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Investigating inter-individual differences in brain-
behavior relationships is fundamental to decipher the 
neural substrate of cognition, and to realize the full 
potential of neuroimaging applications. In this context, 
accurately assessing the statistical dependencies 
between inter-individual differences in behavior and 
inter-individual differences in neural activity is essential. 
In the present perspective we consider two hypotheses: 
1) BOLD signal scales linearly with behavioral variables 
across individuals and 2) BOLD signal encodes 
behavioral variables on a similar scale across 
individuals. We formally show that these two 
hypotheses produce opposite brain-behavior 
correlational results in group-level analyses. We 
empirically explore these hypotheses in four fMRI 
studies, and find that, regarding the representation of 
values in the prefrontal cortex, the normalization 
hypothesis dominates. Independently from the 
generalizability of these findings, our results illustrate 
the importance of explicitly testing the scaling law 
between brain signals and behavioral variables before 
engaging in the study of functional inter-individual 
differences. 
 
Introduction. “There is very little difference between one 
man and another; but what little there is, is very important."i 
They are two main distinguishable and complementary 
ultimate goals in cognitive neuroscience: understanding the 
average – typical - brain and linking its structure and 
functions with cognition and behavior, and understanding 
how individuals differ from each-others from the normal to 
the pathological ranges. With respect to these two quests, 
inter-individual differences in brain-behavior relationships 
are fundamentally important either because they constitute 
a statistical challenge to understand the typical brain, or 
because they represent the very object of interest (Braver et 

                                                
iWilliam James (1897). The Importance of Individuals, In The Will 
to Believe and Other Essays in Popular Philosophy  

al., 2010; Gabrieli et al., 2015). 
Functional neuroimaging constitutes a powerful tool 

to investigate the neurobiological underpinnings of cognition. 
A large fraction of the cognitive neuroscience literature 
combines the use of the fMRI modality and of a behavioral 
task to uncover the neurobiological bases of behavior. 
Individuals might be differentiated according to external 
heterogeneity factors (such as the diagnostic criterion for 
some pathology, psycho-socio-economic measures: “traits”), 
or to behavioral measures recorded during the experiment 
(“task performance”) (Figure.1.A).  

Investigations of inter-individual variability usually 
attempt to link individual difference in brain activation with 
these sources of heterogeneity (Figure.1.B). These links 
are then interpreted in term of neural resource mobilized to 
complete the task – sometimes with opposite post-hoc 
rationalization. It is paradigmatic in the example of 
executive control literature, where positive associations 
between the activation of the frontal regions and the 
performance can be interpreted as an effective increase in 
cognitive control mobilization, whereas negative 
associations between the activation, in the same regions, 
and performance can also be interpreted as an increase in 
neural efficiency (Poldrack, 2015; Yarkoni and Braver, 
2010). 

These inconsistencies are possible in the literature 
because the hypotheses concerning the inter-individual 
relative scaling of brain activation and behavior are not 
explicitly stated and tested. In the present article, we remind 
important statistical properties of standard fMRI data 
analysis and how they affect the result and the 
interpretation of neural inter-individual variability results. 
More precisely we will show how inter-individual variability 
results are crucially dependent of the underlying scaling law 
between the brain (Blood Oxygen Level Dependent, BOLD) 
signal and the behavior. We also show that two simple - and 
equally realistic - hypotheses about the inter-individual 
scaling of brain activations and behavior can lead to 
opposite results and conclusions. We then explicitly test 
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these two hypotheses against several imaging datasets, 
investigating value-based decision-making (Lebreton et al., 
2009, 2012, 2015; Palminteri et al., 2015).  

 
fMRI analysis background. To investigate the neural 
correlates of cognitive functions, the classical fMRI analysis 
strategies rely on the general linear model (GLM) 
framework (Friston et al., 1994), and follow a multi-level 
summary statistics approach to approximate mixed-effects 
designs (Beckmann et al., 2003; Friston et al., 2005; 
Holmes and Friston, 1998; Woolrich et al., 2004; Worsley et 
al., 2002).  

In a first step, the linear relation between the time 
series of BOLD signal within a specific brain region or voxel 
and the time series of the different experimental design 
variables, behavioral measures and confounds are 
assessed at the individual (first-) level. Thus, for each 
individual 𝑘 , the following GLM is estimated Y! =
𝛽! . 𝐱! + 𝑢𝑘 (1), where Y! is the BOLD times-series of 
individual k, 𝐱!  is the time-series of one experimental 
factor of interest of individual k, and 𝑢! is a Gaussian 
noise, accounting for auto-correlation, and 𝛽! is then the 
vector of the unstandardized linear coefficient of 
regressions to be estimated.  

First-level summary statistics, i.e. estimated 
individual betas 𝛽! or contrasts of betas, are then used in 
a population (second-) level analysis, to address the 
research question at stake. This corresponds to a second-
level GLM estimation 𝛽 = 𝛽! . 𝐱! + 𝑢𝐺 (2), where 𝛽 is 
the vector or matrix of first-level betas 𝛽! , 𝛽!  is the 
vector of final group-level parameters, 𝐱!  is the group 
design matrix and 𝑢!  specifies the group-level residuals. 
In the most typical case, 𝐱!  is a vector of ones, which 
corresponds to what is referred to as random effect – a 
“one-sample t-test”. However, 𝐱!  can also contain 
categorical information about different conditions and 
groups of subject -in cases one wants e.g. to test 
differences between different pathological or non-
pathological sub-populations with a “two-sample t-test” 
and/or ANOVAs (Figure.1.B.). Finally,  𝐱!  can also include 
individual parametric covariates, whose associations with 
brain activations translates into second-level “multiple 
regression”.  

