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Abstract: 
Characterizing inter-individual differences is critical to realize neuroimaging full potential, but can hardly be 
achieved without accurately assessing the statistical dependencies between inter-individual differences in 
behavior and inter-individual differences in neural activity. In this manuscript, we consider two hypotheses: 1) 
BOLD signal scales linearly with behavioral variables across individuals and 2) BOLD signal encodes behavioral 
variables on a similar scale across individuals. We formally show that these two hypotheses induce opposite 
brain-behavior correlational results in group-level analyses, illustrating the importance of explicitly testing inter-
individual brain-behavior scaling before engaging in the study of functional inter-individual differences. To further 
evidence the relevance of this framework, we illustrate its practical consequences for model-based fMRI using 
computational simulations, and demonstrate its empirical robustness in four fMRI studies investigating values 
coding in the prefrontal cortex. This may constitute an important step forward in our conceptualization, analysis 
and interpretation of inter-individual differences in cognitive neurosciences.  
 
 
INTRODUCTION:  

“There is very little difference between one 
man and another; but what little there is, is very 
important."i They are two complementary goals in 
cognitive neuroscience: understanding the average 
– typical - brain by linking its structure and functions 
with cognition and behavior, and understanding how 
individuals differ from each-others from the normal 
to the pathological ranges. With respect to these 
two quests, inter-individual differences in brain-
behavior relationships are fundamentally important 
either because they constitute a statistical challenge 
to understand the typical brain, or because they 
represent the very object of interest (Braver et al., 
2010; Gabrieli et al., 2015). 

Task-related functional neuroimaging (fMRI) 
constitutes a tool of choice to investigate the 
neurobiological underpinnings of cognition. Initially 
confined to the mapping of the typical brain, fMRI is 
increasingly used to investigate the neural bases of 
differential cognition. Individual brain activations are 
linked to external heterogeneity factors, such as the 
diagnostic criterion for some pathology, psycho-
socio-economic measures -i.e. “traits”-, or to 
behavioral measures recorded during the 
experiment – i.e. “task performance” (Figure.1.A 
and 1.B). Significant associations are then 
                                                
iWilliam James (1897). The Importance of Individuals, In 

The Will to Believe and Other Essays in Popular Philosophy  

interpreted in term of individual neural resource 
mobilized to complete the task – sometimes with 
opposite post-hoc rationalization. It is paradigmatic 
in the example of executive control literature, linking 
activations in the frontal regions and individual 
performance: positive associations are typically 
interpreted as an effective increase in cognitive 
control mobilization, whereas negative associations 
are interpreted as an increase in neural efficiency. 
This represents a critical failure of the current inter-
individual difference framework (Poldrack, 2015; 
Yarkoni and Braver, 2010). 

In the present paper, we suggest that these 
inconsistencies are possible because the 
hypotheses concerning the inter-individual relative 
scaling of brain signal (typically Blood Oxygen Level 
Dependent signal, BOLD) with behavior are not 
explicitly stated and tested. We therefore present 
the scaling issue and evidence its impact on inter-
individual fMRI results by intuitively and 
mathematically demonstrating that two simple - and 
equally plausible - scaling hypotheses can produce 
opposite results and conclusions. Using 
computational simulations, we show how the scaling 
issue can percolate in model-based fMRI, and we 
provide a priori principle to process model-based 
variables. Finally, in order to prove the interest of 
our framework and validate its robustness, we 
assess -and replicate in four imaging datasets- the 
statistical law describing the relationship between 
inter-individual differences in prefrontal BOLD signal 
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and inter-individual differences in the critical 
variable of economic decision-making: values 
(Lebreton et al., 2009, 2012, 2015; Palminteri et al., 
2015). 
 
RESULTS 
Theoretical considerations on scaling-laws 
fMRI analysis background. The classical fMRI 
analysis scheme relies on the general linear model 
(GLM) framework (Friston et al., 1994), and follow a 
multi-level summary statistics approach (Beckmann 
et al., 2003; Friston et al., 2005; Holmes and Friston, 
1998; Woolrich et al., 2004; Worsley et al., 2002). 
This provides a practically good approximation of 
mixed-effects designs (Beckmann et al., 2003; 
Friston et al., 2005; Mumford and Nichols, 2009), 
and results have been shown to be consistent 
across software packages (Bennett and Miller, 2010; 
Gold et al., 1998; Morgan et al., 2007). This 
approach can be briefly summarized as follows: in a 
first step, the linear relation between the time series 
of BOLD signal within a specific brain region (or 
voxel) and the time series of the different 
explanatory variables are assessed at the individual 
level. For each individual 𝑘, this entails designing a 
first-level GLM: Y! = 𝛽! . 𝐱! + 𝑢! , where Y!  is the 
BOLD time-series, 𝐱!  contains the explanatory 
variables time-series, 𝑢! is a Gaussian noise, and 
𝛽!  is the vector of the unstandardized linear 
coefficient of regressions to be estimated. First-level 
summary statistics, i.e. estimated individual betas 
𝛽!  or contrasts of betas, are then used in a 
population level analysis. For studies aiming at 
mapping a cognitive function in the typical brain, this 
second-level analysis is usually a random effect – a 
“one-sample t-test”. However, second-level 
analyses can also aim at investigating differences in 
activations between different categories subject (e.g. 
pathological or non-pathological sub-populations), 
or across a continuum of subjects (e.g. following 
individual “traits”). These differential analyses can 
respectively be implemented with “two-sample t-test” 
or ANOVAs for the categorical case, and with 
second-level “multiple regression” for the 
continuous case (Figure.1.B.). 

 
Scaling laws and inter-individual differences. 
Critically, second level analyses relies on 
unstandardized first-level betas (𝛽!). As recalled in 
the Experimental procedures, the magnitude of 
𝛽!  depends on the ratio between the standard 
deviations of the BOLD ( 𝜎(Y!) ) and of the 
experimental factor time series ( 𝜎(𝐱!) ). In the 
following, we refer to the statistical relationships 
between 𝜎(Y!)  and 𝜎(𝐱!)  as scaling laws, and 
investigate how they impact assessments of inter-
individual differences in brain activity as indexed by 
𝛽! . We consider two opposite, though neuro-

biologically plausible, scaling laws between a 
behavioral measure and the BOLD signal that we 
called the proportional and the normalization 
hypotheses. Without loss of generality, we consider 
those scaling laws in an idealized situation, where 
the BOLD signal in a brain region (Y!) encodes a 
behavioral parametric measure of interest ( 𝐱! ) 
whose distribution ( 𝜎(𝐱!) ) varies between 
individuals 𝑘  due to a heterogeneity source (see 
Figure.1.A and B, and Experimental procedures 
for formal definitions). The proportional hypothesis 
represents the typical theoretical case underlying 
random-effect analyses in neuroimaging: the brain-
behavior linear relation captured by the 𝛽! is kept 
constant across individual, notwithstanding random 
variations. As a consequence, no difference in 
“activations” -as measured by 𝛽!- accounts for the 
differences in behavior 𝐱! (Figure 1.C.a). In other 
words, under the proportional hypothesis, 
behavioral differences are reflected by underlying 
differences in brain activity, but not by differences in 
brain activations, as indexed by the standard fMRI 
analysis output. Under the normalization hypothesis, 
the BOLD signal also encodes the variable of 
interest, but on an identical scale across individuals, 
independent of the behavioral output. Then, inter-
individual or between-group differences in 
“activations” -as measured by 𝛽!-, logically derive 
from differences in behavior 𝐱! (Figure 1.C.b). In 
other words, under the normalization hypothesis, 
behavioral differences are not reflected by 
underlying differences in brain activity, but by 
differences in brain activations, as indexed by the 
standard fMRI analysis output. These derivations 
mean that the interpretations of inter-individual 
differences in 𝛽! should be made with caution. For 
instance, let’s assume that the activity in a region of 
interest (ROI) Y!  is causally responsible for a 
behavioral measure 𝐱! , and that a heterogeneity 
factor causes changes in 𝑌!, inducing proportional 
changes in 𝐱! . In the proportional context, 
comparisons between 𝛽!  in the ROI might be 
inconclusive, potentially misleading to false-
negative conclusions about the role of the ROI in 
the observed inter-individual differences due to the 
heterogeneity factor (Figure.1.D).  

