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Abstract 

Background: The sequence of a genome is insufficient to understand all genomic 
processes carried out in the cell nucleus. To achieve this, the knowledge of its three-

dimensional architecture is necessary. Advances in genomic technologies and the 
development of new analytical methods, such as Chromosome Conformation 

Capture (3C) and its derivatives, provide unprecedented insights on the spatial 
organization of genomes. However, inferring structures from raw contact data is a 

tedious process for shortage of available tools.  

Results: Here we present TADbit, a computational framework to analyze and model 

the chromatin fiber in three dimensions. To illustrate the use of TADbit, we 
automatically modeled 50 genomic domains from the fly genome revealing differential 

structural features of the previously defined chromatin colors, establishing a link 

between the conformation of the genome and the local chromatin composition.  

Conclusions: TADbit provides three-dimensional built from 3C-based experiments, 

which are ready for visualization and for characterizing their relation to gene 
expression and epigenetic states. TADbit is open-source and available for download 

from http://www.3DGenomes.org. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 15, 2016. ; https://doi.org/10.1101/036764doi: bioRxiv preprint 

https://doi.org/10.1101/036764


 3 

Background 

Metazoan genomes are organized within the cell nucleus. At the highest level, 
chromosomes occupy characteristic nuclear areas or “chromosome territories”, 

separated by inter-chromatin compartments [1]. Chromosomes undergo additional 
levels of arrangements and organize themselves into the so-called A and B 

compartments [2], which in turn are composed of Topologically Associating Domains 
(TADs), defined as regions of the DNA with a high frequency of self-interactions [3-5]. 

Determining the three-dimensional (3D) organization of such genomic domains is 
essential for characterizing how genes and their regulatory elements arrange in 

space to carry out their functions [6]. Chromosome Conformation Capture (3C)  [7] 
and its derived methods (here referred to as 3C-based methods) are now widely 

used to elucidate the spatial arrangement of genomes  [8]. Although the frequency of 

interactions between loci can be used as a proxy for their spatial proximity, 3C-based 
contact maps do not easily convey all the information about the spatial organization 

of a chromosome. This information, however, can be inferred using computational 
methods [9]. Here we present TADbit, a Python library for the analysis and modeling 

of 3C-based data. TADbit takes as input the sequencing reads of 3C-based 
experiments and performs the following main tasks: (i) pre-process the reads, (ii) 

map the reads to a reference genome, (iii) filter and normalize the interaction data, 
(iv) analyze the resulting interaction matrices, (v) build 3D models of selected 

genomic domains, and (vi) analyze the resulting models to characterize their 
structural properties (Fig. 1). TADbit builds on existing partial implementations of 

methods for 3D genomic reconstruction [10-20]. As a validation of the model-building 

module of TADbit, a systematic analysis of its limitations has shown that 3D 
reconstruction of genomes based on 3C-based data can produce accurate 3D 

models [21]. 

Here we used TADbit to model and analyze 50 genomic domains of the Drosophila 

melanogaster genome. It was shown that the Drosophila genome consists of five 
distinct chromatin types determined by mapping 53 broadly selected chromatin 

proteins and four key histone modifications [22]. The chromatin types were labeled 
with colors and comprise “blue” chromatin, enriched in Polycomb group proteins and 

H3K27 methylation, “green” chromatin, bound by HP1 and located at peri-

centromeric regions, “yellow” and “red” chromatin, harboring distinct classes of active 
genes, and “black” chromatin, covering more than 40% of the Drosophila genome 
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and characterized by low occupancy of most chromatin markers. More recently, 

genome-wide 3C-based interaction maps in Drosophila revealed that TAD 
boundaries are gene-dense, highly bound by transcription factors and insulator 

proteins and correspond to transcribed regions [5, 23]. Moreover, it was shown that 
the active red and yellow chromatin types preferentially locate at TAD borders while 

the others preferentially locate inside TADs. This work highlighted the existence of 
interplay between the structural organization of genomic domains and their chromatin 

composition. Similar relationships have also been observed in other organisms, 
including mouse and human [24-27]. 