Overall, this approach allows a great flexibility in the 
design of first and second-level analyses. This two-step 
summary statistics scheme has been also demonstrated to 
be a good approximation of full mixed-model analyses 
(Beckmann et al., 2003; Friston et al., 2005), to be robust in 

respect to violation of sphericity assumption –i.e. 
differences in first-level variance levels (Friston et al., 2005; 
Mumford and Nichols, 2009)-, and to produce very 
comparable results across the different implementations 
used by the existing software packages (Bennett and Miller, 
2010; Gold et al., 1998; Morgan et al., 2007). Thanks to this 
practical simplicity and robustness, and notwithstanding 
notable exceptions (Haxby, 2012; Haxby et al., 2001; 
Haynes and Rees, 2006), the GLM approach has therefore 
become the dominant one in fMRI research  

Leveraging the two steps summary statistics 
approach, investigations of inter-individual differences have 
commonly used first-level contrasts of parameter estimates 
in inter-individual correlations or multiple regressions across 
individuals (often referred-to as brain-behavior correlations 
in the literature), in order to account for a heterogeneity 
factor of interest (Figure.1.B.).  
 
First-level statistics in multiple regressions regression. 
Of primary importance for this paper is the fact that the two 
steps summary statistics scheme described in the 
preceding paragraph relies on unstandardized first-level 
betas -𝛽!- in second level analyses. Using a very intuitively 
helpful notation (Cohen et al., 2013), we can write, for each 

independent variable 𝐱! , 𝛽! =
!(!)
!(𝐱!)

𝜌(𝐱! ,Y) 𝑉𝐼𝐹!  (4). 

Here, 𝜌(𝐱! ,Y) is the semi-partial correlation between 𝐱! 
and Y, and   𝑉𝐼𝐹! =

!
!!!!𝐱!𝐱!

, (with 𝑅!𝐱!𝐱!  indexing the 

variance explained by a regression with 𝐱!  as a 
dependent variable, and all 𝐱!,!!!  as independent 
variables) is the Variance Inflation Factor, which quantifies 
𝛽! over-estimation due to multicollinearity issues (i.e. due 
to the correlations between 𝐱! and the other independent 
variables 𝐱!,!!!). Hence, a fundamental property of 𝛽! is 
that their value is proportional to linear dependency 
between the dependent and the independent variable –
  𝜌(𝐱! ,𝑌)-, but also to the ratio of their standard deviation 
!(!)
!(𝐱!)

  – i.e. to the scaling of those variables. 𝛽!  then 

quantifies the change in Y (in Y unit) for an increase of 1 
𝐱! (in 𝐱! unit). 

Outside the neuroimaging community, it is common 
to also report and use standardized betas 𝑏!. Those are 
computed with normalized –or Z-scored- dependent Y! 

and independent 𝐱!!  variables: 𝐱!! =
𝐱!!!(𝐱!)
!(𝐱!)

 and 

Y! = !!!(!)
!(!)

. This implies  𝜎 𝐱!! =   𝜎 𝑌! = 1, and 
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therefore 𝑏! = 𝜌(𝐱! ,𝑌) 𝑉𝐼𝐹!. 𝑏! quantifies the change 
in Y (in Y standard deviation) for an increase of 1 𝐱! (in 
𝐱! standard deviation). 

Finally, one can compute 𝑡!, the Student t-statistic 
of 𝛽!, relative to the null hypothesis 𝛽! = 0. Assuming a 

Gaussian noise 𝑢  in (1), we have   𝑡! =
!!

!(!!)
. Here, 

𝑠 𝛽! =    𝜎 𝑉𝐼𝐹!
!(!)
!(𝐱!)

  is the standard error of the 

estimate 𝛽!, and   𝜎   =    !!"
!!!

,   (where n is the sample size, 

𝑝 is the number of coefficients in the model including 
intercept, and SSE is the sum of squared errors) estimates 
𝜎!, the variance of the errors of the regression model. 

Hence, one can easily show that 𝑡! =
!(𝐱!,!)
!  

, or in other 

words, that 𝑡!  only depends on the linear dependency 
between the dependent and the independent variable, and 
on the overall quality of the regression model. 𝑡! follow a 
Student's t-distribution with (𝑛 − 𝑝) degrees of freedom 
(n = sample size, p = number of coefficients in the model –
including intercept), from which the P-value corresponding 
to the null hypothesis 𝛽! = 0 can be computed.  

Z-values of  𝛽!, which are sometimes preferred to t-
values because they are independent of the sample size 
(number of degrees-of-freedom), are typically re-computed 
from these P-values. 

The goal of this section was to recall that 
standardized and unstandardized betas indexes different 
quantities, and bear different meanings. Besides, it intended 
to stress the importance of considering the dependence of 

unstandardized betas 𝛽! on 
!(!)
!(𝐱!)