 
Neutralizing inter-individual differences in 
behavior. To circumvent the scaling issue, one 
might be tempted to neutralize inter-individual 
differences in behavioral by individually normalizing 
–Z-transforming- the measure of interest. However, 
as shown in the Experimental procedures, under 
the proportional hypothesis, Z-scoring induces a 
monotonic relationship between the “activation” (𝛽!!) 
and the standard deviation of the behavior, which 
was absent before Z-scoring (Figure 1.C.c). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 11, 2016. ; https://doi.org/10.1101/036772doi: bioRxiv preprint 

https://doi.org/10.1101/036772


Assessing inter-individual variability in brain-behavior relationship  
 

Lebreton & Palminteri 3 

Conversely, under the normalization hypothesis, Z-
scoring cancels the monotonic relationship between 
the “activation” (𝛽!!) and the standard deviation of 
the behavior, leaving no inter-individual or between-
group differences (Figure 1.C.d). These derivations 
critically demonstrate that the significance and 
interpretation of typical inter-individual correlational 
results largely depend on an interaction between 
the behavioral variable pre-processing and the 
scaling hypothesis. The interaction between the 
scaling hypothesis and the Z-scoring of the 
behavioral variable also has a significant impact on 
the results of second-level random-effect analyses 
(i.e. one sample t-test on the 𝛽! ): under the 
proportional scaling hypothesis, Z-scoring 𝐱! 
introduces a systematic variance in the 𝛽!! due to 
the dependence of 𝛽!!  to 𝜎(𝐱!) , which can 
decrease the significance of random-effect model 
(see Figure 1.C.a vs 1.C.c). On the opposite, under 
the normalization scaling hypothesis, Z-scoring 𝐱! 
erases the systematic variance initially due to the 
difference in 𝜎(𝐱!) , hence can increases the 
significance of random-effect model (see Figure 
1.C.b vs 1.C.d). Systematic investigation of brain-
behavior scaling laws might therefore provide 
precious information about how to best pre-process 
variables of interest to perform classical fMRI 
analyses. 

 
Task designs and inter-individual differences. 
Consider a typical fMRI investigation attempting to 
link inter-individual differences in a performance 
“trait” (IQ, psychometric measure or socioeconomic 
status) to some neural activations, derived from a 
trial-by-trial measure of a task-performance 
explanatory variable 𝐱! (e.g. confidence, decision-
value, or reaction time). If the task is too easy, high-
performing people exhibit ceiling task-performances, 
(generating smaller 𝜎(𝐱!) ), inducing a negative 
correlation between individual performance “trait” 
and 𝜎(𝐱!). Symmetrically, if the task is too hard, 
low-performing people might exhibit flooring task 
performances, (generating smaller 𝜎(𝐱!)), inducing 
a positive correlation between individual 
performance “trait” and 𝜎(𝐱!) . Given the 
dependencies between 𝛽! and 𝜎(𝐱!), this will lead 
to opposite correlations between “activations” (𝛽!), 
and individual performances “trait” (proxied by 
𝜎(𝐱!)) (Figure 1.E). This example illustrates the 
potential of the scaling framework to explain 
inconsistent results in the cognitive neuroscience 
literature of inter-individual differences. 

Activation measures derivable from 𝛽!  exist, 
which do not depend on 𝜎(𝐱!) but also carry a 
different meaning (e.g. “t-values” or “Z-values”, see 
Experimental procedures). It seems critical, for 
future studies of inter-individual differences, to 

clarifies the question they are attempting to answer 
-is the brain region linearly coding the variable on a 
different scale in different subjects? Or: is the region 
linearly coding the variable with a different reliability 
in different subjects?- and make appropriate 
choices, descriptions and interpretations of their 
activation measure. 

 
Scaling-laws and model-based fMRI 
Computational models and latent variable 
distributions. In this second part, we will develop 
some consequences of the scaling issue for model-
based fMRI. Model-based fMRI typically uses as 
dependent variables in first-level GLMs (𝐱!) latent 
variables derived from individual choice patterns: a 
computational model is selected, its free-
parameters are adjusted to account at best for 
behavioral data, and the model parameters are 
used to generate the latent variables of interest 𝐱! 
(O’Doherty et al., 2007). Importantly, the model 
free-parameters can be either considered as fixed 
(FFX) -i.e. shared across individuals - or random-
effects (RFX) -i.e. each individual’s parameters are 
drawn from a common population distribution (Daw, 
2011). In the case of random-effects, model free-
parameters almost inevitably impact the latent 
variable distribution properties, including 𝜎(𝐱!) , 
with consequences for the scaling law. Consider the 
example of using an expected-utility model in 
decision-making under risk: for choice situations 
involving simple prospects combining potential 
gain(s) 𝑔 with a probability 𝑝 of winning, expected 
utility theory stipulates that agents choose the 
option which maximize the expected utility 
𝐞𝐮 =   𝑝×𝑔!. In this model 𝑟 is the utility curvature 
free-parameter and captures the individual attitude 
toward risk (see e.g. (Bernoulli, 1954)). By 
simulating a task, where individual are confronted 
with several options –i.e. combinations of 𝑔 and 𝑝-, 
and by computing 𝐞𝐮  for different and plausible 
values of 𝑟, we can unambiguously show that the 
model free-parameter r monotonically determines 
𝜎(𝐞𝐮) (Figure.2.A). 
 
Task designs and computational models. In 
many cases however, the link between the model 
parameters and the standard deviation of the latent 
variable 𝜎(𝐱!) is not trivial and largely depends on 
the task setting and the stimuli space. To illustrate 
this second point, we take the example of the 
hyperbolic delay-discounting model. This model 
states that in choice situations involving prospects 
combining future gain(s) 𝑔 deferred by delays 𝐷, 
decision-makers are choosing the option with the 
highest discounted value 𝐝𝐯 =    !

!!!×!
. In this model 

𝑘 is the discounting free-parameter, and captures 
individual patience or impulsivity (see e.g. (Ainslie 
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and Haslam, 1992)). We simulated a task, where 
individual are confronted with 2 different sets of 
options combing 𝑔  and 𝐷 , and computed the 
discounted value of those options for plausible 
values of 𝑘. We then show that, depending of the 
option set, the model free-parameter k and 𝜎(𝐝𝐯) 
can be either positively or negatively monotonically 
related (Figure.2.B). 
 
From latent variables to choice functions. Finally, 
the associations between the model free-
parameters and the standard deviation of the latent 
variable 𝜎(𝐱!)  are not limited to parameters 
involved in the computation of the latent variable 𝐱!. 
In the case of value-based decision-making, this 
means that the standard deviation of the value 
variable 𝜎(𝐯!)  may not only be linked to 
parameters of the value function, but can be linked 
to other parameters, e.g. controlling the decision 
policy. To illustrate this third point, we ran a last set 
of simulations, taking for example a simple 
reinforcement-learning situation, where decision-
makers have to learn, by trial and errors, to select 
the stimulus which is associated to a higher reward 
rate. The Rescola-Wagner model proposes that 
agents learn the value of stimuli (Q-values), thanks 
to a trial-by-trial iterative process: the value of the 
chosen option is updated at each trial with a 
prediction-error, i.e.; the difference between the 
predicted outcome (the preceding Q-value), and the 
actual outcome ( 𝑅 ): 𝐪𝐯𝒕!𝟏 = 𝐪𝐯𝒕 + 𝛼×(𝑅 − 𝐪𝐯𝒕) . 
The update is pondered by a parameter: the 
learning rate 𝛼 , which quantifies how much 
individuals “learn” from their errors. The decision 
rule between two options A and B is often 
implemented as a soft-max (e.g. logistic) function: 
𝑝 𝐴 = !

