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Abstract 

Background 

Phenotypic changes during cancer progression are associated to alterations in gene 

expression, which can be exploited to build molecular signatures for tumor stage 

identification and prognosis. However, it is not yet known whether the relative abundance of 

transcript isoforms may be informative for clinical stage and survival.  

 

Methods  

Using information theory and machine learning methods, we integrated RNA sequencing and 

clinical data from The Cancer Genome Atlas project to perform the first systematic analysis 

of the prognostic potential of transcript isoforms in 12 solid tumors to build new predictive 

signatures for stage and prognosis. This study was also performed in breast tumors according 

to estrogen receptor status and melanoma tumors with proliferative and invasive phenotypes.  

 

Results 

Transcript isoform signatures accurately separate early from late stage and metastatic from 

non-metastatic tumors, and are predictive of the survival of patients with undetermined lymph 

node invasion or metastatic status. These signatures show similar, and sometimes better, 

accuracies compared with known gene expression signatures, and are largely independent of 

gene expression changes. Furthermore, we show frequent transcript isoform changes in breast 

tumors according to estrogen receptor status, and in melanoma tumors according to the 

invasive or proliferative phenotype, and derive accurate predictive models of stage and 

survival within each patient subgroup.  

 

Conclusions 

Our analyses reveal new signatures based on transcript isoform abundances that characterize 

tumor phenotypes and their progression independently of gene expression. Transcript isoform 

signatures appear especially relevant to determine lymph node invasion and metastasis, and 

may potentially contribute towards current strategies of precision cancer medicine. 
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Introduction 
Tumors advance through stages that are generally characterized by their size and spread to 

lymph nodes and other parts of the body [1]. Establishing the stage of a tumor is critical to 

determine patient prognosis and to select the appropriate therapeutic strategy [2]. Even though 

stage is generally defined from a number of tests carried out on a patient, this information 

may sometimes be incomplete or inconclusive. Advances in the molecular characterization of 

tumors have lead to improvements in stage classification and clinical management of patients 

[3]. Although tumors originate primarily from genetic lesions, their progression involves 

other molecular transformations, which are related to the activation of specific aggressive 

phenotypes, like tumor spread and metastasis, and are often reflected in gene expression 

changes [4,5]. Accordingly, the development of gene expression signatures has been 

instrumental to complement and improve stage identification and prognosis [6-9] ⁠. On the 

other hand, gene expression summarizes the output of RNA transcripts from a gene locus, 

which is mostly explained by one transcript isoform [10]. Furthermore, we described before 

how solid tumors present frequent changes in the relative abundances of isoforms in 

comparison to normal tissues [11]. This prompts the question of whether transcript isoform 

changes, which remain largely unexplored as predictive signatures of tumor stage and 

survival, could hold relevant novel mechanisms of tumor progression. We investigated the 

predictive potential of the relative abundances of transcript isoforms for tumor staging and 

clinical outcome in 12 different tumor types, integrating RNA sequencing and clinical 

annotation data for 12 tumor types from The Cancer Genome Atlas (TCGA) project. Our 

analyses revealed new signatures that characterize tumor phenotypes and their progression 

largely independent of gene expression. Knowledge about the relative abundance of transcript 

isoforms in tumors can potentially help predicting stage and clinical outcome and contribute 

towards current molecular strategies in precision cancer medicine. 

 

Results 

Relative abundances of transcript isoforms are predictive of tumor stage 

 

We considered the standard clinical annotation for tumors based on the tumor size (T), 

lymph-node involvement (N) metastatic status (M) and combined stage (S), for 4339 patient 

samples from 12 different tumor types from TCGA (Additional file 1). For each tumor type, 
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we considered the comparison of the transcriptomes between groups of samples in early and 

late stage groups according to each stage class independently. That is, for metastasis, we 

compared non-metastatic samples (M0) against metastatic ones (M1), whereas for the tumor 

size (T), lymph-node involvement (N) and stage (S) annotations, we compared early and late 

stages (groups described in Table 1) (Methods). We first calculated the set of transcripts 

whose relative abundance, measured as percent spliced in (PSI) values, present the best 

discriminant potential between these groups by using information-based measures with a 

subsampling strategy to ensure balanced comparisons, and selecting (Fig. 1a) (Fig. S1a in 

Additional file 2). Additionally, we considered only those transcripts that on average change 

PSI more than 10% between groups, i.e. |ΔPSI| > 0 (Methods). These produced a variable 

number of transcript isoforms per tumor type and clinical annotation that discriminate 

between early and late stages, or between M0 and M1 (Additional file 3).  

 

To characterize the functional involvement of the found discriminant isoforms, we performed 

an enrichment analysis of cancer hallmarks (Methods) (Additional file 4). Testing 

discriminant isoforms for each stage class and tumor type independently yielded frequent 

enrichment of MYC targets, oxidative phosphorylation, mTORC signaling, DNA repair and 

Interferon response (Fig. S1b in Additional file 2). Notably, aggregating all tumor types for 

each clinical class, the discriminant transcripts show enrichment in MYC targets and genes 

involved in oxidative phosphorylation (Fig. 1b). On the other hand, combining discriminant 

isoforms from different clinical classes in the same tumor type, only 5 of the 12 tumor types 

tested show enriched hallmarks (Fig. 1c), which include the enrichment of MYC targets in 

skin cutaneous melanoma (SKCM) and kidney papillary carcinoma (KIRP). These results 

indicate that there are frequent transcripts isoform changes in cancer-relevant pathways during 

tumor progression, many of which may be driven by MYC activity. To test some of our 

findings, we compared the ΔPSI values of the discriminant transcripts for metastasis in 

SKCM with the ΔPSI values measured between metastatic (SKMel147) [12] and non-

metastatic (Mel505) [13] melanoma cells (Methods). Of the 958 discriminant isoforms in 

SKCM, 817 had expression in the cell lines. From these, 504 (61.7%) show a change in PSI, 

in the same direction and 253 of them have |ΔPSI| > 0.1 in both comparisons (Fig. S1c in 

Additional file 2). 
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To build signatures of tumor stage based on transcript isoforms, we applied a multivariate 

feature selection method on the discriminant isoforms selected before to obtain a non-

redundant subset of predictive transcripts, which we used to build Logistic Model Trees 

(LMT) for each tumor type and stage class (Fig. 1a) (models given in Additional file 5). Each 

one of these models represents a transcript signature for each stage class and each tumor type. 

Using cross-validation, the mean accuracy of the models in terms of the area under the ROC 

curve (AUC) is 0.783 (Fig. 1d), with similar average precision-recall values (Fig. S1d in 

Additional file 2). T-models show the best accuracies (mean AUC = 0.824), with the models 

for KIRP, kidney chromophobe (KICH), colon adenocarcinoma (COAD) and neck squamous 

cell carcinoma (HNSC) being the most accurate (mean AUC > 0.87).  