. In the following, we will 

refer to statistical relationships between 𝜎(Y) and 𝜎(𝐱!) 
as scaling laws, and investigate how they impact 
assessments and interpretations of inter-individual 
differences in brain activity as indexed by unstandardized 
betas. 
 
Scaling laws impact the assessment of inter-individual 
differences. In the following examples, we illustrate this 
crucial point by considering two opposite, though plausible 
scaling laws between a behavioral measure and the BOLD 
signal, which are neuro-biologically plausible and that we 
called the proportional and the normalization hypotheses. 
We consider an idealized situation, where the BOLD signal 
in a brain region/voxel (Y) encodes a behavioral parametric 
measure of interest (𝐱!) whose distribution (𝜎(𝐱!)) varies 
between individuals due to a heterogeneity source (see 

Figure.1.A and B). We also assumes that 𝜌(𝐱! ,Y) and 
𝑉𝐼𝐹! are independent of 𝜎(𝐱!) and 𝜎(Y), i.e. that the 

quality of this encoding is similar across subjects and does 
not depend on the individual brain activation or behavioral 
variable or range.  
 The proportional hypothesis represents the typical 
case on which are based random-effects analyses in 
neuroimaging: the brain-behavior linear relation captured by 
the 𝛽! is kept constant across individual, notwithstanding 
random variations, i.e. 𝛽! ∝ 𝛼 (5). Note that in this case, 
by neglecting inter-individual differences in 𝑆𝑅! and 𝑉𝐼𝐹! 
(4) and (5) then imply, 𝜎(𝐱!)   ∝ 𝜎(Y!)    (6), i.e. the 
BOLD activation scale proportionally with the behavior. As a 
consequence, and somehow counterintuitively, no 
difference in “activations” -as indexed by 𝛽!- accounts for 
the differences in behavior 𝐱!  (Figure 1.C.a). In other 
words, under the proportional hypothesis, behavioral 
differences are reflected by underlying differences in brain 
activity, but not by differences in brain activations, as 
revealed by the standard fMRI analysis.  
 Under the normalization hypothesis, the BOLD 
signal also encodes the variable of interest, but on an 
identical scale across individuals, independent of the 
behavioral output, i.e. 𝜎(Y!) ∝ 𝛼 (7). Note that in this 
case, (4) and (7) imply 𝛽! ∝

!
!(𝐱!)

 (8), i.e. the activation 

summary statistics is inversely correlated with the standard 
deviation of the behavior. Then, inter-individual or between-
group differences in “activations” -as measured by 𝛽!-, 
logically derive from differences in behavior 𝐱!  (Figure 
1.C.b). In other words, under the normalization hypothesis, 
behavioral differences are not reflected by underlying 
differences in brain activity, but by differences in brain 
activations, as revealed by the standard fMRI analysis.  
  
Z-scoring the behavioral variables impacts the 
assessment of inter-individual differences. A classical 
procedure to account for inter-individual differences in 
behavioral scaling is to normalize –Z-transform- individually 
the measure of interest by subtracting its original mean 
𝜇!,!  and dividing the resulting centered variable by its 

original standard deviation 𝜎(𝐱!), i.e. 𝐱!! =
𝐱!!!(𝐱!)
!(𝐱!)

. Let 

us assume that the two scaling hypothesis are still related to 
the original variables, i.e. (6) and (7) still hold, but that first 
level analysis are conducted with normalized variables, i.e. 
𝜎(𝐱!!) = 1, hence 𝛽!! = 𝜎(Y!)(9). 

Under the proportional hypothesis, (6) and (9) imply 
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𝛽!! ∝ 𝜎(𝐱!)  (10). In that case, Z-scoring induces a 
monotonic relationship between the activation summary 
statistics and the standard deviation of the behavior, which 
was absent before Z-scoring (Figure 1.C.c).  

Conversely, under the normalization hypothesis, (7) and 
(9) imply 𝛽!! ∝ 𝛼 (11). In that case, the Z-scoring cancels 
the monotonic relationship between the “activation” –as 
measured by 𝛽!! - and the standard deviation of the 
behavior, leaving no inter-individual or between-group 
differences (Figure 1.C.d).  

These simple derivations and their consequences 
should carry an important message: Z-scoring fMRI 
regressors does not alleviate the concern about the relative 
scaling of behavior and brain-signal. Quite the contrary, we 
showed that typical inter-individual correlations significance 
largely depends on the interaction between the behavioral 
variable pre-processing and the scaling hypothesis.  
Therefore, one should be extremely careful when 
interpreting inter-individual (between-group) differences in 
unstandardized betas, and greater care should be put to the 
assessment of the underlying scaling hypothesis, and to the 
description of the experimental procedure, especially 
concerning the Z-scoring of the behavioral predictors. 

 
Z-scoring behavioral variables impacts random effect 
statistics. The interaction between the scaling hypothesis 
and the Z-scoring of the behavioral variable also have a 
significant impact on the quality of typical second-level 
random-effect analyses (i.e. one sample t-test on the 𝛽!): 
under the proportional scaling hypothesis, Z-scoring 𝐱! 
introduces a systematic behavioral variance in the 𝛽!! due 

to the dependence of 𝛽!!  to 𝜎(𝐱!) -see (5) vs (10)-, 
which can decrease the significance of random-effect model 
(see Figure 1.C.a vs 1.C.c). On the opposite, under the 
normalization scaling hypothesis, Z-scoring 𝐱! erase the 
systematic behavioral variance initially due to the difference 
in 𝜎(𝐱!)  -see (7) vs (11)-, hence it may increase the 
significance of random-effect model (see Figure 1.C.b vs 
1.C.d). Systematic investigation of brain-behavior scaling 
laws, in different cognitive domains and brain regions, might 
contribute to provide precious information about how to best 
pre-process variables of interest to perform classical fMRI 
analyses. 