!!!"#  (!!×(𝐪𝐯 𝐀 !𝐪𝐯 𝐁 )
. 𝜗 , the second model 

free-parameter, is called the temperature, and 
indexes the trade-off exploration/exploitation. We 
first simulate learning sequences with different 
values of 𝛼  and 𝑅 , and show that these two 
parameters are strongly associated with 𝜎(𝐪𝐯) 
(Figure.2.C.a). However, 𝑅 is rarely set as a free-
parameter, and is usually set to the outcome value, 
despite potential individual differences in the 
sensitivity to the outcome magnitude. We therefore 
simulated choices occurring from learning 
sequences with a fixed 𝜗 but different values of 𝛼 
and 𝑅, and estimated a classical model, where only 
𝛼  and 𝜗  are free-parameters. In that case, we 
show that those two model parameters are strongly 
associated with 𝜎(𝐪𝐯), despite the fact that 𝜗  is 
not a parameters governing the computation of 𝐪𝐯, 
but rather governs the choice process 
(Figure.2.C.b). 
 
Model-based fMRI and random-effects. Although 

treating model free-parameters as random-effects 
often seem to provide the best account of 
individuals’ behavior as assessed by rigorous 
model-comparisons, a common practice in the 
literature is to treat them as a fixed-effect –i.e. use a 
population parameter- to generate the latent 
variables for fMRI analysis (Daw et al., 2006; 
Gershman et al., 2009; Gläscher et al., 2009, 2010; 
O’Doherty et al., 2004; Palminteri et al., 2009; 
Pessiglione et al., 2008). This is justified by the fact 
that individual free-parameter estimates are “noisy” 
and using the data from the full population is an 
efficient way to regularize them. However, when 
individual parameters still provide a better account 
of the population behavioral data according to 
rigorous model-comparison procedures, one might 
argue that the variance modeled in the individual 
free-parameters actually captures a true inter-
individual variability in the cognitive process at stake, 
hence might contribute to give a better account of 
individual neurophysiological data. In the light of the 
scaling issue raised in this paper, we suggest that 
the use of population free-parameters actually 
constrains 𝜎(𝐱!)  to a unique population value, 
provided that individuals are given the same input. 
Under the normalization scaling hypothesis, this can 
substantially increase the statistical power of 
subsequent second-level random effects analyses. 
In this case, a better way to model brain activation 
(i.e. accounting for individual differences) would be 
to use individual model free-parameters, and Z-
score the latent variables generated by these 
individual models. This discussion, again, raises the 
interest of better documenting scaling-laws in fMRI, 
so as to provide a priori principled rational to 
process independent variables of interest, in order 
to increase the sensitivity and replicability of model-
based fMRI. 
 
Model-based fMRI and inter-individual 
correlations. Another consequence of the 
associations between the model free-parameters 
and 𝜎(𝐱!) , is that inter-individual correlations 
between model free-parameters and activations (𝛽!) 
in an ROI encoding 𝐱! should be interpreted with 
much caution. Indeed, they may rely on simple 
mathematical dependencies between the free 
parameters, 𝜎(𝐱!) , and 𝛽! , and they largely 
depend on interactions between the underlying 
brain-behavior scaling hypothesis and the 
processing (Z-scoring) of 𝐱! . In other words, 
observing e.g. a significant correlation between 
individual learning rates and individual Q-values 
activations in a given area may simply reflect the 
fact that differences in learning rate induced 
differences in the individual Q-value standard 
deviation. Besides, given that the link between 
model-parameters and 𝜎(𝐱!)  can reverse 
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depending on the task design (Figure.2.B), one can 
anticipate reports of opposite inter-individual 
correlations (positive or negative) between model-
parameters (e.g. a discount factor or a learning rate) 
and the value “activations”, as measured by 𝛽!.  

 
Empirical testing of scaling laws 
In this section, we assess the practical impact of 
BOLD-behavior scaling laws on fMRI analysis –
random effects, and inter-individual correlations. 
 
Scaling laws in value-rating fMRI studies. The 
first experimental data consists in three published 
fMRI datasets investigating “values” –the presumed 
determinant of decision-making (Camerer, 2008; 
Rangel et al., 2008). Functional neuroimaging 
measures were recorded while subjects were 
performing similar tasks (Figure 3.A.a, B.a and 
C.a): judging the pleasantness of pictures of 
paintings, houses and faces (Study 1 ), the 
desirability of objects depicted in short videos 
(Study 2) or the desirability of events described in 
sentences (Study 3), and reporting those 
evaluations on a rating scale (Lebreton et al., 2009, 
2012, 2015). 

As previously and extensively reported 
(Bartra et al., 2013; Clithero and Rangel, 2014; 
Peters and Büchel, 2010; Sescousse et al., 2013), 
we found that random-effect analyses on the 
parametric native ( 𝐯 ) and individually Z-scored 
values (𝐯!) independent variable “value rating” are 
very significant in a large ventral prefrontal region, 
including ventromedial prefrontal cortex (VMPFC) 
and medial orbitofrontal cortex (MOFC) (PFWE<0.05 
Figure 3.A.b, B.b and C.b).  
The mathematical derivations predict that the 
random effect should be more (resp. less) 
significant with 𝐯!  under the normalization (resp. 
proportional) hypothesis. We used two measures to 
assess the significance of the random effects: 1) 
VMPFC-k: the size of the VMPFC clusters (pFWE-

clu<0.05, with a voxel-wise cluster-generating 
threshold pUNC<0.001), and 2) ROI-log(P): the 
negative log of the p-value of the random effects in 
an anatomical independent VMPFC ROI (one-
sample t-test on the individual 𝛽!  and 𝛽!! 
averaged over the voxels of the ROI). These two 
measures in the 3 datasets consistently indicated 
that using 𝐯!  produces more significant random-
effects (Table 1.a). Next, in order to formally assess 
the two scaling laws in this context, we tested the 
relationships derived in the Experimental 
procedure, and linking “activation”, as measured by 
𝛽  and the standard deviation of the value 𝜎(𝐯). 
Again, a very consistent pattern emerged across all 
3 studies: we found no significant positive 
correlations between 𝛽!!  and 𝜎(𝐯!) , whereas 

correlation between 𝛽!  and 1/𝜎(𝐯!)  were 
systematically significantly positive (Table 1.a and 
Figure 3.A.c, B.c and C.c.). Importantly, the same 
correlations assessed with the t-values (𝑡!! or 𝑡! – 
which are practically identical: R>.99 in the three 
studies) did not exhibit the same pattern (Table 1.a). 
Hence, inter-individual differences in “activations”, 
as measured by 𝛽! are likely due to scaling issues 
rather than differences in the linear dependencies 
between the BOLD signal and the behavioral 
measure 𝐯. 
The results suggest that the inter-individual 
representation of values in the VMPFC, in such 
rating tasks, follows a normalization scaling rule: 
despite individual differences in the range (variance) 
of the behavioral value ratings, individuals exhibit 
similar range of BOLD signal in the core of the brain 
valuation system. This can be given concurrent 
interpretations: 1) the “true” underlying value signal 
range is similar across individuals - accurately 
captured by the fMRI analysis- despite individual 
differences in the behavior, e.g.  due to calibration 
differences on the experimental rating scale; or 2) 
the underlying “true” value signal range is actually 
different across individuals –following the 
differences in the range of ratings reported on the 
experimental scale-, but there are experimental 
limitations which prevent the correct assessment of 
this inter-individual variability at the neural level. 
This raise new questions –e.g.: can we infer 
whether an option is more valuable to an individual 
than to another from fMRI data? -, whose answers 
will determine our ability to fulfill some of the 
promises of fMRI applications. 
  
