the widely used Cufflink software for isoform expression estimation. Isoform-level gene 

expression quantification is inherently more challenging than gene level quantification, particularly in 

scRNAseq analysis where there are limited number of RNAseq reads from each cell, and one would 

expect a degree of variability associated with the quantification algorithm applied. Furthermore, we 

make the assumption that the expression differences between pairs of isoforms on a log scale can be 

approximated by a Gaussian mixture model. Finally, in this study we have focused on modeling 

pairwise isoforms expression patterns, while commitment of cells in set with more than two isoforms is 

also interesting and biologically relevant, something that we are interested in exploring in future 

studies. 

In conclusion, ISOP provides a novel approach for characterizing isoform-level expression in 

single-cell populations. ISOP also introduces a novel approach to discover DP genes associated with 

biological effects, which is complementary to conventional analysis of differential expression. 

Although isoform expression patterns can arise as a function of sparseness in expression patterns, 

we found that more than a quarter of the patterns in our dataset were found to be non-random, 

suggesting common occurrence of isoform-level preference, commitment and heterogeneity in single-

cell populations. 
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TABLE AND FIGURES 

Table 1. Patterns with significant (non-random) isoform-pairs (FDR ≤ 0.05) in the MDA-MB-231 

dataset. 

Patterns I II V VI X XI Total 

FDR ≤ 0.05 18 524 201 265 88 3213 4309 

Total 29 1333 936 1361 2851 10052 16562 

Percentage 62.1% 39.3% 21.5% 19.5% 3.1% 32.0% 26.0% 
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Table 2. Patterns with significant (non-random) isoform-pairs (FDR ≤ 0.05) in the public datasets. 

 Patterns I II V VI X XI Total 

 FDR ≤ 0.05 44 312 110 26 17 704 1213 

HTC116 Total 1589 7195 2832 1059 2635 8402 23712 

 Percentage 2.8% 4.3% 3.9% 2.5% 0.6% 8.4% 5.1% 

 FDR ≤ 0.05 76 1239 214 253 122 3294 5198 

Myoblast Total 197 6981 989 1525 4039 9032 22763 

 Percentage 38.6% 17.7% 21.6% 16.6% 3.0% 36.5% 22.8% 

 

Figure 1. Overview of the six principal isoform expression pattern types. Each panel consists of two 

plots: a component plot (left) displaying the typical mixture model of Δa,b for the pattern, corresponding 

to isoform a and isoform b in the isoform pair, and a pair-line plot (right) of the two isoforms. (a) The I-

pattern (isoform preference of cells) and its extension, the II-pattern (isoform preference in a subset of 

cells). (b) The V-pattern (bimodal isoform preference of cells) and its extension, the VI-pattern 

(bimodal isoform preference in a subset of cells). (c) The X-pattern (mutually exclusive expression 

commitment of cells) and its extension, the VI-pattern (mutually exclusive expression commitment in a 

subset of cells). 

Figure 2. ISOP analysis of the MDA-MB-231 dataset. (a) Proportion of isoform patterns. (b) 

Frequency of patterns with isoforms with the same and different transcription start site (TSS). (c) 

Proportion of patterns as a function of the total number of annotated isoforms in the corresponding 

gene. (d) Proportion of patterns stratified by chromosome. (e) Proportion of patterns stratified by gene 

expression level. (f) P-value distribution from the test of association between component label and 

treatment group. 

Figure 3. Sparsity of isoform expression in principal isoform expression pattern types. (a) Pairwise 

sparsity of isoform a and isoform b in each individual pair and pattern type. Each point presents a 

single isoform-pair pattern, while the sparsity of the two isoforms in the pair are indicated on the x-axis 

and the y-axis. Blue points and red points represent non-significant and significant isoform-pairs. The 

star points indicate I-patterns with isoform preference. (b) Empirical distribution of the shared sparsity 

of the two isoforms (directly related to the sparsity of Δa,b) in isoform pairs across pattern types. The 

red part of the histograms corresponds to the portion of significant (non-random) isoform-pairs. 

Figure 4. Proportion of patterns detected in replication data sets. (a) HTC116 dataset. (b) myoblast 

dataset. 
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