 

KIRP T-model includes an isoform for PAX6. Increased inclusion of exon 5 of this gene has 

been related to neuronal differentiation [14], which we see associated to late T stage (Fig. S2a 

in Additional file 2). The best N-models correspond to KIRP and prostate adenocarcinoma 

(PRAD) (mean AUC > 0.89). KIRP N-model includes an isoform in the MAP kinase 

MKNK1 (Fig. S2a in Additional file 2), suggesting a similar involvement in cancer as 

MKNK2 [15]. PRAD N-model (mean AUC = 0.986) includes an isoform of IDO1 (Fig. 1e), a 

gene related to anti tumor defense [16]. The best M-model corresponds to SKCM (mean AUC 

= 0.93) and includes an isoform change in the transmembrane gene TM6SF1 (Fig. S2a in 

Additional file 2) and the tyrosine kinase SYK (Fig. 1e). In metastatic melanoma samples, 

SYK shows an increase in the abundance of the long form and a decrease of the short form, as 

previously observed in breast tumors [17]. Finally, the best S-models correspond to COAD, 

BRCA, KICH and Ovarian serous cystadenocarcinoma (OV) (AUC > 0.9). Interestingly, OV 

S-model includes an isoform in the cancer driver GAS7 (Fig. 1e). In general, we found no 

overlap between the different stage models. A notable exception is an isoform of NSUN7 that 

appears in all models for KIRC with high PSI values at late-stage and an isoform of SKA3 that 

appears in the N, T and S models for KIRP, with low PSI values at late stages. The low 

general overlap is consistent with pathological transformations being associated with multiple 

molecular alterations.  

 

Transcript isoform changes are predictive of patient survival 
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We hypothesized that if the derived transcript signatures provide clinically relevant 

information, we should find worse clinical outcomes for patients predicted to be at late stage. 

We thus performed a blind test on those samples that lacked stage annotation, and therefore 

were not used for building the models, to predict the tumor stage using the model for the 

corresponding tumor type (Fig. 2a) (Additional file 1). Additionally, we only performed the 

blind test in those tumor types for which late clinical stage was significantly associated to 

worse prognosis in the labeled samples (Table 2). There were 40 samples from COAD, 116 

from lung adenocarcinoma (LUAD) and 80 from BRCA that lacked M annotation. After 

prediction with the M-model from each tumor type, we obtained a total of 226 patients 

predicted as M0 and 10 patients predicted as M1. Aggregating patients according to the 

predicted metastatic class yielded a significant difference in survival between the two groups 

(p-value = 0.0079) (Fig. 2c). Regarding lymph node invasion, there were 1 sample from 

COAD, 10 from LUAD, 82 from KIRP, 247 from KIRC and 74 from HNSC without N 

annotation. After predicting with the N-models from the corresponding tumor types, 356 and 

58 patients were predicted as early and late N, respectively. Survival analysis with the 

aggregated patients yielded a significant difference between the two predicted groups (p-value 

= 0.013) (Fig. 2d). Finally, for the S stage, we predicted on a set of 91 samples without S 

annotation (8 from COAD, 18 from BRCA, 47 from HNSC, 11 from KIRP, 4 from LUSC, 2 

from THCA, and 1 from LUAD). This resulted in 47 and 44 samples predicted as early and 

late, respectively, which showed no difference in survival (p-value = 0.479). These results 

represent an independent validation of our transcript signatures and provide evidence that the 

relative abundances of transcripts can be predictive of tumor staging and prognosis. 

 

No relation of isoform signatures with stromal and immune cell content 

 

To assess whether the purity of the samples could a potential confounding factor of the 

derived signatures, we tested the correlation between the transcript PSI values of our 

predictive models against signatures of stromal and immune cell content [18] (Methods). 

Overall, all signatures showed low correlation with stromal content (mean Pearson |R| < 0.4, 

Pearson), and all except the N-model in BRCA (Pearson R=0.433) had mean |R|<0.4 with 

immune cell content (Additional file 6). From the 547 transcript isoforms tested, 95% show a 

correlation |R|<0.4 (Pearson) for both stromal and immune scores. Among the few cases with 

|R|>0.5 there is an isoform of ENAH (Fig. S2d in Additional file 2), which is present in the T-
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models in KIRP and COAD and that was previously linked to an invasive phenotype [19]. 

Recent analyses have shown that clinical stage does not correlated with tumor purity in the 

TCGA samples [20]. Our analysis further supports those results and indicates that isoform-

based signatures of stage do not reflect stromal or immune cell content.  

 

No universal transcript isoform signature for tumor staging 

 

Our results prompt the question of whether there might be a universal signature of stage and 

survival based on transcript isoform changes. To test this, we grouped all annotated samples 

from the different tumor types according to the stage class and applied the same analyses as 

before. We could only build M and S models due to the lack of common isoforms with 

discriminant power for the other classes (Additional file 7). The average AUC values for M 

and S models were lower than before, with mean AUC of 0.5 and 0.685, respectively. 

Aggregating samples from BRCA, COAD and LUAD, we observed a slight increase in 

accuracy (mean AUC = 0.702). Similarly, analyzing KIRC, KIRP and KICH samples 

together, the S-model achieves mean AUC = 0.809.  In this case, approximately half of the 

isoforms were present in the previous models. Finally, analyzing the squamous tumors 

together (HNSC and LUSC), we derived N and S models with mean AUC = 0.72. For other 

combinations, we could not find accuracies greater than AUC = 0.5. This indicates that 

despite some overlapping features across tumor types, there is no common signature for all 

the tested tumor types. 

 

Transcript signatures provide better predictions than event-based signatures 

 

We tested whether local alternative splicing events, as opposed to transcript isoform changes, 

could also be predictive of stage. We applied the same analysis pipeline using PSI values for 

all events in the same tumor samples. For most of the stage classes we observed similar or 

smaller accuracy values for events compared to transcript models (average AUC 0.617 vs. 

0.778, respectively) (Fig. 2d) (Additional file 8). Only 23.5% of the isoforms in models 

overlap with at least one alternative splicing event from the event-based models: 16.51% 

overlap with alternative 5’/3’ splice-sites, mutually exclusive exons, retained introns or 

cassette exon events, and 6.54% overlap with alternative first or last exon events. Moreover, 

82.39% of isoforms in models overlap with at least one of the pre-calculated alternative 
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splicing event. This indicates that a considerable number of changes in exon-intron structures 

described by the isoform models that are predictive of tumor stage cannot be captured in 

terms of simple alternative splicing events.  

 

Transcript signatures provide relevant information about tumor metastasis and lymph 

node invasion independently of gene expression 

 

Previously proposed molecular classifiers of stage were based on gene expression [7, 8]. We 

thus tested the relation of our transcript signatures with gene expression. We observed that the 

proportion of genes with differential expression vary markedly between transcript signatures 

(Additional file 5) (Methods). For M-models, 9 (18%) genes in the SKCM and 4 (18%) genes 

in KIRC showed differential expression. For N-models, we only found 3 (14%) in PRAD and 

13 (68%) in THCA. In contrast, T-models presented frequent changes across the different 

tumor types, with 17 (46%) in KIRP, 7 (27%) in to KIRC, 6 (33%) in LUAD, 4 (50%) in 

THCA and 1 in HNSC (5%). Similarly, S-models also showed frequent DE: 16 (52%) in 

KIRC, 12 (46%) in KIRP, 1 (25%) in LUAD, and 1 (7%) in BRCA.  