Scaling laws in a model-based study of 
reinforcement learning. In this section, we 
illustrate the implications of scaling law for model-
based fMRI, using a fourth experimental fMRI 
dataset investigating value-based learning 
(Palminteri et al., 2015). Participants were faced 
with repeated choices between abstract stimuli, 
which were probabilistically paired with different 
outcomes (neural, reward or punishment). The goal 
was to learn to select the stimuli, which maximize 
reward occurrences and minimize punishment 
occurrences (Figure 4.A). This task can be 
efficiently modelled with a variant of the Rescola-
Wagner reinforcement-learning rule: participants 
learn, by trial and error, the value (Q-values) of the 
stimuli and make their choices by soft-maximizing 
expected value (see (Palminteri et al., 2015) and 
Figure 4.B). Two core free-parameters of the model 
capture the individuals’ learning dynamics and 
choice variance: the temperature 𝜃 , and the 
learning rate 𝛼. These free-parameters are typically 
set to maximize the likelihood of observed choices 
under the considered model.  
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As outlined in the first section, the 
implications of scaling laws for model-based fMRI 
root in the differences arising from using population 
(FFX) versus individual (RFX) sets of free-
parameters. We therefore explored the 
consequences of those two modelling options in the 
behavioral data of (Palminteri et al., 2015). A model-
comparison approach first unambiguously indicated 
that individual choices are more likely accounted for 
by individual free-parameters than by a single set of 
population free-parameters, even after accounting 
for the extra degrees of freedom (lack of parsimony) 
engendered by this procedure (AICRFX= 8742 vs 
AICFFX= 9586 and BICRFX= 8960 vs BICFFX =9615). 
Importantly for the scaling-law issue, both individual 
free-parameters ( 𝜃  and 𝛼 ) are very strongly 
associated with the individual standard deviation of 
the Q-value of the chosen option 𝜎(𝐪𝐜!) (inter-
individual correlations, respectively R = .65; p<.001, 
and R = .67; p<.001, Figure 4.C), while being 
uncorrelated with one-another (R = .31, p = .11). 
Intuitively, 𝛼  is positively associated to 𝜎(𝐪𝐜!) 
because it directly affects the amplitude of the 
learned values, whereas the 𝜃  affects the 
stochasticity of choices, such that subjects with 
higher 𝜃!  frequently alternate between the best 
and the worst option, thus indirectly increasing the 
variance of 𝐪𝐜!. 

Turning to neuroimaging data, we ran 3 
GLM, differing only in the way the parametric 
regressor “chosen Q-value” (QC) was generated: we 
used population (𝐪𝐜! ) or individual model free-
parameters. In this latter case, the QC could be 
entered in the GLM in their native scale (𝐪𝐜), or Z-
scored per individual and session (𝐪𝐜!). We first ran 
a whole-brain random-effect analysis on the 
parametric regressor QC in the 3 GLMs (i.e. using 
𝐪𝐜 , 𝐪𝐜! , or 𝐪𝐜!  as the independent variable). 
Replicating numerous findings, we found that Qc 
are represented in the VMPFC (Figure 4.D). In 
order to assess the quality of individual fit, we 
extracted t-values 𝑡! in an anatomical VMPFC ROI. 
A random effect showed that these statistics are 
bigger when using QC generated with individual 
model free-parameters ( 𝐪𝐜  or 𝐪𝐜! ) than group 
model free-parameters (𝐪𝐜!) (one sided one-sample 
t-test, t27= 1.67 p=.05). This means that, regardless 
of any scaling issue, the BOLD signal is better fitted 
with individual model free-parameters. This parallels 
the model comparison approach with the behavioral 
data, and might indicate that individual-fit lead to 
latent variables estimates, which are closer to the 
variables actually represented in subjects’ brains.  
We then compared the statistical significance of the 
random-effects in our 3 GLMs. First we noted that 
our whole-brain analysis resulted in a large and very 
significant cluster when using 𝐪𝐜!  or 𝐪𝐜!  as the 

independent variable, using 𝐪𝐜  only generated 
weak, sub-threshold activations (Figure 4.D). Then, 
paralleling the previous section, we used our two 
measures to assess the significance of the fMRI 
random effects (VMPFC-k and ROI-log(P)). These 
two measures gave similar conclusions: while using 
𝐪𝐜! as an independent variable seems to improve 
random-effect models compared to using 𝐪𝐜, using 
𝐪𝐜!  provide the most significant random-effects, 
supporting the normalization hypothesis (Table 1.b, 
see also Figure 4.E). 
In order to assess more specifically the scaling law 
in this new dataset, we next tested the correlation 
between 𝛽!!  (i.e. computed with 𝐪𝐜! ) and 𝜎(𝐪𝐜!) 
and correlation between 𝛽! (i.e. computed with 𝐪𝐜) 
and 1/𝜎(𝐪𝐜!)  in the anatomical VMPFC ROI. 
Again, whereas the first correlation is not 
significantly positive the second is (Table 1.b and 
Figure 4.F). Importantly, the same correlations 
assessed with t-values (𝑡!! and 𝑡!) did not exhibit 
the same pattern. Hence, inter-individual differences 
in QC representations, as measured by 𝛽! are likely 
due to scaling issues (namely normalization) rather 
than differences in the linear dependencies between 
the BOLD signal and the behavioral measure 𝐪𝐜. 
Note that one subject has 𝛼 and 𝜃 close to 0. Due 
to the fact that 𝛽! correlate with 1/𝜎!,!, and that 
close-to-zero model free-parameters generate latent 
variables 𝑋!  with close-to-zero 𝜎!,! , the 
corresponding 𝛽!  of this subject take an outlying 
value. Importantly, however, our test of scaling law 
holds when excluding the potential outlier (P<0.05, 
Figure 4.F) again strongly favoring the 
normalization hypothesis. 

Altogether, our results suggest that scaling 
issues might explain the apparent contradictory 
observations that fMRI random-effects are more 
significant using 𝐪𝐜!than 𝐪𝐜 despite the superiority 
of individually-fitted models to account for individual 
behavioral choices. Overall the results of these 
analyses advocate for the use of individual 
parameters in value-related model-based fMRI, 
together with a Z-scoring of the model-estimated 
latent variable –value- to account at best for the 
inter-individual normalization effect occurring in the 
VMPFC.  
Finally, we assessed the correlation between model 
free-parameters and VMPFC activations –as 
measure with 𝛽!. The rational would be to take the 
model free-parameters as a traits-of-interest, to 
support a statement like: “individual who are better 
learners –i.e. higher learning-rates- have a stronger 
value-related activations in the VMPFC”. In our case, 
model free-parameters positively correlate with 
𝜎(𝐪𝐜!), and the normalization scaling law implies 
that 𝛽! scale with 1/𝜎(𝐪𝐜!). We therefore expect 
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individual learning-rates and soft-max-temperatures 
to be negatively correlated to 𝛽!  in the VMPFC. 
Experimental data support this prediction 
(respectively R=-.44, P<.05= and R=-.38, P<.05). 
Excluding the outlier precluded the significance of 
the correlation with the learning rate, but not with 
the soft-max temperature (respectively R=-.24, 
P=.22 and R=-.39, P<.05). This analysis justifies our 
cautious note about the interpretations of 
correlations between model-parameters and 
activations –as measured by 𝛽!-, as they may be 
dependent on the statistical relationship between 
model-parameters and 𝜎(𝐪𝐜!). 
 
DISCUSSION 
 

Researchers are increasingly interested in inter-
individual variability in cognitive neurosciences, in 
the normal and pathological ranges. The ability to 
assess and predict individual differences from 
neural measures –neuromarkers- has emerged as 
one the most promising application of fMRI in 
society (Gabrieli et al., 2015; Wang and Krystal, 
2014) In this manuscript, we explored a specific 
type of neuromaker: task-dependent fMRI 
“activations”, indexed by unstandardized 
coefficients of regression 𝛽!  between individual 
behavioral variables (𝐱!) and BOLD signal (Y!). We 
recalled that 𝛽! depend on the ratio of the standard 
deviation of 𝐱!  and Y! , making task-dependent 
fMRI neuromarkers partly reflecting scaling laws 
between the BOLD signal and the behavioral 
variable of interest. Documenting those scaling laws 
is therefore paramount to correctly interpret 
assessments of inter-individual differences in 
cognitive neuroscience. With this goal in mind, we 
proposed a new taxonomy –
proportional/normalization- to qualify such inter-
individual brain-behavior scaling relationship. 
Importantly, this taxonomy is based on a formalized 
description of the statistical dependency between 
the BOLD signal and the behavioral variable, rather 
than on a functional (over-)interpretation of such 
statistical quantities –like in the current efficiency vs. 
activation taxonomy- (Poldrack, 2015). By doing so, 
it aims at helping the building of a cumulative 
cognitive science, based on the falsification of 
precise predictions. Although we acknowledge that 
the present paper does not cover the full range of 
potential link between brain activation and behavior, 
we think that this new perspective might contribute 
to reconcile previous contradictory findings, and 
foster a fruitful discussion on the way to interpret 
and assess investigations of individual-difference in 
neuroimaging. 

