

pileup.js: a JavaScript library for interactive
and in-browser visualization of genomic data
Dan Vanderkam1,*, B. Arman Aksoy1, Isaac Hodes1, Jaclyn Perrone1, and
Jeff Hammerbacher1
1Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, 1
Gustave L. Levy Pl, New York, NY 10029

*To whom correspondence should be addressed.

Abstract
pileup.js is a new browser-based genome viewer. It is designed to facilitate the investigation of evi-
dence for genomic variants within larger web applications. It takes advantage of recent developments
in the JavaScript ecosystem to provide a modular, reliable and easily embedded library.
Availability:	 The code and documentation for pileup.js is publicly available at
https://github.com/hammerlab/pileup.js under the Apache 2.0 license.
Contact:	correspondence@hammerlab.org

1 Introduction
As sequencing has become increasingly ubiquitous, there has been a

proliferation of variant calling programs. Before a physician or research-
er takes action on a variant, however, it remains essential to inspect the
evidence for it manually. Track viewer visualizations such as those pro-
vided by UCSC, IGV and Dalliance have long been the preferred way to
do this (Kent et al., 2002; Robinson et al., 2011; Down et al., 2011). As
data and workflow management systems move to the browser, it be-
comes increasingly appealing to embed these visualizations directly
within larger web applications. This results in reduced latency, allows
extensive customization and avoids the cognitive overhead of context
switching between applications.

Here, we describe pileup.js, a JavaScript library for interactive and in-
browser visualization of genomic data. pileup.js is extensively tested,
uses a modern code base that is oriented towards re-usability and per-
formance, and is well-documented for easier customization and usability
by other developers. The latest version, v0.6.1, supports visualization of
genomic tracks for reference sequences, mapped reads (paired or un-
paired), read depth, variants and gene annotations. pileup.js was initially
developed to be embedded within the Cycledash variant inspector, but it
can be used within any web application. (Hodes et al, 2016)

2 Methods and Technologies
Driven by the ubiquity of web browsers, the JavaScript development

ecosystem has seen a maelstrom of activity over the past several years.
This has resulted in major new technologies and radically different ap-
proaches to solving problems. Rather than adapting existing systems to
these new tools, we elected to create pileup.js, which is built from the
ground up for today’s JavaScript ecosystem. We highlight a few of the
most important tools here:

• ES2015 is the latest version of the ECMAScript (JavaScript) lan-
guage (E. ECMAScript, 2015). It solves many long-standing is-

sues, e.g. the difficulty of defining class hierarchies and the lack of
a module system. We embrace these features and use babel and
browserify to make them work in current-generation web browsers.

• We pull in third-party dependencies using the Node Package Man-
ager (NPM). This allows us to take advantage of “battle hardened”
code written by other developers for tasks that are not specific to
pileup.js, e.g. inflating gzipped data.

• We use React.js for managing state within the genome viewer. This
ensures that state changes (e.g. panning, zooming and toggling op-
tions) are consistently reflected throughout the user interface.

• We use the FlowType static analysis system to ensure the type
safety of our code (Chaudhuri et al, 2014). Static type systems
clarify the inputs and outputs of functions, catch errors and facili-
tate refactoring. Users of pileup.js can choose to use its type defini-
tions as they wish.

In addition to using contemporary web technologies, our development

process is designed to lead to higher-quality software. All code is unit-
tested and goes through a blocking review by a peer. This ensures that
previously-fixed bugs do not regress and that all code was understanda-
ble to at least one developer who did not write it. This leads to better
documentation and cleaner APIs for pileup.js.

pileup.js uses the HTML5 canvas to render its visualizations. It uses
off-screen buffers to achieve faster drawing and smoother panning. We
chose canvas over other technologies (e.g. SVG) because it led to sim-
pler code and better performance. We initially used SVG but were able
to gain a 5x performance improvement by migrating to canvas (Vander-
kam, 2015).