  

Next, we compared the predictive power of transcript and gene expression signatures. We 

thus applied our pipeline to gene expression values to derive gene-based signatures of stage 

(Methods). The overall accuracy for gene-based signatures was similar to isoform-based 

models (average AUC values 0.783 and 0.781 for isoforms and genes, respectively) (Fig. 2d) 

(Additional file 9). Interestingly, isoforms had better mean accuracies for the M-model in 

LUAD (0.883 vs 0.535) (Fig. 2d upper left panel) and for the N-model in PRAD (0.986 vs 

0.839) (Fig. 2d lower left panel), compared to gene models. In contrast, the gene-based S-

model for THCA showed higher accuracy (0.529 vs 0.836) (Fig. 2d upper right panel). Gene 

and isoform based models generally involved different genes with only few exceptions, 

including CD72 in SKCM M-models, PTGS2 and VIPR1 in the THCA T-models, SLC14A1 

in COAD S-models, and DNASE1L3 KICH S-models. Interestingly, gene-based S-models 

were predictive of survival for samples lacking stage S annotation (p-value = 0.0024) (Fig. 

2e), whereas no significant difference in survival was found with the gene-based M and N 

models (p-values = 0.983 and 0.161, respectively).  
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The results described above suggest that genes and transcripts provide independent 

information and may yield better predictors when combined together. We thus built mixed 

models of gene expression and transcript relative abundance. We started with all gene and 

transcript discriminant features and selected a non-redundant set of features to build logistic-

model trees. The accuracy of these mixed models was on average better (mean AUC = 0.831) 

than using only transcripts or genes (Fig. S3a in Additional file 2). Notably, the transcript 

signatures performed better than the mixed signatures for the LUAD M-model (AUC = 0.883 

vs 0.814) or the PRAD N-model (AUC = 0.986 vs 0.938). In contrast, the mixed model 

performed better in the COAD M-model (AUC = 0.831 vs 0.864) and the HNSC S-model 

(AUC = 0.676 vs 0.778). Additionally, mixed models are able to predict survival differences 

between early and late stages for the N and S stage classes (p-value = 0.041 and 0.033, 

respectively) (Figs. S3b and S3c in Additional file 3). 

 

Finally, we compared our transcript signatures with an expression signature of 44 genes built 

to differentiate metastatic and late stage samples in colon cancer [21] (Methods). The mean 

AUC values obtained for the metastatic annotation (M) and the overall stage (S) were 0.612 

and 0.649, respectively, for the gene expression signature, and 0.82 and 0.94, for our 

transcript signatures. Notably, none of the genes involved in our transcript models for COAD 

presented differential expression. Our analyses indicate that changes in the relative abundance 

of transcripts hold relevant information about tumor transformation independently of gene 

expression changes.  

 

 

Transcript relative abundances as prognostic markers in ER-negative breast tumors 

 

Molecular subtypes in cancer have implications for prognosis and therapy that go beyond the 

staging system [6, 22, 23]. In breast cancer, tumors that are negative for the Estrogen receptor 

(ER) have generally worse prognosis, and gene expression signatures are generally less 

accurate for ER negative than for ER positive tumors [3,7]. To test whether transcript-based 

signatures could be relevant for ER negative tumors, we separated the samples according to 

the expression ranking of the ER gene (ESR1) into the top (ER+) and bottom (ER-) and 25%  

(237 samples each) (Fig. 3a). Interestingly, applying our pipeline we identified 2591 

discriminant transcript isoforms between ER+ and ER- subgroups (Fig. 3b) (Additional file 

9). These transcriptome changes were validated using RNA-Seq data from the knockdown of 
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ESR1 and control in MCF7 cells [24] (Fig. S4a in Additional file 2) (Methods). We derived a 

predictive model with 81 discriminant transcripts that separated ER+ and ER- samples with 

an average AUC of 0.999 (Fig. 3c). Among the largest PSI changes we found an isoform of 

the MAP kinase MAP3K7, whose long isoform was linked before to apoptosis [25], which we 

found to be less abundant in ER- samples (Fig. S4b in Additional file 2). Notably, 47 (58%) 

of the genes with transcripts in this predictive model show differential expression, suggesting 

a link between estrogen receptor expression and the differential use of transcript isoforms. 

 

The observed transcriptome differences between ER+ and ER- subtypes warrant a separation 

of these two sets to build transcript signatures of stage. Accordingly, we considered early and 

late stage patients in each ER group separately (Table 3). Since ER- samples show significant 

differences in survival between early and late stages for N (p-value = 0.005) and S (p-value = 

0.041) annotations (Figs. S4c and S4d in Additional file 2), we expect that signature for stage 

may be relevant for prognosis. In contrast, ER+ samples do not show any significant 

differences in survival. Using our feature selection pipeline, we obtained 456 and 249 

isoforms that best discriminate between early and late stages in the ER- and ER+ subsets, 

respectively (Additional file 9). The isoforms for ER- show enrichment in various cancer 

hallmarks, including DNA repair, Apoptosis and Epithelial-Mesenchymal transition (Fig. S4e 

in Additional file 2). In contrast, there were no enriched hallmarks associated to the isoforms 

in the ER+ subset. Building stage signatures as before for ER+ and ER- independently 

(Additional file 9), we obtained average accuracies of AUC = 0.794 (ER-) and AUC = 0.756 

(ER+) (Fig. 3c), with similar values for the precision-recall (Fig. S4f in Additional file 2). 

Notably, none of the derived signatures showed differential expression at the gene level.  

Additionally, ER- S-model includes TNFRS8 (Fig. 3d), a member of the tumor necrosis factor 

receptor superfamily. Another member of this family, TNFRSF17 was related before to 

prognosis in ER- samples [3]. Unlike for the previous models, there were not enough 

unlabeled samples to perform a blind test. Taken together, these results show that transcript 

variants can be informative for stage and prognosis in ER negative tumors.  

 

We further compared our transcript signatures with known gene expression signatures for 

breast tumors: OncotypeDX [26], MammaPrint [27], and PAM50 [28] (Methods). Although 

these signatures were not originally designed to identify tumor stage, they bear predictive 

value for this purpose [7]. Their accuracies to separate ER+ and ER- subgroups were very 
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similar to our transcript signatures (Fig. 3e). This is expected for PAM50 and OncotypeDX, 

as they include ESR1. We then tested how well the gene signatures differentiate stage within 

each subset, ER+ or ER-, independently. In general, PAM50 performed better than the two 

other signatures, except for S in ER- and for N in ER+, where MammaPrint performs better, 

and for T in ER-, where OncotypeDX performs better (Fig. 3e). Notably, in all cases the 

transcript signature had better accuracies. We conclude that transcript isoform models can 

provide relevant information to determine stage and hence complement current clinical 

signatures. 