Notably, the level of interpretation of the 
scaling relationships may depend on the extent to 
which state-of-the art fMRI technics can capture 

inter-individual variations in the range of BOLD 
activations   𝜎 Y! . Indeed, the proportional scaling 
hypothesis can only be supported if it is possible to 
link inter-individual variations in the extent of the 
explanatory variable   𝜎 𝐱!  to inter-individual 
variations in the range of BOLD activations  𝜎 Y! ; 
failing to do so will de facto provide evidence for the 
normalization hypothesis, regardless of the 
underlying neuro-cognitive scaling hypothesis. 
However, this should not be viewed as a failure of 
the proposed framework, which aims at better 
describing inter-individual brain-behavior 
relationships and whose validity is therefore 
independent of the level of description considered; 
Still, the ability to reliably assess inter-individual 
differences in the range of BOLD activations  𝜎 Y!  
appears critical, notably to provide evidence in favor 
of the proportional scaling laws. Although fMRI 
reliability has been the focus of extensive research 
(Bennett and Miller, 2010), this specific question 
has received little attention so far. Overall, besides 
the sensitivity of MRI measures to inter-individual 
differences, numerous factors are suspected to play 
a role in our ability to correctly estimate inter-
individual differences in the range of BOLD 
activations  𝜎 Y! , such as e.g. individual differences 
in vascularization (Logothetis, 2008), s) or 
preprocessing and analytic strategies. 

We next attempted to decipher the 
consequences of scaling laws on random-effect 
models, inter-individual differences analyses, and 
computational modelling. We particularly stressed 
the fact that, in event-related parametric designs, 
differences in 𝛽! –which are used to quantify brain 
“activations”- can trivially derive from differences in 
the range of the behavioral measure 𝜎(𝐱!). This is 
the case under the normalization hypothesis when 
neuroimaging data are analyzed with native 
behavioral variables 𝐱!, and under the proportional 
hypothesis, when neuroimaging data are analyzed 
with Z-scored behavioral data. This poses serious 
challenges to current interpretations of inter-
individual differences in 𝛽!  in the absence of 
knowledge about the underlying scaling law. This 
warning is not limited to inter-individual differences 
claims, but generalizes to within-individual inter-
session claims: between-sessions scaling laws may 
have important consequences for design involving 
between-session manipulations -such as brain 
stimulation or pharmacological modulations- which 
often also impact the behavior, hence 𝜎(𝐱!) . 
Therefore, similarly to the inter-individual; case, we 
recommend that researchers start documenting the 
impact of their between-session manipulation on 
𝜎(𝐱!) , provide a more detailed account of the 
processing of independent variables 𝐱! (Z-scoring 
or not) used for neuroimaging analysis, and 
investigate scaling-laws. In the value-based 
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community, a recent paper reported that 
normalization of BOLD signal under different value 
ranges actually occurs between different sessions 
of the same individual.(Cox and Kable, 2014), giving 
credit to our warning. 

Although we introduced the scaling issue in 
the context of fMRI event-related parametric 
designs, most conclusions and warnings can be 
extended to fMRI categorical designs, notably in the 
critical situation where categorical events are 
constructed from individual reaction times. Indeed, 
modelling categorical events with individual time-
varying boxcars introduces an inter-individual 
difference in the modelling of BOLD-signal 
amplitude, therefore inevitably generates scaling 
issue. (Grinband et al., 2008; Poldrack, 2015). 

We propose that a good practice before 
engaging in the study of fMRI inter-individual 
variability is to start documenting the statistical 
relationship between traits of interest (individual 
clinical scores, psycho-social measures, model free-
parameters) and the standard deviation 𝜎(𝐱!)  of 
fMRI regressors. Ideally, researchers might 
explicitly test brain-behavior scaling laws for the 
cognitive function of interest, in the brain region of 
interest, using their specific task – indeed, one can 
expect that different cognitive processes, elicited 
with different tasks could follow different scaling law, 
in different brain regions. In order to improve the 
reproducibility of fMRI findings, it is paramount to 
formulate clear a priori hypothesis about inter-
individual-differences and to use an appropriate 
operationalization. 

 
Finally, we initiated this practice by 

documenting inter-individual normalization of values 
representation in the VMPFC using four datasets. 
This parallels recent findings reporting within-
individual range adaptation of value coding in the 
same area (Cox and Kable, 2014; Padoa-Schioppa, 
2009). This finding might contribute to improve our 
understanding of the valuation process, and provide 
principled rational to preprocess variables of interest 
and carry out model-based fMRI in the value-based 
decision-making community. 
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Figure 1: Inter-individual in brain-behavior relationships and scaling laws 
A. Inter-individual differences in brain-behavior relationships are paramount in virtually all fMRI designs, 
regardless of whether they address these differences explicitly or not. They are typically assessed by linking 
individual fMRI contrast values with a trait of interest. However they also often leak in fMRI data analysis when 
behavioral variables are used as independent variables in the design matrix. Problems can arise when the trait 
of interest also generates differences in the variance of the behavioral variables. B. Typical results illustrating 
inter-individual differences in brain-behavior relationships, as they are reported in the literature, in the form of 
categorical contrast between group of subjects (bars±s.e.m) or group level linear correlation with a continuous 
trait (dots and regression line). C. The relationship between scaling laws and second-level statistics. The panels 
describe the impact of inter-individual differences in the standard deviation 𝜎(𝐱) of the behavioral variable 𝐱, 
under different preprocessing -native (a,b) or Z-scored variable (c,d)- and under different scaling-laws 
hypotheses -proportional (a,c) and normalization (a,d). Each sub panel contains three graphs. On the left we 
illustrate how 𝐱 is related to the BOLD signal in two individuals with different initial 𝜎(𝐱) (blue vs. red or green 
vs. orange). The individual unstandardized coefficients of regression 𝛽 , corresponds the slope of the 
corresponding lines. On the upper right corner, we illustrate the statistical relations between individual brain 
activations and 𝜎(𝐱) (presumably linked to the trait of interest ToI) as a between-group analysis (histograms) or 
continuous inter-individual correlation (dots). On the bottom-right corner we illustrate the consequences for the 
significance of second-level random-effect analysis (*: lower significance, vs. ***: higher significance). 𝛽 and 𝛽! 
respectively refer to fMRI unstandardized coefficients of regressions computed with a native scaling or an 
individual Z-scoring of the parametric regressor 𝐱. D. Interpreting differences in unstandardized 𝛽. Consider a 
brain region, which causally and proportionally causes a behavior (i.e. the more activation, the higher the 
behavioral variable, within and across subjects). In case a trait of interest (e.g. pathology) directly impacts the 
range of activation of this region (e.g. due to degeneration), this cannot be assessed/detected by differences in 
𝛽  (right, inset). Misunderstanding the signification of 𝛽  and ignoring scaling laws can lead to erroneous 
negative conclusions. E. Linking task design, behavior, and traits of interest. The red/blue histograms depict the 
distribution of a behavioral variable (reaction time, decision value, confidence) in two individual with variable 
performance. If the task is easy (respectively difficult), the high (respectively low)-performing individual can 
exhibit a ceiling (respectively floor) effect on performance. This creates statistical dependencies between the 
performance trait performance) and the standard deviation (𝜎(𝐱)) of the behavioral task-performance variable 
(see graphical insets). Given the dependencies between fMRI 𝛽 and 𝜎(𝐱), this can lead to opposite correlations 
between “activations” –as measured by 𝛽-, and “individual performances”, proxied by 𝜎(𝐱).  
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Figure 2: Model-based fMRI and the impact of model-parameters on inter-individual differences 
A. Linking individual model-parameters and 𝜎(𝐯). We computed the expected utility 𝐞𝐮 =   𝑝×𝑔! of different 
prospects mixing gains 𝑔 and probabilities 𝑝 -  𝑔 ∈ 1: 5  10: 5: 30 €, 𝑝 ∈ 10: 20: 90 % −  , for different values of 
the utility curvature parameter 𝑟 (blue: 𝑟= .75, purple: 𝑟= 1.0 and red: 𝑟= 1.25 ). Left: Expected utility of the 
task-stimuli, Middle: histogram of computed expected-utility and corresponding scaled density functions. Right: 
estimated 𝜎(𝐞𝐮)  as a function of 𝑟 . B. Linking individual model-parameters, task design and 𝜎(𝐯) . We 
computed the discounted value 𝐝𝐯 =    !