 
The importance of the design in assessing inter-
individual differences. Consider an investigation of the 
neural bases of inter-individual differences in cognitive 

performance. In a typical setting, participants perform a 
cognitive task in the fMRI scanner, where a trial-to-trial 
measure of a cognitive variable, like confidence, decision-
value, or reaction time, is taken as a measure of behavior 
performance and is recorded to be used as an fMRI 
regressors 𝐱! . Participants are then differentiated 
according to their overall performance during the task, or 
screened for an external measure of heterogeneity (IQ, 
psychometric measure or socioeconomic status), to be 
linked with the neural correlates of the cognitive variable. If 
the task is easy, high-performing people might exhibit 
ceiling performances, (generating smaller 𝜎(𝐱!)) , 
inducing a negative correlation between individual 
performance and 𝜎(𝐱!). Symmetrically, if the task is hard, 
low-performing people might exhibit flooring performances, 
(generating smaller 𝜎(𝐱!)), inducing a positive correlation 
between individual performance and 𝜎(𝐱!). Given the 
dependencies between 𝛽! and 𝜎(𝐱!), this will lead to 
opposite correlations between “activations” (𝛽!) , and 
“individual performances” (proxied by 𝜎(𝐱!)) (Figure 2.A).  

 
Ignoring scaling laws can lead to wrong conclusions. 
First, the generic term “brain activation” does not accurately 
describe the statistical relations underlying inter-individual 
differences assessments. We suggest that it could 
appropriately be replaced by “unstandardized regression 
coefficients” “t-values” or “Z-values”, depending on the 
statistical measure used. There is indeed a sharp difference 
in the interpretation of those measures: the former -
unstandardized 𝛽! - combines information about 1) the 
strength of the linear dependency between the experimental 
independent variable and the BOLD signal and 2) the 
scaling between those two measures, whereas the latter -“t-
values” or “Z-values”- only inform about the strength of the 
linear dependency between the experimental independent 
variable and the BOLD signal. Taking into account this 
important distinction would help clarify some confusions 
existing in the literature about two different questions: is the 
brain region linearly coding the variable on a different scale 
in different subjects? Or: is the region linearly coding the 
variable with a different reliability in different subjects? 

Second, the interpretations of inter-individual 
differences in 𝛽!  should be made with caution. For 
instance, let’s assume that the activity in a region of interest 
(ROI) Y! is causally responsible for a behavioral measure 
𝐱!, and that a heterogeneity factor causes changes in 𝑌!, 
inducing proportional changes in 𝐱!. In the proportional 
context, comparisons between unstandardized betas in the 
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ROI might be inconclusive, potentially misleading to false-
negative conclusions about the role of the ROI in the 
observed inter-individual differences due to the 
heterogeneity factor (Figure.2.B).  

 
Investigating BOLD-behavior scaling laws in parametric 
value-rating fMRI studies. In this section, we assess the 
practical impact of BOLD-behavior scaling laws on fMRI 
analysis –random effects, and inter-individuals correlations 
(see also Supplementary Material). Experimental data 
consists in three published fMRI datasets investigating 
“values” –the presumed determinant of decision-making 
(Camerer, 2008; Rangel et al., 2008). Functional 
neuroimaging measures were recorded while subjects were 
performing similar tasks (Figure 3.A and Figure Supp. 1.A): 
judging the pleasantness of pictures of paintings, houses 
and faces (Study 1), the desirability of objects depicted in 
short videos (Study 2) or the desirability of events described 
in sentences (Study 3), and reporting those evaluations on 
a rating scale (Lebreton et al., 2009, 2012, 2015). As 
previously and extensively reported (Bartra et al., 2013; 
Clithero and Rangel, 2014; Peters and Büchel, 2010; 
Sescousse et al., 2013), we found that random-effect 
analyses on the parametric independent variable “value 
rating” (𝐯 ) elicit strong activations in a large ventral 
prefrontal region, including ventromedial prefrontal cortex 
(VMPFC) and medial orbitofrontal cortex (MOFC) (Figure 
3.B and Figure Supp. 1.B).  
First, taking into account both the size and the p-values of 
the VMPFC cluster correlating with values, we found that 
the random-effect analysis is more significant when we use 
the Z-scored (𝐯! ) rather than the native independent 
variable values (v) (Figure 3.C and Figure Supp. 2). These 
results are consistent with the normalization hypothesis and 
provide important clues about how to pre-process the value 
variable for future fMRI studies. 
Second, in order to formally assess the two scaling laws in 
this context, we next tested the correlations derived in the 
preceding sections -equations (5), (8) (10) and (11)- 
involving “activation”, as measured by 𝛽 extracted from an 
anatomical VMPFC ROI, and the standard deviation of the 
value 𝜎(𝐯). The results all suggest that the inter-individual 
representation of values in the VMPFC, in such rating tasks, 
follows a normalization scaling rule (Figure 3.C and Figure 
Supp. 1.C). We also checked that the correlations do not 
hold when using the estimated 𝑡 statistics, such that the 
identified differences in 𝛽 are rather due to scaling, than to 
coding -i.e. differences in the linear dependencies between 