 

Transcript relative abundances characterize an invasive phenotype and survival in 

melanoma 

 

Clinical outcome of skin cutaneous melanoma (SKCM) remains poor due to its high degree of 

heterogeneity [29]. The microphthalmia-associated transcription factor (MITF) presents 

highly dynamic expression patterns in connection to proliferation and invasion in melanoma, 

with relevance for prognosis and therapy [30, 31]. Overexpression and downregulation of 

MITF have been connected to proliferative and invasive phenotypes, respectively [32]. We 

thus tested whether there are specific transcript signatures linked to these phenotypes that may 

be predictive of survival. We pooled the top and bottom 25% of melanoma samples according 

to MITF expression into the MITF+ and MITF- sets, respectively (96 samples per set) (Fig. 

4a). Although these subsets do not show a significant difference in survival, samples in the 

top and bottom 10% of MITF expression (36 samples per set) show a significant difference, 

with MITF overexpressed samples showing worse prognosis (p=0.029) (Fig. 4b). Our feature 

selection strategy (Fig. 1a) yielded 2387 discriminant isoforms between MITF+ and MITF- 

(Fig. 4c) (Additional file 9). We validated these isoforms by comparing their ΔPSI values 

with those obtained from the knockdown of MITF in melanoma cells compared to controls  

[13] (Fig. S4a in Additional file 2) (Methods). The found discriminant isoforms are enriched 

for multiple cancer hallmarks, including EMT and the mTOR pathway (Fig. S4b in 

Additional file 2). To further characterize their differences, we built a predictive model to 

separate MITF+ and MITF- samples with 72 isoforms, which showed a mean AUC of 0.996 

(Methods). This model included a transcript isoform for the cancer TPM1, which is highly 

included in MITF+ and was linked before to tumor growth [33] (Fig. S4c in Additional file 2), 

as well as for RAB27A, a component of the melanosome that is transcriptionally regulated by 
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MITF [34] and that is lowly included in MITF+ samples (Fig. S4d in Additional file 2). From 

this signature, 37 (66%) of the genes involved showed differential expression between MITF+ 

and MITF- subgroups, pointing to a link between MITF expression and differential usage of 

transcript isoforms in multiple genes.  

 

To test whether the melanoma phenotypes are associated to different transcript 

transformations during tumor progression, we studied the MITF+ and MITF- sets 

independently to derive signatures of survival. We selected samples in the top and bottom 

40% according to days of survival (36 samples per group) and used our pipeline to calculate 

the isoforms that best separate each group within each phenotype. The discriminant isoforms 

in the invasive phenotype (MITF-) were enriched for multiple cancer hallmarks, whereas in 

the proliferative phenotype (MITF+) presented enrichment only for activation of KRAS 

signaling, which does not appear in the invasive phenotype (Fig. S4b in Additional file 2). We 

then built predictive models of survival for each subset independently using LMTs 

(Additional file 9). Cross-validation yielded for MITF+ (34 isoforms) and MITF- (46 

isoforms) accuracies of AUC = 0.854 and 0.896, respectively (Fig. 4d) (Fig. S4e in Additional 

file 2). Notably, the MITF- model includes a transcript isoform for the MAP Kinase-

Activating Death Domain gene MADD (Fig. 4e), which does not change expression at the 

gene level. MADD is a cancer driver and it was shown before that expression of isoforms that 

skip exon 16 has anti-apoptotic effects [35]. Interestingly, the PSI of the MADD isoform that 

skips exon 16 is higher in the group with worse prognosis, suggesting that the anti-apoptotic 

function of MADD is related to worse prognosis in invasive melanoma. Taken together, our 

results provide evidence of distinct transcript abundance patterns linked to melanoma 

phenotypes and survival.   

 

Discussion 
 

We described the first systematic analysis of the predictive potential of transcript relative 

abundances for stage and clinical outcome in multiple solid tumors. We derived novel 

molecular signatures for 12 different tumor types that can separate tumors according to 

clinical stage or metastatic status. Importantly, a blind test on patients with unknown stage or 

metastatic status can separate patients according to survival. Moreover, transcript isoforms 

provide better accuracies than local alternative splicing events and can describe more complex 
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changes in exon-intron structures. Although a multi-cancer signature of clinical outcome 

based on gene expression has been proposed [36], our results argue against a generic 

transcript-based signature for all tumors types. Rather, transcript isoform changes appear 

linked to tumor-type specific processes, with several of them related to MYC activity, in 

concordance with recent findings [37].  

We observed a widespread association between transcript isoform changes and expression 

changes in T and S models across tumor types, and around 60% of the genes with differential 

expression in all models correspond to KIRC and KIRP, indicating that transcript and gene 

changes are tightly coupled during progression of these tumors. In contrast, this association is 

low or absent for most tumor types for M and N models. The blind-test showing that patients 

with predicted metastasis or late N-stage predicted patients have a worse prognosis, was for 

tumor types for which none of these models show gene expression differences. The value of 

the transcript signatures is further highlighted when compared to known and newly derived 

gene expression signatures, or with mixed models combining gene expression and transcript 

abundances. These results indicate that transcripts signatures provide information independent 

from gene expression to describe tumor progression, and especially in metastasis and lymph 

node invasion.  

We also extracted prognostic signatures for specific tumor subtypes in breast cancer and 

melanoma. We reported many significant transcript isoform changes between breast tumors 

according to estrogen receptor expression and between melanoma samples according to MITF 

expression. Additionally, we observed a widespread association between transcript isoform 

and expression changes between in relation to estrogen receptor expression and according to 

MITF expression. An interesting possibility is that the activity of these two transcription 

factor genes could trigger expression and transcript isoform changes in the same genes in 

these tumors, pointing to new mechanisms of gene regulation worth investigating further. We 

further derived transcript signatures of stage independently in each sample subset that 

involved different genes, thereby highlighting the relevance of determining the transcriptome 

repertoire in tumor samples to derive accurate molecular signatures of tumor progression.  

We observed partial reproducibility of the discriminant isoforms in experiments using cell 

lines. Transcriptional differences between cell lines and tumor tissues are thought to stem 

from the loss of the stromal and immune components by cells in culture [38]. Our analyses 

discard an association between the transcript signatures and the composition of stromal and 
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immune cells in the tissue samples. It could be possible that part of the signatures reflect the 

interaction of tumor cells with their environment in tissues samples, which would be 

undetectable in cell lines. Our results support the notion that phenotypic states of tumor cells, 

like invasiveness, may be reflected on the relative abundance of transcript isoforms, may be 

partly triggered by external cues, such as inflammation or metabolic stress [39]. On the other 

hand, the observed commonalities between tumor cells and tissues suggest that some of these 

alterations could be investigated further using cell lines. 