!!!×!
 of different prospects mixing gains 𝑔 and delays 𝐷, for different 

values of the discount parameter 𝑘 (blue: 𝑘= .001, purple: 𝑘= .04 and red: 𝑘= .1 ), and for 2 task designs (i.e. 
2 sets of prospects). Top: 𝑔 ∈ 20: 2: 28 €,𝐷 ∈ 0: 5: 50  Bottom: 𝑔 ∈ 10: 5: 30 €,𝐷 ∈ 0: 5: 50 . Left: 
Discounted value of the task-stimuli. Middle: histogram of computed expected-utility and corresponding scaled 
density functions. Right: estimated 𝜎(𝐝𝐯) as a function of 𝑘. C. Illustrating the link between non-value related 
model-parameters and 𝜎(𝐯). a. We computed the Q-value 𝐪𝐯𝒕!𝟏 = 𝐪𝐯𝒕 + 𝛼×(𝑅 − 𝐪𝐯𝒕) of a 20-trials learning 
sequence, for different learning rates 𝛼 (Top, 𝑅= .75, and blue: 𝛼 =.3 or red: 𝛼 =.7) and different outcome 
magnitude R (Bottom; 𝛼=.5, and blue: 𝑅= .75, and red: 𝑅= 1) Left: Q-values as a function of the trial number. 
Middle: histogram of computed Q-values and corresponding scaled density functions. Right: estimated 𝜎(𝐪𝐯) as 
a function of 𝛼 (top) or 𝑅 (bottom). b. We simulated a task, implementing binary choices between a fixed- 
option of known value (0.5), and an option whose value had to be learned through trial-and error. We generated 
sequences of Qv of the unknown option, with different values of 𝛼 -𝛼 ∈ . 3: .05: .7 - and 𝑅 𝑅 ∈ . 55: .05: .95 -, 
and corresponding stochastic choices. For each set of parameters, we generated 50 learning-sequences of 20 
trials. We then estimated the parameter of the model, but with a fixed R (=1) and a softmax (logistic) choice 
function 𝑝 𝐴 = !

!!!"#  (!!×(𝐪𝐯 𝐀 !𝐪𝐯 𝐁 )
, setting 𝛼 and 𝜗 as the model free parameters. Left: estimated 𝛼 as a 

function of the true 𝛼. Middle: estimated 𝜗 as a function of the true R. Right: estimated 𝜎(𝐪𝐯) as a function of 
𝛼 and 𝜗. 
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Figure 3: Assessing BOLD-Behavior scaling relationships in value rating tasks 
We used 3 published datasets: A. Study 1: Lebreton, et al. 2009; B. Study 2: Lebreton, et al. 2012; C. Study 3: 
Lebreton, et al. 2015 (right); a. Rating task. Successive screens displayed in one trial are shown from left to right, 
with duration in milliseconds. b. Group-level neural correlates of values, using native values 𝐯  (left) or 
individually Z-scored values 𝐯! (right). The color code on glass brains (left maps) and sagittal slices (right) 
indicate the statistical significance of clusters that survived the whole-brain family-wise error (FWE) correction for 
multiple comparisons, computed at the cluster level (PFWE <.05, with a voxel-wise cluster-generating threshold 
PUNCORR<.001). c. Inter-individual correlations between value rating standard deviation 𝜎 𝐯  and unstandardized 
coefficients of regressions estimated using Z-scored values 𝛽! (top), and between the inverse of the value 
rating standard deviation (1/𝜎(𝐯)) and unstandardized coefficients of regressions estimated using native-scored 
values 𝛽 (bottom). Solid lines indicate the best linear fit, and dotted lines the 95% confidence interval. The dots 
color codes the relative 𝜎(𝐯), from low (blue) to high (red).  
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Figure 4 
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Figure 4: Assessing BOLD-Behavior scaling relationships in a learning tasks 
A. Behavioral task. Successive screens displayed in one trial are shown from left to right, with duration in 
milliseconds (Palminteri et al., 2015). B. Average behavior (left) and model fit (right), displayed as the correct 
choice rate. Shaded area (left) and error bars (right) correspond to mean±sem. C. Statistical relations between 
model free-parameters - temperature 𝜃 (left) and learning rate 𝛼 (right)- and the standard deviation of the 
chosen Q-values 𝜎(𝐪𝐜). Solid line indicate the best linear fit, and dotted line the 95% confidence interval. The 
dots color codes the relative 𝜎(𝐪𝐜) value, from low (blue) to high (red). D. Group-level neural correlates of 
chosen Q-values. The color code on glass brains (left maps) and sagittal slices (right) indicate the statistical 
significance of clusters that survived the whole-brain family-wise error (FWE) correction for multiple comparisons, 
computed at the cluster level (PFWE <.05, with a voxel-wise cluster-generating threshold PUNCORR<.001), except 
for 𝐪𝐜, where activations are presented at a more lenient threshold (voxel-wise threshold PUNCORR<.001) E. 
Random-effects comparisons. VMPFC k refers to the size of the VMPFC cluster (in voxels, cluster-generating 
voxel threshold PUNCORR<.001); ROI –log(P) refers to the negative logarithm of the P-value of a random effect 
analysis performed on the individual averaged coefficient of regression extracted from an anatomical VMPFC 
ROI. E. Scaling law assessment: inter-individual correlations between value rating standard deviation 𝜎 𝐯  and 
unstandardized coefficients of regressions estimated using Z-scored values 𝛽! (left), and between the inverse 
of the value rating standard deviation (1/𝜎(𝐯)) and unstandardized coefficients of regressions estimated using 
native-scored values 𝛽 (right). The second plot presents the same correlation(s), excluding the potential outlier. 
Solid lines indicate the best linear fit, and dotted lines the 95% confidence interval. The dots color codes the 
relative 𝜎(𝐯), from low (blue) to high (red).  
𝐪𝐜!, 𝐪𝐜 and 𝐪𝐜!indicate that the fMRI GLMs are designed with the variable chosen Q-values generated with 
population (𝐪𝐜!) or individual (𝐪𝐜 and 𝐪𝐜!) model free parameters, and using a native scaling (𝐪𝐜! and 𝐪𝐜) or an 
individual Z-scoring (𝐪𝐜!) of the variable. 𝛽 and 𝛽! respectively refer to fMRI unstandardized coefficients of 
regressions computed with a native scaling (𝐪𝐜) or an individual Z-scoring (𝐪𝐜!) of the parametric regressor Qc. 
𝜎(𝐪𝐜) refers to the standard deviation of the native Qc. *: P<.05; ***: P<.001; 
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Random effects Correlations: R (P) 

VMPFC k ROI  
-log(P) 𝛽! ∝ 𝜎(𝐯) 𝛽 ∝ 1 𝜎(𝐯) 𝑡! ∝ 𝜎(𝐯) 𝑡 ∝ 1/𝜎(𝐯) 

a. Rating studies 

Lebreton, et 
al. 2009 

𝐯 3301 5.33 - .59 (.01**) - .08 (.74) 

𝐯 𝒁 4442 5.82 -.12 (.61) - -.13 (.48) - 

Lebreton, et 
al. 2012 

𝐯 586 1.80 - .74 (.00***) - .50 (.03*) 

𝐯 𝒁 784 2.14 -.53 (.02) - -.44 (.07) - 

Lebreton, et 
al. 2015 

𝐯 2116 3.87 - .48 (.01*) - .14 (.49) 

𝐯 𝒁 2606 4.53 -.29 (.16) - -.12 (.57) - 

b. Learning study 

Palminteri, et 
al. 2015 

𝒒𝒄 123 2.18 - .93 (.00***) - .25 (.21) 

𝒒𝒄! 1547 3.73 - - - - 

𝒒𝒄! 4189 5.37 -.41 (.02) - -.41 (.02) - 

 
Table 1. 
VMPFC k refers to the size of the VMPFC cluster (in voxels, cluster-generating voxel threshold PUNCORR<.001); 
ROI –log(P) refers to the negative logarithm of the P-value of a random effect analysis performed on the 
individual averaged coefficient of regression extracted from an anatomical VMPFC ROI. 𝛽 and 𝛽! respectively 
refer to fMRI unstandardized coefficients of regressions computed with 𝐯 and 𝐯!. 𝑡 refers to fMRI t-statistics 
derived from 𝛽. 𝜎(𝐯) refers to the standard deviation of the native value-rating measure. *: P<.05; **: P<.01; ***: 
P<.001 one-sample t-test. 
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EXPERIMENTAL PROCEDURES 
Regression coefficients in fMRI 
At the first level, in each individual, , we can write, for each independent variable 𝐱!, 𝛽! =

!(!)
!(𝐱!)