BOLD and behavior (Figure Supp. 2). Overall, all results 
provide support for a normalization scaling law in the 
VMPFC in value-rating tasks: i.e. despite individual 
differences in the range (variance) of the behavioral value 
ratings, individuals exhibit similar range of BOLD signal in 
the core of the brain valuation system. This fact can be 
given concurrent interpretations: 1) the “true” underlying 
value signal range is actually captured by the fMRI analysis 
and is similar across individuals despite individual 
differences in the behavior –mostly due to differences in the 
calibration on the experimental rating scale; or 2) the 
underlying “true” value signal range is actually different 
across individuals -following the differences in the range of 
ratings reported it on the experimental scale-, but there are 
experimental limitations ii  which prevent the correct 
assessment of this inter-individual variability. This raise new 
questions –e.g.: can we infer whether an option is more 
valuable to an individual than to another? -, whose answers 
will determine our ability to fulfill some of the promises of 
fMRI applications. 
 
Implications for model-based fMRI. Model-based fMRI 
typically use as dependent variables in first-level GLMs (𝐱!) 
latent variables derived from individual choice patterns 
(Figure.4.A): a computational model is selected, its free-
parameters are adjusted to account at best for behavioral 
data, and the model parameters are used to generate the 
latent variables of interest 𝐱!  (O’Doherty et al., 2007). 
Importantly, the model free-parameters can be either 
considered as fixed -i.e. shared across individuals- or 
random-effects -i.e. each individual’s parameters are drawn 
from a common population distribution (Daw, 2011). In the 
case of random effects, model free-parameters often control 
the latent variable distribution parameters, i.e. 𝜎(𝐱!). We 
intuitively illustrate this link for several models used in the 
value-based decision-making literature (Figure.4.B). It must 
be noted, however, that despite the apparent simplicity of 
the relationships depicted in Figure.4.B, these relations are 
not trivial and largely depend on the task setting and the 
stimuli space (Figure.4.C). This complex link between 
model-parameters and 𝜎!,! have several implications with 
regard to inter-individual differences in brain-behavior 
relationships: 

First, although treating model free-parameters as 
                                                
ii These limitations can be of several natures: biological (e.g. 
difference in vascularization), physical (e.g. sensitivity of MRI 
gradient to inter-individual differences), and analytic strategies (e.g. 
pre-processing of MRI images). See also Figure Supp. 5. 
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random-effects often seem to provide the best account of 
individuals’ behavior as assessed by rigorous model-
comparisons, a common practice in the literature is to treat 
them as a fixed-effect –i.e. use a population parameter- to 
generate the latent variables for fMRI analysis (Daw et al., 
2006; Gershman et al., 2009; Gläscher et al., 2009, 2010; 
O’Doherty et al., 2004; Palminteri et al., 2009; Pessiglione 
et al., 2008). This is justified by the fact that individual free-
parameter estimates are “noisy” and using the data from the 
full population is an efficient way to regularize them. 
However, when individual parameters still provide a better 
account of the population behavioral data according to 
rigorous model-comparison procedures, one might argue 
that the variance modelled in the individual free-parameters 
actually captures an important individual variance in the 
cognitive process at stake, hence might contribute to give a 
better account of individual neurophysiological data. In the 
light of our findings concerning value signals, an alternative 
explanation to the preference of population parameters in 
fMRI can be formulated: the use of population free-
parameters actually constrains 𝜎(𝐱!)  to a unique 
population value, provided that individuals are given the 
same input. Under the normalization scaling hypothesis, this 
can therefore substantially increases the statistical power of 
subsequent second-level random effects analyses. In this 
case, a better way to model brain activation (i.e. accounting 
for individual differences) would be to use individual model 
free-parameters, and Z-score the latent variables generated 
by these individual models. This discussion, again, raises 
the interest of better documenting scaling-laws in fMRI, so 
as to provide a priori principled rational to process 
independent variables of interest, in order to increase the 
sensitivity and replicability of model-based fMRI. 

Second, inter-individual correlations between model 
free-parameters and activations, as measured with 𝛽!, in 
an ROI encoding the latent variable 𝐱!  should be 
interpreted with much caution. Indeed, they may rely on 
simple mathematical dependencies between the free 
parameters, 𝜎(𝐱!), and 𝛽!, and they largely depend on 
interactions between the underlying brain-behavior scaling 
hypothesis and the processing (Z-scoring) of the latent 
variable 𝐱!. Besides, given that the link between model-
parameters and 𝜎(𝐱!) can reverse depending on the task 
design (Figure.4.C), one can anticipate reports of opposite 
inter-individual correlations (positive or negative) between 
model-parameters (e.g. a discount factor or a learning rate) 
and the “neural representation” of value, as measured by 
𝛽!.  