It remains to be tested the clinical validity of our findings. Although we have shown that 

predicted late stages may be associated with worse prognosis and cross-fold validation shows 

better accuracies in general for transcript signatures, it is not conclusive whether the proposed 

molecular signatures would actually improve current methodologies of stage determination. 

Our results indicate that isoform-based M and N models are generally accurate and often 

better than using gene expression. Those models may be especially useful, as they would 

indicate a metastasis or lymph node invasion before it is visible by other means. To test this, 

more validations on independent cohorts would be necessary. However, further studies are 

currently hampered by the scarcity of large enough datasets with clinical annotation 

comparable to TCGA [40]. Moreover, the current accuracies of the transcript models may 

require a larger number of samples to perform prospective studies. Nonetheless, we anticipate 

that transcript isoforms will be relevant to understand the progression of tumors beyond DNA 

and gene expression alterations and represent useful novel targets to predict stage and clinical 

outcome, thereby complementing current molecular approaches in precision cancer medicine. 

	
  

Methods 

Datasets 

Processed RNA sequencing data from The Cancer Genome Atlas (TCGA) (https://tcga-

data.nci.nih.gov/tcga/) was compiled for 12 different tumor types: breast carcinoma (BRCA), 

colon adenocarcinoma (COAD), head and neck squamous cell carcinoma (HNSC), kidney 

chromophobe carcinoma (KICH), kidney renal clear cell carcinoma (KIRC), Kidney renal 

papillary carcinoma (KIRP), lung adenocarcinoma (LUAD), lung squamous cell carcinoma 

(LUSC), prostate adenocarcinoma (PRAD), skin cutaneous melanoma (SKCM), thyroid 

carcinoma (THCA) and ovarian carcinoma (OV). The abundance of every transcript per 
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sample was calculated in transcripts per million (TPM) from the transcript-estimated reads 

counts and the isoform lengths. Genes were defined to be a set of transcripts that overlap in 

the same genomic locus and strand and share at least one splice-site (Additional file 1). A 

gene TPM was defined as the sum of TPMs for all transcripts in the gene. The relative 

abundance of each isoform (PSI), was calculated by normalizing the isoform TPM to the gene 

TPM. Only genes with a minimum TPM of 0.1 were considered. Additionally, we used RNA-

Seq data from the knockdown of ESR1 and controls in MCF7 cells (GSE53533) [24], from 

metastatic melanoma cells (SKMel147) and melanocytes (GSE68221) [12], and from the 

knockdown of MITF and controls using non-metastatic melanoma cells (Mel505) 

(GSE61967) [13]. For each sample, transcript abundances were calculated with Sailfish [41]. 

Relative abundances (PSI) of transcripts were calculated as above and the ΔPSI values 

between conditions were calculated as the difference between conditions of the mean values 

from the replicates. Alternative splicing events and their PSI values were obtained from [42]. 

 

Clinical data 

Clinical stage and survival information for patients was obtained from TGCA. We used the 

available annotation for the TNM staging system (www.cancerstaging.org/), where T 

followed by a number (1–4) describes the size of the tumor; N followed by a number (1–3) 

describes spread to lymph nodes according to number and distance; and M followed by 1 or 0 

indicates whether the tumor has metastasized or not, respectively. We also considered the 

numbered stage annotation (S), which goes from 0 to 4, with each number corresponding 

approximately to a combination of the TNM numbers. When any of the stages were 

subdivided, only the label of the common class was included (e.g. T1a, T1b and T1c were 

considered as T1). Only patients with defined stage were used to build the predictive models. 

 

Selection of relevant features 

Only isoforms and events with a difference in mean relative abundance (PSI) of at least 0.1 in 

absolute value between the compared patient subgroups were considered to calculate 

discriminant isoforms. To obtain discriminant genes, those with log-fold change of the mean 

gene TPM values between the two groups greater than 2 were considered. Next, a 

subsampling approach was used to compare two patient groups through 100 iterations, by 

extracting the same number of samples from each group randomly from the input dataset, 
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using a minimum of 10 samples per group. For pooled tumor types, the same number of 

samples per tumor type was selected at each iteration step. At each iteration step, three 

different univariate discriminant measures were applied (see below), and a permutation of the 

group labels was performed and the univariate measures re-calculated. After 100 iterations, 

and for each univariate measure, two distributions of 100 points each are produced for each 

transcript, corresponding to the observed and expected values. Transcripts with a positive 

difference of the means of the two distributions for all three measures were considered 

discriminant and were kept for further analysis.  

 

We applied the following information-based measures in the subsampling: information gain 

(IG), gain ratio (GR) and symmetrical uncertainty (SU). IG is defined as the mutual 

information between the group labels of the training set S and the values of a feature (or 

attribute) A, e.g. an isoform: IG(S,A) = MI(S,A) = H(S) - H(S|A), where H(S) is Shannon’s 

entropy according to the two sample classes, and H(S|A) is the conditional entropy of S with 

respect to the attribute A. GR is the mutual information of the group labels and the attribute, 

normalized by the entropy contribution from the proportions of the samples according to the 

partitioning by the attribute: GR(S,A) = MI(S,A) / H(A). Finally, SU provides a symmetric 

measurement of feature correlation with the labels and it compensates possible biases from 

the other two measures: SU(S,A) = 2´MI(S,A) / ( H(S)+H(A) ) [43]. The group labels are the 

clinical stages (early, late), survival groups (low, high), or phenotype group (invasive, 

proliferative); and the attribute values are the PSI values for transcript isoforms or alternative 

splicing events, or the gene TPM values for gene expression analyses. The continuous PSI or 

TPM values were discretized as previously described [44].  

 

Cancer hallmarks and drivers 

Enrichment analysis of the 50 cancer hallmarks from the Molecular Signatures Database v4.0 

[45] was performed with the discriminant isoforms. For each hallmark, a Fisher exact test was 

performed with the genes with selected isoforms using as controls genes expressed 

(TPM>0.1) and with multiple transcripts A Benjamini-Hochberg correction was applied and 

only cases with FDR < 0.05 were kept. Known and predicted cancer drivers were obtained as 

described in [42]. 

 

Predictive signatures 
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Transcript isoforms that showed a positive difference between the means of the 100 observed 

and the 100 randomized values for all three univariate measures (IG, GR, SU) were analyzed 

with a Correlation Feature Selection (CFS) (Hall 2000). This selects transcripts with similar 

discriminating power but lower redundancy among them (Hall 2000), thereby mitigating the 

problem of overfitting. This was repeated for each comparison between clinical stages, 

survival groups, or tumor subtypes. Using the selected transcript isoforms, a Logistic Model 

Tree (LMT) was built with Rweka [46] ⁠. LMTs are classification trees with logistic regression 

functions at the leaves. The accuracy of the classifiers was evaluated using the area under the 

receiver-operating characteristic (ROC) curve or AUC. Additionally, we considered the area 

under the precision-recall curve (PRC). AUC and PRC take values between 0 (worst 

prediction) and 1 (best prediction). These values were estimated for each classifier through a 

10-fold cross validation, repeated 100 times. The same approach was used for gene, event, 

and mixed models. To apply known gene expression signatures to our sample groups we used 

robust Z-scores per gene and per sample as described before [42]. These values were the used 

for the genes in various signatures [21,26,27,28]. As before, accuracies were estimated using 

a 10-fold cross-validation to calculate AUC and PRC values.  