𝜌(𝐱! , Y) 𝑉𝐼𝐹! (1) 

(Cohen et al., 2013). Here, 𝜌(𝐱! , Y) is the semi-partial correlation between 𝐱! and Y, and 𝑉𝐼𝐹! =
!

!!!!𝐱!𝐱!
, (with 

𝑅!𝐱!𝐱!  indexing the variance explained by a regression with 𝐱!  as a dependent variable, and all 𝐱!,!!!  as 
independent variables) is the Variance Inflation Factor, which quantifies 𝛽!  over-estimation due to 
multicollinearity issues (i.e. due to the correlations between 𝐱! and the other independent variables 𝐱!,!!!). 
Hence, a fundamental property of 𝛽!  is that their value is proportional to linear dependency between the 
dependent and the independent variable –  𝜌(𝐱! ,𝑌)-, but also to the ratio of their standard deviation !(!)

!(𝐱!)
  – i.e. to 

the scaling of those variables. 𝛽! then quantifies the change in Y (in Y unit) for an increase of 1 𝐱! (in 𝐱! unit).  
Outside the neuroimaging community, it is common to also report and use standardized betas 𝑏!. Those are 
computed with normalized –or Z-scored- dependent Y!  and independent 𝐱!!  variables: 𝐱!! =

𝐱!!!(𝐱!)
!(𝐱!)

 and 

Y! = !!!(!)
!(!)

. This implies  𝜎 𝐱!! =   𝜎 𝑌! = 1, and therefore 𝑏! = 𝜌(𝐱! ,𝑌) 𝑉𝐼𝐹!. 𝑏! quantifies the change in Y 
(in Y standard deviation) for an increase of 1 𝐱! (in 𝐱! standard deviation). 
Finally, one can compute 𝑡!, the Student t-statistic of 𝛽!, relative to the null hypothesis 𝛽! = 0. Assuming a 
Gaussian noise 𝑢 in (1), we have 𝑡! =

!!
!(!!)

. Here, 𝑠 𝛽! =    𝜎 𝑉𝐼𝐹!
!(!)
!(𝐱!)

 is the standard error of the estimate 𝛽!, 

and 𝜎   =    !!"
!!!

,  (where n is the sample size, 𝑝 is the number of coefficients in the model including intercept, and 
SSE is the sum of squared errors) estimates 𝜎!, the variance of the errors of the regression model. Hence, one 
can easily show that 𝑡! =

!(𝐱!,!)
!  

, or in other words, that 𝑡! only depends on the linear dependency between the 
dependent and the independent variable, and on the overall quality of the regression model. 𝑡!  follow a 
Student's t-distribution with (𝑛 − 𝑝) degrees of freedom, from which the P-value corresponding to the null 
hypothesis 𝛽! = 0 can be computed.  
Z-values of  𝛽!, which are sometimes preferred to t-values because they are independent of the sample size 
(number of degrees-of-freedom), are typically re-computed from these P-values. 

 
Scaling laws 
We consider an idealized situation, where, in each individual k the BOLD signal in a brain region/voxel (Y) 
encodes one behavioral parametric measure of interest (𝐱! ) whose distribution (𝜎(𝐱!) ) varies between 
individuals due to a heterogeneity source. We also assumes that 𝜌(𝐱! , Y) and 𝑉𝐼𝐹! are independent of 𝜎(𝐱!) 
and 𝜎(Y!), i.e. that the quality of this encoding is similar across subjects and does not depend on the individual 
brain activation or behavioral variable or range. We can formalize the proportional hypothesis by setting 𝛽! ∝ 𝛼 
(2). By neglecting inter-individual differences in 𝑆𝑅! and 𝑉𝐼𝐹! (1) and (2) imply, 𝜎(𝐱!)   ∝ 𝜎(Y!)  (3), i.e. the 
BOLD activation scale proportionally with the behavior. Likewise, we can formalize the normalization hypothesis 
by setting 𝜎(Y!) ∝ 𝛼 (4). In this case, (1) and (4) imply 𝛽! ∝

!
!(𝐱!)

 (5), i.e. the activation summary statistics is 
inversely correlated with the standard deviation of the behavior. 
 
Scaling laws and Z-scoring 
Z-transforming individually a measure of interest entails subtracting its original mean 𝜇!,!  and dividing the 
resulting centered variable by its original standard deviation 𝜎(𝐱!), i.e. 𝐱!! =

𝐱!!!(𝐱!)
!(𝐱!)

. Let us assume that the two 
scaling hypothesis are still related to the original variables, i.e. (2) and (4) still hold, but that first level analysis 
are conducted with normalized variables, i.e. 𝜎(𝐱!!) = 1, hence 𝛽!! = 𝜎(Y!)(6). Hence, under the proportional 
hypothesis, (3) and (6) imply 𝛽!! ∝ 𝜎(𝐱!), while under the normalization hypothesis, (4) and (6) imply 𝛽!! ∝ 𝛼 (7).  
 
Subjects 
Studies were approved by the local Ethics Committee: the Ethics Committee for Biomedical Research of the 
Pitié-Salpêtrière Hospital for the 3 rating studies, and the local Ethical Committee of the University of Trento for 
the learning study. All subjects gave informed consent prior to partaking in the, study.  
Subjects of the rating studies were paid 100€ for the fMRI experiments. A total of 65 subjects were included in 
the 3 different rating studies (Study 1: n=20, 10 males, age=22.0±2.7; Study 2: n=19, 11 males, age=23.9±4.0; 
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Study 3: n=26, 12 males, age 25.3±5.5).  
Subjects of the learning study were remunerated according to the exact amount of money won in the experiment 
plus a fixed amount for their travel to the MRI center. A total of 28 subjects (16 females; age 25.6±5.4 years) 
were included in this study. 
 
Task and behavioral analsyses 
Rating tasks. The behavioral tasks involved rating procedures on a Likert scale that were implemented as 
follows: subjects could move the cursor by pressing a button with the right index to go left or with the right middle 
finger to go right. Ratings were all self-paced, and subjects had to press a button with the left index finger to 
validate their response and go to the next trial. The initial position of the cursor on the scale was randomized to 
avoid confounding the ratings with the movements they involved. 
Details specific to the different tasks are described below. 2009 (see Lebreton, et al. 2009, Lebreton, et al. 2012, 
and Lebreton, et al. 2015 for detailed methods) 
Study 1: This fMRI study is a re-analysis of data obtained in Lebreton, et al. (2009). Stimuli were 120 faces, 120 
houses and 120 paintings, for a total of 360 pictures which were randomly distributed over 6 sessions of 60 trials 
each (20 faces, 20 houses and 20 pictures). In every trial, the picture was first displayed on the screen for 3 
seconds, following a fixation cross. Then a -10-10 rating scale appeared, and participants had to indicate on this 
scale how pleasant or how old the presented stimulus was.  
Study 2: This fMRI study is a re-analysis of data obtained in Lebreton, et al. (2012). Stimuli were 240 short (2-5 
sec) videos featuring different objects (food, toys, clothes, and tools), randomly distributed over four 60-trial 
sessions. In every trial, the video was first played on the screen, following a fixation cross. Then a 0-10 rating 
scale appeared, and participants had to indicate “how much they would like to acquire the object”. 
Study 3: This fMRI study is a re-analysis of data obtained in Lebreton, et al. (2015). Stimuli were 270 potential 
events from various domains (politics, sport, society, culture, media, economics, diplomacy, science, technology, 
etc...). They were randomly distributed over 5 sessions of 54 trials each. Subjects were instructed to read the 
text depicting the event and think of how pleased they would feel should this event happen in the next 5 years 
(desirability rating). On every trial one prospect was displayed alone on the screen (5-7 seconds), following a 1s 
fixation cross. The desirability (-10-10) or probability (0-100%) scale only appeared after prospect display.  
 