  
Investigating BOLD-behavior scaling laws in a model-
based learning fMRI study. In this section, we illustrate the 
points raised in the previous paragraph, using a fourth 
experimental fMRI dataset investigating value-based 
learning (Palminteri et al., 2015) (see also Supplementary 
Material). Participants were faced with repeated choices 
between abstract stimuli, which were probabilistically paired 
with different outcomes (neural, reward or punishment). The 
goal was to learn to select the stimuli, which maximize the 
occurrence of reward or minimize the occurrence of 
punishment (Figure 5.A). This task can be efficiently 
modelled with a variant of the Rescola-Wagner 
reinforcement-learning rule: this implies that participants 
learn, by trial and error, the value (Q-values) of the stimuli 
and make their choices by soft-maximizing expected value 
(see (Palminteri et al., 2015) and Supplementary Material 
for details). Two core free-parameters of the model capture 
the individuals’ learning dynamics and choice variance: the 
temperature (i.e. the slope of the softmax decision rule, 
which controls the stochasticity of choices –or the tradeoff 
between exploration and exploitation), and the learning rate 
(which controls how much the information from a new 
feedback –in the form of a prediction-error- is incorporated 
in the stimulus Q-value). These free-parameters are 
typically set to maximize the likelihood of observed choices 
under the considered model. A brief analysis of different 
model-fitting, together with an exploration of the modelling 
outputs reveals two main results: 1) individual choices are 
better accounted for by fitting individual free-parameters 
than by fitting a single set of population free-parameters, 
even after accounting for the extra complexity engendered 
by this procedure (parsimony) (Figure 5.B and Figure 
Supp. 4.A) and 2) these individual parameters (temperature 
and learning rate) are very robustly associated with the 
individual standard deviation of the model-estimated latent 
variable (i.e. the Q-value of the chosen option – 𝐪𝐜; Figure 
5.C ). 

Turning to neuroimaging data, we report that 
random-effect analyses on the parametric independent 
variable (𝐪𝐜) elicit strong activations in the VMPFC (Figure 
5.D). In order to assess the quality of individual-level brain-
behavior correlations, we extracted 𝛽!-corresponding 𝑡! 
from an anatomical VMPFC ROI, and noticed that these t-
statistics take significantly higher values when using Q-
values generated with individual (𝐪𝐜 ) than population 
parameters ( 𝐪𝐜! ). Paralleling behavioral results, this 
reveals that, in the absence of scaling issues, the BOLD 
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signal is better accounted for by individually-fitted behavior 
(see Supplementary Material). Then, using the size of the 
VMPFC cluster in voxels, and the p-values of a t-test 
performed on 𝛽! extracted from the anatomical VMPFC 
ROI, we replicate the classical observation that population 
fMRI random-effects are apparently more significant using 
native Q-values computed with population (𝐪𝐜! ) than 
individual parameters (𝑋). However, we additionally found 
that the best fMRI random-effect model is obtained using Q-
values computed with individual parameters subsequently 
Z-scored per individuals (𝐪𝐜!) (Figure 5.E). These results 
have two implications: first, the fact that random effects are 
more significant using 𝐪𝐜!  than 𝐪𝐜  support the 
normalization hypothesis -this hypothesis is further 
supported by testing the correlations involving 𝛽!  and 
𝜎(𝐪𝐜!) (see equations (5), (8) (10) and (11) and Figure 
5.E). Second, they suggest that scaling issues might explain 
the apparent contradictory observations that fMRI random-
effects are more significant using 𝐪𝐜!than 𝐪𝐜 despite the 
superiority of individually-fitted models to account for 
individual behavioral choices. Overall the results of these 
analyses advocate for the use of individual parameters in 
value-related model-based fMRI, together with a Z-scoring 
of the model-estimated latent variable –value- to account at 
best for the inter-individual normalization effect occurring in 
the VMPFC.  

We also explored the correlations between 
individual model parameters and activations. Because, in 
our case, model free-parameters positively correlate with 
𝜎(𝐪𝐜!) and that the Normalization scaling law implies that 
𝛽! scale with 1/𝜎(𝐪𝐜!), we expected individual learning-
rates and softmax-temperatures to be inversely correlated 
to 𝛽!  in the VMPFC. Experimental data support this 
prediction (Figure Supp. 3.A and 4.B), which raises 
important questions about the interpretations of correlations 
between model-parameters and activations –as measured 
by 𝛽! -, as they may be dependent on the statistical 
relationship between model-parameters and 𝜎(𝐪𝐜!) , 
which depends on the task design. 

 
Conclusion 

Researchers are increasingly interested in inter-
individual variability in cognitive neurosciences, in the 
normal and pathological ranges. Importantly, the ability to 
assess and predict individual differences from neural 
measures -neuromarkers- constitute the cornerstone of the 
most promising application of fMRI in society (Gabrieli et al., 

2015; Wang and Krystal, 2014) In this manuscript, we 
explored a specific type of neuromaker: task-dependent 
fMRI “activations”, indexed by coefficients of regression 
between individual behavioral variables and BOLD signal. 
We recalled that unstandardized coefficients of regression 
𝛽! depend on the ratio of the standard deviation –scale- of 
the dependent and independent variables. Therefore, task-
dependent fMRI neuromarkers partly reflects scaling laws 
between the BOLD signal and the behavioral variable of 
interest, and documenting those scaling laws is paramount 
to correctly interpret assessments of inter-individual 
differences in cognitive neuroscience. 