 

Blind tests 

For samples without stage annotation, which were not used to build the models, we predicted 

the missing stage (early/late) or metastatic state, using the corresponding model for the same 

tumor type. These newly predicted samples were then aggregated per clinical class according 

early and late, or metastatic and non-metastatic, to test the survival differences between 

groups. The blind test was performed using only those tumor types that already showed 

significant differences in the survival between early and late stages for the annotated samples 

(Table 2). This analysis was not performed for T-models, as all samples had a T annotation. 

 

Differential expression analysis 

We performed differential expression (DE) analysis for all genes between the different groups 

considered in this analysis, using the same method as described previously [41]. Genes were 

considered differentially expressed if the absolute value of the log2-fold change was greater 

than 0.5 and corrected p-value < 0.05. Results can be found in Additional_files_6 and 10.   
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Survival analysis 

Survival curves were calculated with the Kaplan-Meier method and compared between patient 

subsets using a Cox proportional hazards regression model [47]. Survival was measured as 

date of death minus collection date for deceased patients and as last contact date minus 

collection date for the other patients. 

 

Stromal and Immune cell content analysis 

To estimate a stromal and immune signature for a set of samples from a tumor type, we 

collected a list of stromal and immune signature genes based on [18]. We transformed the 

RSEM read counts of these two gene lists into a gene set score using GSVA [48] for each 

sample. Using the resulting scores per sample, we then calculated the Pearson correlations of 

the stromal and immune GSVA scores with the transcript isoform PSIs using all tumor 

samples, including intermediate stages. 
 

List of abbreviations used 
PSI: percent/proportion spliced in, IG: information gain, GR: gain ration, SU: symmetrical 

uncertainty, CFS: correlation feature selection, ER: estrogen receptor, LMT: logistic model 

tree, ROC: receiver operating characteristic, AUC: area under de ROC curve, PRC: area 

under the precision-recall curve. 
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Tables 
Table 1. Number of samples analyzed for each tumor type and stage. 
  T N M S 

Tumor type Acronym Early Late Early Late Early Late Early Late 

Breast invasive 

carcinoma 

 

BRCA 
256 

(T1) 

147 

(T3,T4) 

455 

(N0) 

171 

(N2,N3) 

836 

(M0) 

15 

(M1) 

164 

(S1) 

15 

(S4) 

Colon  

adenocarcinoma 

 

COAD 
45 

(T1,T2) 

31 

(T4) 

149 

(N0) 

39 

(N2) 

179 

(M0) 

33 

(M1) 

40 

(S1) 

34 

(S4) 

Head and neck  

squamous cell 

carcinoma 

 

HNSC 
35 

(T1) 

110 

(T4) 

166 

(N0) 

166 

(N2,N3) 
  

77  

(S1,S2) 

169 

(S4) 

Kidney  

chromophobe 

 

KICH 
20 

(T1) 

19 

(T3,T4) 
    

20 

(S1) 

19  

(S3,S4) 

Kidney renal  

clear cell carcinoma 

 

KIRC 
245 

(T1) 

186 

(T3,T4) 

233 

(N0) 

16 

(N1) 

419 

(M0) 

77 

(M1) 

240 

(S1) 

78 

(S4) 

Kidney renal  

papillary carcinoma 

 

KIRP 
71 

(T1) 

38 

(T3,T4) 

23 

(N0) 

16 

(N1,N2) 
  

66 

(S1) 

38  

(S3,S4) 

Lung squamous  

cell carcinoma 

 

LUSC 
93 

(T1) 

59 

(T3,T4) 

242 

(N0) 

37 

(N2,N3) 
  

195 

(S1) 

76  

(S3,S4) 

Lung  

adenocarcinoma 

 

LUAD 
137 

(T1) 

57 

(T3,T4) 

281 

(N0) 

70 

(N2,N3) 

307 

(M0) 

22 

(M1) 

99 

(S1) 

242  

(S3,S4) 

Ovarian serous 

cystadenocarcinoma 

 

OV       
18 

(S2) 

243 

(S4) 

Prostate 

adenocarcinoma 

 

PRAD 
69 

(T2) 

93 

(T3,T4) 

129 

(N0) 

14 

(N1) 
    

Skin cutaneous 

melanoma 

 

SKCM     
68 

(M0) 

17 

(M1) 
  

Thyroid  

Carcinoma 

 

THCA 
137 

(T1) 

179 

(T3,T4) 

220 

(N0) 

211 

(N1) 
  

270 

(S1) 

48 

(S4) 
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The number of samples used for the comparison early vs late are indicated for each annotation 

T, N, M, S. Stages I, II, III and IV are indicated as S1, S2, S3 and S4. Comparisons were 

performed between the earliest and latest available stage groups, with some exceptions for 

which adjacent stages were added to have enough samples for comparison. Empty cells 

correspond to cases not tested due to lack of sufficient samples or complete lack of annotation 

in the samples. 
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Table 2. Survival analysis between early and late stage patient groups. 

 

P-values from the survival test comparing the patient subsets from Table 1. The p-values were 

obtained using a Cox proportional hazards regression model. Light gray cells indicate 

comparisons with no significant difference in patient survival. Empty cells correspond to 

cases not tested due to lack of sufficient samples (see Table 1).  

 

  

Tumor type T N M S 

BRCA P=0.375 P=0.00012 P=0.008 P=0.0007 

COAD P=0.0011 P=0.011 P=1.48e-05 P=0.012 

HNSC P=0.051 P=0.0137  P=2.49e-07 

KICH P=0.00896   P=0.00896 

KIRC P=2e-15 P=0.0125 P=0 P=0 

KIRP P=0.0043 P=0.005  P=8.86e-007 

LUSC P=0.029 P=0.071  P=0.025 

LUAD P=7.02e-09 P=3.26e-06 P=0.165 P=7.02e-09 

OV    P=0.0537 

PRAD P=0.456 P=1   

SKCM   P=0.418  

THCA P=0.324 P=0.597  P=2.49e-07 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 19, 2016. ; https://doi.org/10.1101/036947doi: bioRxiv preprint 

https://doi.org/10.1101/036947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

28 

Table 3. ER-negative (ER-) and ER-positive (ER+) breast tumor subgroups. 

 

 T N S 

BRCA subtype Early Late Early Late Early Late 

ER- 
72  

(T1) 

48 

(T3, T4) 

122 

(N0) 

37 

(N2, N3) 

48 

(S1) 

55 

(S3, S4) 

ER+ 
54 

(T1) 

29 

(T3, T4) 

130 

(N0) 

36 

(N2, N3) 

31 

(S1) 

43 

(S3, S4) 

 

The number of samples used for the comparison early vs late are indicated for each annotation 

T, N ans S. Stages I, II, III and IV are indicated as S1, S2, S3 and S4. In some cases, more 

than one clinical stage is included in a patient group to have sufficient samples. Due to the 

insufficient number of annotated samples, it was not possible to build M-models. 
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Figure Legends 
 

Figure 1. (a) Workflow to obtain discriminant transcript isoforms and predictive models. 