Learning task. Subjects were repeatedly presented with fixed pairs of abstract symbols. Over 4 sessions, eight 
novel options, defining four novel fixed pairs, were presented 24 times for a total of 96 trials. The four option 
pairs corresponded to four contexts (reward/partial, reward/complete, punishment/partial and 
punishment/complete), associated with different pairs of outcomes (reward contexts: winning 0.5€ versus 
nothing; punishment contexts: losing 0.5€ versus nothing) and different quantities of information being given at 
feedback (partial and complete). In the partial feedback contexts, only the outcome about the chosen option was 
provided, while in the complete feedback contexts both the outcome of the chosen and the unchosen option 
were provided. Within each pair, the two options were associated to the two possible outcomes with reciprocal 
probabilities (0.75/0.25 and 0.25/0.75). 
 
Computational model. For this manuscript, we used the model named RELATIVE in Relative from (Palminteri 
et al., 2015). The model is an adaptation of a Q-learning model. It stipulates that subjects learn by trial and error 
to compute a value Q(s) for each option. These values are learned via a Rescorla-Wagner rule (also called 
delta-rule): they are updated at each trial, by integrating an error term, which compare this expected value Q(s) 
to the actual outcome – a so-called prediction-error 𝛿. As reported in Palminteri, et al (2015), this model provide 
a very good account of the subjects’ behavior (see the original paper for an extensive description and 
justification of the RELATIVE model parameters and its relation to other models, such as the actor-critic model).  
In this paper, we focus on two of RELATIVE model individual free-parameters: the “factual” learning-rate 𝛼!,!, 
and the inverse temperature 𝜃!. The choice of 𝛼!,!, is justified by the fact that this learning rate is involved in 
both conditions (complete and incomplete information, as opposed to 𝛼!,!  which is only involved in 
counterfactual learning i.e. in the complete information condition) and directly impact the Q-values (as opposed 
to 𝛼!,!, which is only used in the centering process). 
 
Parameter optimization. We optimized the model free-parameters, the temperature (temp), the factual (𝛼!), the 
counterfactual (𝛼!) and the contextual (𝛼!) learning rates, by minimizing the negative log likelihood (Llmax) of the 
participant choices under the model using Matlab’s fmincon function, initialized at multiple starting points of the 
parameter space. 
For the population parameter condition, a single set of parameters was estimated to account for the behavior of 
all 28 subjects. This set of parameter could then be used to generate individual time-series of Q-values (𝐪𝐜!). 
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For the individual parameter conditions, a set of parameters was estimated per subject. This set of parameter 
could then be used to generate individual time-series of Q-values (𝐪𝐜), which could also be subsequently Z-
scored (𝐪𝐜!). 
 
Model Comparison. Negative log-likelihoods (Llmax) were used to compute classical model selection criteria. 
We computed the Akaike’s information criterion (AIC) at the individual level (RFX), and at the group level (FFX): 

𝐴𝐼𝐶!!" = 2×(LlmaxGroup + DF); 
𝐴𝐼𝐶!"# = 2×(LlmaxGroup + DF)

!"#$%&'!

; 

 
We also computed the Bayesian information criterion (BIC) at the individual level (RFX), and at the group level 
(FFX): 
 

𝐵𝐼𝐶!!" = 2×(LlmaxGroup) + DF×log  (n!"#$%×n!"#$%&'!); 

𝐵𝐼𝐶!"! = 2×(LlmaxSub) + DF×log  (n!"#$%);
!"#$%&'!

; 

Where “DF” is the number of free parameters. 
 

Neuroimaging  
Data acquisition. For all imaging studies, T2*-weighted echo planar images (EPI) were acquired with blood 
oxygen-level dependent (BOLD) contrast. All studies employed a tilted plane acquisition sequence designed to 
optimize functional sensitivity in the orbitofrontal cortex and medial temporal lobes (Deichmann et al., 2003). 
The rating studies were imaged with a 3.0 Tesla magnetic resonance scanner. To cover the whole brain with 
good spatial resolution, we used the following parameters: Study 1: TR=2.29s, 35 slices, 2 mm slice thickness, 1 
mm inter-slice gap ; Study 2: TR=2.0s, 35 slices, 2 mm slice thickness, 1.5 mm inter-slice gap; Study 3: 
TR=2.03s, 35 slices, 2 mm slice thickness, 1.6 inter-slice gap. 
The learning study was imaged with a 4.0 Tesla magnetic resonance scanner (4T Bruker MedSpec Biospin MR 
scanner – CiMEC, Trento, Italy). To cover the whole brain with good spatial resolution, we used the following 
parameters: TR=2.20s, 47 slices, 2 mm slice thickness, 1 mm inter-slice gap.  
For all studies, T1-weighted structural images were also acquired, co-registered with the mean EPI, normalized 
to a standard T1 template, and averaged across subjects to allow group level anatomical localization. EPI data 
were analyzed in an event-related manner, within a general linear model, using the statistical parametric 
mapping software SPM8 (Wellcome Trust center for NeuroImaging, London, UK) implemented in MATLAB®. 
The first 5 volumes of each session were discarded to allow for T1 equilibration effects. Preprocessing consisted 
of spatial realignment, normalization using the same transformation as structural images, and spatial smoothing 
using a Gaussian kernel with a full-width at half-maximum (FWHM) of 8 mm. Preprocessed images were 
subsequently analyzed in an event related manner within the general linear model (GLM) framework. 
 
GLMs – rating studies. For each rating study; we used two similar GLM to explain subject level time-series: the 
only difference was that in the first GLM, the parametric regressor “value” was entered in the native form –𝐯-, 
whereas in the second GLM, it was normalized (i.e. Z-scored) per subject and session (and category for Study 1) 
–𝐯!-. 
- Study 1: Events were image onsets, corresponding to the 3 categories of stimuli (face, house, painting), 
modeled as a stick functions. These 3 categorical regressors were modulated by the parametric regressor 
accounting for the pleasantness rating. We also modeled the rating period in another regressor with a stick 
function modulated by response time. 
- Study 2: Events were video display, modeled as boxcar function. This categorical regressor was modulated by 
the parameters accounting for the desirability ratings. We also modeled the rating period in another regressor 
with a stick function modulated by response time. 
- Study 3: Desirability rating trials were modeled as boxcar functions covering stimulus presentation. This event 
was modulated the parameter accounting for the desirability ratings. We also modeled the rating period in 
another regressor with a stick function modulated by response time. 
 
GLMs – learning study. For the learning study; we used three similar GLM to explain subject level time-series: 
the only difference was that the parametric regressor “chosen Q-value” (QC) used in the GLM could be 
generated using the population parameter (𝐪𝐜!) or the individual model free-parameters. In this latter case, the 
QC could be entered in the GLM in their native scale (𝐪𝐜), or Z-scored per individual and session (𝐪𝐜!) In all 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 11, 2016. ; https://doi.org/10.1101/036772doi: bioRxiv preprint 

https://doi.org/10.1101/036772


Assessing inter-individual variability in brain-behavior relationship  
 

Lebreton & Palminteri 22 

GLMs, each trial was modelled as having two time points, corresponding to choice and outcome display onsets, 
modelled by two separate regressors. Choice onset was then modulated with a parametric regressors 
accounting for the chosen option Q-value, and the outcome onset was modulated with a parametric regressors 
accounting for the actual outcome (+0.5; 0; or – 0.5). 
 
Whole-brain analysis. All regressors of interest were convolved with a canonical hemodynamic response 
function (HRF). To correct for motion artifacts, subject-specific realignment parameters were modeled as 
covariates of no interest. Linear contrasts of regression coefficients (betas) were computed at the session level, 
averaged at the subject level, and taken to a group-level random effect analysis, using one-sample t-tests.  
Unless otherwise specified, all activations maps were threshold using family-wise correction for multiple 
comparison (FWE) at the cluster level (PFWE<0.05). This cluster-wise correction was estimated by SPM8 using 
cluster-generating voxel-level thresholds of PUNCORR<0.001. 
 
Region of interest (ROI). The VMPFC anatomical ROI was generated using WFU PickAtlas, and include a 
bilateral mask of the Frontal Medial Orbital cortex. 
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