In this manuscript, we have proposed a new 
taxonomy -proportional/normalization- to qualify such inter-
individual brain-behavior scaling relationship. Importantly, 
this taxonomy is based on a formalized description of the 
statistical dependency between the BOLD signal and the 
behavioral variable, rather than on a biological/functional 
over-interpretation of such statistical quantities –like in the 
current efficiency/activation taxonomy- (Poldrack, 2015). By 
doing so, it aims at providing a better account of fMRI data, 
hence helping the building of a cumulative cognitive science, 
based on the falsification of precise predictions. Although 
we acknowledge that the present paper does not cover the 
full range of potential link between brain activation and 
behavior (Figure Supp. 6), we think that this new 
perspective might contribute to reconcile previous 
contradictory findings, and foster a fruitful discussion on the 
way to interpret and assess investigations of individual-
difference in neuroimaging. 

We propose that a good practice before engaging in 
the study of fMRI inter-individual variability is to start 
documenting the statistical relationship between traits of 
interest (individual clinical scores, psycho-social measures, 
model free-parameters) and the standard deviation 𝜎(𝐱!) 
of fMRI regressors. Ideally, researchers might explicitly test 
brain-behavior scaling laws for the cognitive function of 
interest, in the brain region of interest, using their specific 
task – indeed, one can expect that different cognitive 
processes, elicited with different tasks could follow different 
scaling law, in different brain regions. In order to improve 
the reproducibility of fMRI findings, it is paramount to 
formulate clear a priori hypothesis about inter-individual-
differences (coding/scaling) and to use an appropriate 
operationalization. 

Finally we initiated this practice by documenting 
inter-individual normalization of values representation in the 
VMPFC using four datasets. This parallel recent findings 
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reporting within-individual range adaptation of value coding 
in the same area (Cox and Kable, 2014). This finding might 
contribute to improve our understanding of the valuation 
process, and provide principled rational to preprocess 
variables of interest and carry out model-based fMRI in the 
value-based decision-making community. 
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Figure 1: Inter-individual in 
brain-behavior relationships 
and scaling laws 
A. Inter-individual differences in 
brain-behavior relationships are 
paramount in virtually all fMRI 
designs, regardless of whether 
they address these differences 
explicitly or not. They are typically 
assessed by linking individual 
fMRI contrast values with a trait of 
interest. However they also often 
leak in fMRI data analysis when 
behavioral variables are used as 
independent variables in the 
design matrix. Problems can arise 
when the trait of interest also 
generates differences in the 
variance of the behavioral 
variables. B. Typical results 
illustrating inter-individual 
differences in brain-behavior 
relationships, as they are reported 
in the literature, in the form of 
categorical contrast between 
group of subjects (bars±s.e.m) or 
group level linear correlation with 
a continuous trait (dots and 
regression line). C. The 
relationship between scaling laws 
and second-level statistics. The 
panels describe the impact of 
inter-individual differences in the 
standard deviation of the 
behavioral variable, under 
different preprocessing -native 
(a,b) or Z-scored variable (c,d)- 
and under different scaling-laws 
hypotheses -proportional (a,c) 
and normalization (a,d). Each sub 
panel contains three graphs. On 
the left we show an illustration of 
how the behavioral variable is 
related to the BOLD signal in two 
individuals with different initial 
standard deviations (blue vs. red 
or green vs. orange). 