Given two patient groups, we subsampled two equal sized subsets, one from each group (e.g. 

metastatic and non-metastatic), which were compared using information-based measures, 

denoted as Iiso. At each iteration step, the group labels were randomized to obtain an expected 

measure, denoted as Irand. After 100 iterations, two distributions were produced for each 

isoform corresponding to observed (Iiso ) and expected (Irand ) values. Transcript isoforms with 

a difference of mean PSI values >0.1 in absolute value between the two patient groups and 

with a positive difference of the means of the observed and expected distributions for all 

information-based measures used were then considered as discriminant, which were then used 

to evaluate enriched cancer hallmarks. Discriminant isoforms were further filtered for 

redundancy with a Correlation Feature Selection strategy to build a predictive model, which 

was evaluated using cross-fold validation (Methods). (b) Enriched hallmarks in the set of 

discriminant isoforms for each stage class, metastasis (M), tumor size (T), lymph-node 

involvement (N) and overall staging (S), using all isoforms selected across all tumor types. (c) 

Enriched hallmarks for each tumor type using all discriminant isoforms selected across all 

stage classes in each tumor type independently. (d) Accuracies of the classifiers for each 

tumor type for the T, N, M and S annotation, given as the distributions of the areas under the 

receiving operating characteristic (ROC) curves (AUC). The variation on each bar indicates 

the minimum and maximum AUC values. Some models are absent due to lack of sufficient 

samples (Table 1). (e) PSI distributions for the transcript isoforms of IDO1 in PRAD, SYK in 

SKCM and GAS7 in OV, for the N, M and S models, respectively (Wilcoxon test p-values < 

0.001). 

 

Figure 2. (a) Illustration of the blind test on unlabeled patients. Patients without annotated 

stage were predicted using the model of the corresponding tumor type, for each of the stage 

classes independently. Patients predicted as early or late were collected into two separate 

groups and tested for differences in survival. This test was performed for each stage class 

independently and only using tumor types that showed an association between stage and 

survival in the labeled patients (Table 2). Figures (b) and (c) show survival (Kaplan-Meyer) 

plots associated to the test for M- and N- models, respectively. They indicate the survival 
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percentage (y axis) versus survival in months (x axis) based on the predicted stage on the 

unannotated samples using the classifier for each corresponding tumor type. The p-value in 

each plot corresponds to the Cox regression between the two groups and HR indicates the 

hazards ratio. (d) Accuracies of the transcript isoform models (I) compared to the gene (G) 

and event (E) models. Accuracies are given as boxplots for the distribution of AUC values (y 

axis) from a 10-fold cross-validation for each tumor type (x axis) for the M, S, N and T 

models. Tumors for which stage data was missing are not shown (Table 1). (e) Survival 

(Kaplan-Meyer) plot of the early and late stage predictions performed with the gene-based S-

models on unannotated samples. The p-value corresponds to the Cox regression between the 

two groups and HR indicates the hazards ratio. 

  

Figure 3. (a) Ranking (x axis) of breast tumor (BRCA) samples according to ESR1 

expression (gene TPM) (y axis). ER+ and ER- subsets were defined as the top and bottom 

25% of the ranking, respectively, leaving out samples in the inter-quartile range (IQR). (b) 

Heatmap of PSI values, from 0 (blue) to 1 (yellow), for the top 35 isoforms that separate ER+ 

and ER- subsets. Isoforms are labeled by gene name (y axis). Samples are clustered according 

to the PSI values using Euclidean distance and Ward’s method. (c) Accuracies in terms of 

AUC values (y axis) from a 10-fold cross-validation for the transcript isoform signatures for 

the comparison of ER+ and ER- samples, and for the comparison of early and late N, S and T 

stages within ER+ or ER- subsets. The variation on each bar indicates the minimum and 

maximum AUC values. (d) PSI distribution of the isoform in TNFRS8 that changes between 

early and late S stage in ER- samples (Wilcoxon test p-value = 0.1046). (e) Accuracies in 

terms of AUC values (y axis) from a 10-fold cross-validation for the transcript isoform 

signatures (Iso-model) and the gene expression signatures OncotypeDX, MammaPrint, and 

PAM50, indicated in gray scale. Each signature was tested to predict the separation of ER+ 

and ER- breast tumor samples, or the separation between early and late (N, S and T) stage in 

ER+ or ER- separately. The variation on each bar indicates the minimum and maximum AUC 

values.  

 

. 
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Figure 4. (a) Ranking (x axis) of melanoma (SKCM) samples according to MITF expression 

(gene TPM) (y axis). We indicate the top and bottom 10% and 25% of the samples used for 

analyses. (b) Survival (Kaplan-Meyer) plot for the top and bottom 10% of the samples 

according to the ranking of MITF expression. The p-value corresponds to the Cox regression 

between the two groups and HR indicates the hazards ratio. (c) Heatmap of PSI values, from 0 

(blue) to 1 (yellow), for the top 30 discriminant isoforms according to |ΔPSI| value between 

the MITF+ and MITF- subgroups. Isoforms are labeled by gene name (y axis). Samples are 

clustered according to the PSI values using Euclidean distance and Ward’s method. (d) 

Accuracy given in terms of the distribution of area under the ROC curve (AUC) values (y 

axis) from a 10-fold cross-validation for (from left to right in the x axis) the survival model 

for MITF+, MITF- as well as for the separation between MITF+ and MITF- subgroups using 

25% (Q1 vs Q4) or 10% (D1 vs D10) of the top and bottom samples in the ranking of MITF 

expression. The bars show the minimum, mean and maximum AUC values. (e) Distribution 

of PSI values for the isoform in MADD that is predictive of prognosis in the MITF- subgroup 

(Wilcoxon test p-value = 7.781e-05).  