Like dalliance and IGV, pileup.js loads data over HTTP using Range
requests, which are widely supported by popular servers such as Apache
and nginx. For some data sources, e.g. BAM files, it may require several
serialized requests to load all the information for a single genomic region
(Li et al., 2009). In this case it is more efficient to situate the data loading
logic closer to the data itself, to reduce the round trip time. This can be

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 26, 2016. ; https://doi.org/10.1101/036962doi: bioRxiv preprint

https://doi.org/10.1101/036962
http://creativecommons.org/licenses/by/4.0/

D. Vanderkam et al.

achieved by running a GA4GH server. pileup.js supports v0.5 of the
GA4GH protocol (Terry et al., 2014). Support for other data loading
schemes can be added via user-defined sources.

3 Features
pileup.js has the standard tracks required for investigating genomic vari-
ants (see Figure 1):

(1) Reference track for visualizing individual base pairs in a refer-
ence genome

(2) Gene track for annotating genomic regions with gene names
(introns, exons, coding regions)

(3) Pileup track for showing (paired or unpaired) aligned sequenc-
ing reads

(4) Coverage track to show the number of reads aligned to each
locus, as well as the frequency of variants.

(5) Variant track for marking regions on the genome containing a
called variant.

Additional tracks may be defined by developers using the pileup visu-
alization API. Users can pan and zoom to find and drill down into re-
gions of interest. An options menu allows the view to be configured on a
per-track basis, e.g. to view reads individually or as pairs.

The set of tracks and their order can be configured through the JavaS-
cript API. Details of the layout (e.g. track heights and font choices) are
designed to be configured via CSS. pileup.js makes use of the UMD
(Universal Module Definition) pattern. This allows it to be included in a
larger application either via a global variable or as a dependency via a
module system such as AMD or CommonJS. It also means that, should
they choose to do so, other libraries can depend on just a subset of
pileup.js, e.g. its data loading and parsing modules.

pileup.js supports the latest versions of the major browsers at the time
of publication: Chrome 42+, Firefox 37+, Safari 9+ and Internet Explor-
er Edge (12).

We hope that, by providing an easily embedded, modern track viewer,
pileup.js will be an enabling tool for the next generation of genomic web
applications. External contributions (code and issues) are welcome.

Acknowledgements
We thank all members of the Hammer Lab for their invaluable input on the manu-
script and the tool.

References
Chaudhuri, A., Hosmer, B., Levi, G. (Nov. 2014). Flow, a new static type checker

for JavaScript. https://code.facebook.com/posts/1505962329687926/flow-a-
new-static-type-checker-for-javascript/

Down, T. A., Piipari, M., & Hubbard, T. J. (2011). Dalliance: interactive genome
viewing on the web. Bioinformatics, 27(6), 889-890.

E. ECMAScript and E. C. M. Association. (June 2015). ECMA-262 6th Edition,
The ECMAScript 2015 Language Specification. Available: http://www.ecma-
international.org/ecma-262/6.0/

Hodes, Isaac et. al. (2016). Cycledash Applications Note. BioRxiv (preprint)
Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A.

M., & Haussler, D. (2002). The human genome browser at UCSC. Genome re-
search, 12(6), 996-1006.

Li, H., et al. (2009). The sequence alignment/map format and SAMtools. Bioinfor-
matics, 25(16), 2078-2079.

Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S.,
Getz, G., & Mesirov, J. P. (2011). Integrative genomics viewer. Nature bio-
technology, 29(1), 24-26.

Terry, S. F. (2014). The global alliance for genomics & health. Genetic testing and
molecular biomarkers, 18(6), 375-376.

Vanderkam, D. (Oct. 2014) SVG→Canvas, the pileup.js Journey.
http://www.hammerlab.org/2015/10/13/svg-canvas-the-pileup-js-journey/

a)

b)
Fig. 1. pileup.js. This shows sequencing data at two different zoom levels (a) The order and style of the tracks (e.g. reference, variant, gene, coverage and alignment) can be customized.

(b) The alignment and coverage tracks highlight variants and abnormal reads to draw attention to anomalous regions.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 26, 2016. ; https://doi.org/10.1101/036962doi: bioRxiv preprint

https://doi.org/10.1101/036962
http://creativecommons.org/licenses/by/4.0/