The individual unstandardized coefficients of regression (typically issued by the fMRI first-level analysis), corresponds the slope of the 
individual lines. On the upper right corner we show an illustration of the inter-individual statistical relations between brain activations and 
the Trait of Interest (ToI) – as a between-group analysis (histograms) or continuous inter-individual correlation (dots). On the bottom-right 
corner we show an illustration of the consequences for the significance of second-level random-effect analysis (*: lower significance, vs. 
***: higher significance). 𝛽!  and 𝛽!!  respectively refer to fMRI unstandardized coefficients of regressions computed with a native scaling 
or an individual Z-scoring of the parametric regressor 𝐱. 𝜎(𝐱)refers to the standard deviation of the parametric regressor 𝐱. 
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Figure 2: The importance and impact of scaling laws in investigations of inter-individual differences 
A. Linking task design, behavior, and traits of interest. The red/blue histograms depict the distribution of a behavioral variable (reaction time, 
decision value, confidence) in two individual with variable performance. If the task is easy (respectively difficult), the high (respectively low)-
performing individual can exhibit a ceiling (respectively floor) effect on performance. This creates statistical dependencies between the trait of 
interest (performance) and the standard deviation (𝜎(𝐱)) of the behavioral performance variable (see graphical insets). Given the 
dependencies between fMRI 𝛽 and 𝜎(𝐱), this can lead to opposite correlations between “activations” –as measured by 𝛽-, and “individual 
performances” (proxied by 𝜎(𝐱)). B. Interpreting differences in unstandardized 𝛽. Consider a brain region, which causally and proportionally 
causes a behavior (i.e. the more activation, the higher the behavioral variable, within and across subjects). In case a trait of interest (e.g. 
pathology) directly impacts the range of activation of this region (e.g. due to degeneration), this cannot be assessed/detected by differences in 
𝛽 (right, inset). Misunderstanding the signification of 𝛽 and ignoring scaling laws can lead to erroneous negative conclusions. 
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Figure 3: Assessing BOLD-Behavior scaling relationships in value rating tasks 
A. Example of Study 3 rating task (Lebreton et al., 2015). Successive screens displayed in one trial are shown from left to right, with duration 
in milliseconds. B. Example of group-level neural correlates of values in Study 3. The color code on glass brains (left maps) and sagittal slices 
(right) indicate the statistical significance of clusters that survived the whole-brain family-wise error (FWE) correction for multiple comparisons, 
computed at the cluster level (PFWE-clu<.05, with a voxel-wise cluster-generating threshold PUNCORR<.001 ). C. Main results assessing the 
scaling laws in three valuation studies. 𝐯 and 𝐯! respectively indicate that the fMRI GLMs are designed with a native scaling or an 
individual Z-scoring of the parametric regressor value. VMPFC k refers to the size of the VMPFC cluster (in voxels, cluster-generating voxel 
threshold PUNCORR<.001); ROI –log(P) refers to the negative logarithm of the P-value of a random effect analysis performed on the individual 
averaged coefficient of regression extracted from an anatomical VMPFC ROI. 𝛽 and 𝛽! respectively refer to fMRI unstandardized 
coefficients of regressions computed with a native scaling or an individual Z-scoring of the parametric regressor value. 𝑡 refers to fMRI t-
statistics derived from 𝛽; 𝜎(𝐯) refers to the standard deviation of the native value-rating measure. ns: non significant; +/-: positive or 
negative correlation; *: P<.05; **: P<.01; ***: P<.001; 
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Figure 4: Model-based fMRI and the 
impact of model-parameters on 
inter-individual differences 
A. Typical model-based framework 
used in the value-based decision-
making community. B. Schematic 
illustrations of the impact of model 
parameters, on the standard deviation 
of the value variable in different 
context. Upper-left corner: impact of the 
utility curvature parameter on value; 
upper-right corner: impact of the 
discount factor on discounted value in 
inter-temporal choice tasks; lower-left 
corner: impact of the logistic choice 
temperature on the decision value; 
lower-right corner: impact of the 
learning rate on Q-values in 
reinforcement learning tasks. C. 
Computer simulations illustrating the 
impact of task designs on the relation 
between the model-free parameters 
and the standard deviation of the value 
variable. We considered a delay-
discounting task with two stimuli space. 
Left: the stimulus space was composed 
of two monetary amounts (10 and 30$) 
combined with 11 delays (from 0 to 50 
days with a 5 day incremental step). 
Right: the stimulus space was 
composed of tone monetary amounts 
(20$) combined with 22 delays (from 0 
to 100 days with a 5 day incremental 
step). Discounted values where 
computed with a hyperbolic discount 
function 𝐯 =    !

!!!×!
, where A is the 

monetary amount, D the delay, and k 
the individual discount factor (a free-
parameter). We computed the values 
for all the stimuli in the stimulus space 
and estimated the standard deviation of 
this value distribution 𝜎(𝐯) with 14 
different discount factors, starting 
from .0005, with a .01 incremental step. 
Simulations show that in the first 
condition, 𝜎(𝐯) decreases 
monotonically with individual discount 
factors, whereas in the second 
condition, 𝜎(𝐯) increases 
monotonically with individual discount 
factors, before reaching a plateau. The 
dots color codes the relative 𝜎(𝐯) 
value, from low (blue) to high (red). 
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Figure 5: Assessing BOLD-Behavior scaling relationships in a learning tasks 
A. Behavioral task. Successive screens displayed in one trial are shown from left to right, with duration in milliseconds (Palminteri et al., 2015). 
B. Average behavior (left) and model fit (right), displayed as the correct choice rate. Shaded area (left) and error bars (right) correspond to 
mean±sem. C. Statistical relations between model free-parameters - temperature (left) and learning rate (right)- and the standard deviation of 
the chosen Q-values 𝜎(𝐪𝐜). Solid line indicate the best linear fit, and dotted line the 95% confidence interval. The dots color codes the 
relative 𝜎(𝐪𝐜) value, from low (blue) to high (red). D. Group-level neural correlates of chosen Q-values. The color code on glass brains (left 
maps) and sagittal slices (right) indicate the statistical significance of clusters that survived the whole-brain family-wise error (FWE) correction 
for multiple comparisons, computed at the cluster level (PFWE <.05, with a voxel-wise cluster-generating threshold PUNCORR<.001) E. Main 
results assessing the scaling laws. 𝐪𝐜!, 𝐪𝐜 and 𝐪𝐜! indicate that the fMRI GLMs are designed with the variable chosen Q-values generated 
with population (𝐪𝐜!) or individual (𝐪𝐜 and 𝐪𝐜!) model free parameters, and using a native scaling (𝐪𝐜! and 𝐪𝐜) or an individual Z-scoring 
(𝐪𝐜!) of the variable. VMPFC k refers to the size of the VMPFC cluster (in voxels, cluster-generating voxel threshold PUNCORR<.001); ROI –
log(P) refers to the negative logarithm of the P-value of a random effect analysis performed on the individual averaged coefficient of regression 
extracted from an anatomical VMPFC ROI. 𝛽 and 𝛽! respectively refer to fMRI unstandardized coefficients of regressions computed with a 
native scaling or an individual Z-scoring of the parametric regressor Qc. 𝑡 refers to fMRI t-statistics derived from 𝛽;   𝜎(𝐪𝐜) refers to the 
standard deviation of the native Qc. ns: non-significant; +/-: positive or negative correlation; *: P<.05; ***: P<.001; 
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