 

Figure S1. (a) Information-based feature selection methods provide a robust and conservative 

measure of the discriminant power of features. Left panels show plots comparing the 

information gain (IG) (upper panel), gain ratio (GR) (middle panel) and symmetrical 

uncertainty (SU) (lower panel) (y axes) with the Wilcoxon-test p-value after multiple-testing 

correction using Benjamini-Hochberg method (x axes) for the distribution of PSI values for 

two patient subgroups. In this case, the data corresponds to the comparison between ER+ and 

ER- breast tumor samples, subsampling 20 patients per group. Each dot corresponds to one 

isoform in each of the subsamples. Right panels: in red we show the distributions of IG (upper 

panel), GR (middle panel) and SU (lower panel) values for the comparison of a transcript 

from MAP3K7 between ER+ and ER- samples with using 100 subsamples of size 20. In blue 

we show the same values in the comparison between the groups after shuffling the labels. (b) 

Enriched hallmarks (y axis) for each stage class, metastasis (M), tumor size (T), lymph-node 

involvement (N) and overall staging (S), in each tumor type (x axis), using all discriminant 

isoforms found in each case. Only significant cases (corrected Fisher test p-value < 0.05) are 

shown. (c) Comparison of the ΔPSI values for the discriminant isoforms between metastatic 

and non-metastatic SKMC samples (x axis) with the ΔPSI values from the comparison of the 

metastatic (SKMel147) and non-metastatic (Mel505) melanoma cells (y axis). We indicate in 
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blue or red those isoforms with the same or opposite change direction, respectively. Dark and 

light colors indicate |ΔPSI|>0.1 and |ΔPSI|<0.1, respectively. The correlation (Pearson R) is 

given for isoforms in dark blue. (d) Accuracy of the models in terms of the areas under the 

precision-recall curves (PRC) (y axis) for the late-stage classes (i.e. precision is measured as 

the proportion of predicted late stage samples that are correctly predicted). The bars show the 

minimum, mean and maximum values of the area of the precision-recall curves. Some models 

are absent due to lack of sufficient samples (Table 1). 

 

Figure S2. (a) PSI distributions of some of the transcript isoforms in the derived predictive 

signatures. From left to right, PAX6 isoform in the KIRP T-model for KIRP (Wilcoxon test p-

value = 2.695e-06), MKNK1 isoform in the KIRP N-model (Wilcoxon test p-value = 0.0004), 

TM6SF1 isoform in the SKCM M-model (Wilcoxon test p-value = 1.813e-05), PRDM16 

isoform (Wilcoxon test p-value = 0.0001) and PTKB isoform (Wilcoxon test p-value = 0.005) 

in BRCA S-model. The y-axis indicates the PSI value in each sample separated according to 

early and late stages (x-axis). (b) Left panel: XY-plot of the PSI values (y axis) of the ENAH 

isoform that appears in the T-models of KIRP and COAD, and the stromal score (x axis), 

across all COAD tumor samples. Pearson correlation with stromal score R=-0.59 and with 

immune score R=-0.41. Right panel: PSI distribution of the same ENAH isoform in early and 

late T-stages in KIRP and COAD (Wilcoxon test p-value < 0.001). 

 

Figure S3. (a) Accuracies of the transcript isoform models (I) compared to the gene (G) and 

mixed (M) combining isoform and gene information. Accuracies are given as boxplots for the 

distribution of AUC values (y axis) from a 10-fold cross-validation for each tumor type (x 

axis) for the metastasis (M), overall stage (S), lymph node invasion (N) and tumor size (T) 

models (panels from upper left to lower right). Tumors for which stage data was missing are 

not shown (see Table 1 of the manuscript). (b) and (c): Survival (Kaplan-Meyer) plot 

associated to the blind test for N and S stage, respectively using the mixed model combining 

isoform and gene information. The plot indicates the survival percentage (y axis) versus 

survival in months (x axis) based on the predicted stage on the unannotated samples using the 

classifier for each corresponding tumor type. The p-value in each plot corresponds to the Cox 

regression between the two groups and HR indicates the hazards ratio 
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Figure S4. (a) Comparison of the ΔPSI values for the discriminant isoforms between ER+ 

and ER- samples (x axis) with the ΔPSI values from the comparison of the control and 

knockdown of ESR1 in MCF7 cells (y axis). We indicate in blue or red those isoforms with 

the same or opposite change direction, respectively. Dark and light colors indicate |ΔPSI|>0.1 

and |ΔPSI|<0.1, respectively. The correlation (Pearson R) is given for isoforms in dark blue. 

From the 2337 transcript isoforms with expression in the MCF7 experiments, 1123 (48%) 

show PSI changes in the same direction and 328 of them with |ΔPSI| > 0.1. (b) PSI 

distribution of the MAP3K7 isoform that changes significantly between the ER+ and ER- 

BRCA sets (Wilcoxon test p-value < 2.2E-16). Plots (c) and (d) show the survival (Kaplan-

Meyer) curves for the ER- samples according to early and late N and S stages, respectively. 

The p-value in each plot corresponds to the Cox regression between the two groups and HR 

indicates the hazards ratio. (e) Enriched cancer hallmarks for the set of discriminant isoforms 

between ER+ and ER- subsets (ER+_ER-) and for the set of isoforms separating early and late 

stages in ER- (ER-). For this latter comparison isoforms associated to N, T and S stages were 

combined into early and late subgroups. (f) Accuracy of the models in terms of the areas of 

the precision-recall curves (PRC) (y axis) for the comparison between ER+ and ER- 

subgroups and for the comparison of early vs late stage classes in each subtype, ER+ and ER-, 

for N, S and T annotation. The precision is measured as the proportion of predicted late stage 

samples or ER+ samples that are correctly predicted. The bars show the minimum, mean and 

maximum values of the area of the precision-recall curves. 

 

Figure S5. (a) Comparison of the ΔPSI values for the discriminant isoforms between MITF+ 

and MITF- melanoma tissue samples (x axis) with the ΔPSIs obtained from the comparison of 

the control and knockdown of MITF in Mel505 cells (y axis). We indicate in blue or red those 

isoforms with the same or opposite change direction, respectively. Dark and light colors 

indicate |ΔPSI|>0.1 and |ΔPSI|<0.1, respectively. The correlation (Pearson R) is given for 

isoforms in dark blue. From the total of 2279 discriminant isoforms for which we found 

expression in the cell lines, 1050 (46%) show a ΔPSI change in the same direction, with 865 

of them having |ΔPSI|>0.1. (b) Enriched cancer hallmarks (y axis) (corrected Fisher test p-

value < 0.05) using the discriminant isoforms in the comparison MITF- vs MITF+ and 

comparing low and high survival subgroup of patients within each subtype MITF+ or MITF-. 

Enriched hallmarks were the same using the top and bottom 10% or 25% samples according 
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to MITF expression to define the subtypes. (c) PSI distributions of the TPM1 isoform (left 

panel) and RAB27A isoform (right panel) that separate the two melanoma subtypes, MITF+ 

and MITF- (Wilcoxon test p-values = 5.293e-9 and 4.86e-12, respectively). The plots indicate 

the PSI values (y-axis) for the isoforms in MITF+ and MITF- samples (x-axis). (d) Genomic 

locus for RAB27A indicating the annotated isoforms; uc002acr.2 decreases PSI in MITF+ 

(Fig. S4c in Additional file 12), whereas uc002acp.2 increases PSI in MITF+ (Additional file 

10). (e) Accuracy given in terms of the areas under the precision-recall curves (PRC) (y axis) 

from a 10-fold cross-validation for (from left to right in the x axis) the survival model for 

MITF+, MITF- as well as for the separation between MITF+ and MITF- subgroups using 

25% (Q1 vs Q4) or 10% (D1 vs D10) of the top and bottom samples in the ranking of MITF 

expression The bars show the minimum, mean and maximum values of the area of the 

precision-recall curves. 
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