To further characterize the structural properties of the Drosophila chromatin types, 
we have used TADbit on available Hi-C data. By building 3D models of genomic 

domains covering more than 50 Mb of the Drosophila genome, we show that the five 

previously described chromatin colors are characterized by distinct structural 
properties. Black chromatin is a compact, dense and closed chromatin fiber. In 

comparison, the heterochromatic types blue and green are more open and 
accessible. Finally, the yellow and red types feature a loose and open chromatin, 

potentially accessible to proteins and transcription factors responsible for regulating 
resident genes. 
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Results 

Chromatin interaction maps of the Drosophila melanogaster genome 

The TADbit pipeline starts from raw data (i.e. reads generated from a 3C-based 

experiment). We downloaded SRA files from the NCBI Gene Expression Omnibus 
under accession number GSE38468 [23], and converted them to FASTQ files using 

the SRA Toolkit [28]. The dataset contained three separate Hi-C experiments [2] 
performed on Drosophila Kc167 cells using the restriction endonuclease HindIII, 

consisting of one biological replicate (SRR398921) and two technical replicates 
(SRR398318 and SRR398920), labeled here as “BR”, “TR1” and “TR2”. They 

comprised about 194, 67 and 112 million paired-end reads, respectively (Table 1). A 
quality check of the first million reads in each of the FASTQ file showed that the 

average PHRED scores [29] were higher than 25 across each of the 2x50 bp paired-

end reads, which is indicative of good quality. Moreover, TADbit assessed that more 
than 95% of the reads had undergone digestion during the Hi-C experiment and only 

~2% of the reads contained dangling ends sensu stricto (reads starting with a 
digested restriction site, Fig. S1). Next, the paired-end reads were aligned in TADbit 

to the Drosophila reference genome (dm3) using the GEM mapper [30] with a 
previously proposed iterative mapping strategy [31]. With this strategy, 67.0% to 

77.8% of the original reads could be uniquely mapped (Table 1). After discarding 
those with only one mapped end, the number of mapped pairs diminished (50.2% to 

63.5% of the original reads). These numbers were similar to those reported in the 
original experiments [23]. After mapping, the reads were further filtered as previously 

described [31], resulting in about 48, 24, and 41 million valid pairs (or interactions) for 

the BR, TR1 and TR2 experiments, respectively (Table 1). Finally, the filtered 
interaction maps were normalized using the iterative correction and eigenvector 

decomposition (ICE) procedure [31], also implemented in TADbit (Fig. 2a). The 
resulting interaction matrices were highly correlated (Fig. 2b,c,d), which prompted us 

to merge the input reads into a single dataset of more than 372 million reads. The 
new dataset, referred to as “SUM”, was also automatically filtered and normalized by 

TADbit (Fig. 2e,f). The interaction map from the SUM dataset shows all the 
previously described features of the 3D organization of the Drosophila genome, 

including the chromosome arm territories, the clustering of centromeres and the 

infrequent interactions between telomeres. 
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The Drosophila genome is partitioned into TADs of different robustness 

Next, we generated 10 kb resolution interaction maps of the Drosophila genome to 
which we applied a new TAD boundary detection algorithm implemented in TADbit 

(Materials and Methods). This algorithm uses a change-point detection approach 
inspired from methods used to identify copy number variations in CGH experiments 

[32]. Briefly, we use Poisson regression to find the most likely segmentation of the 
chromosome in m TADs and choose the value of m associated with the optimal 

Bayesian Information Criterion. In addition to the optimality of the solution, the main 
advantage of the new algorithm is the assignment of a robustness score to each TAD 

boundary (Materials and Methods). TADbit identified a total of 689 TADs with an 
average length of 162.8 kb (ranging from 20 kb to 1.5 Mb), representing larger TADs 

than previously reported [23]. Given the hierarchical organization of the genome [8], 

we set out to assess whether the difference was due to the identification of new 
borders or to the merging of the identified TADs. We downloaded the interaction 

matrices and the TAD borders as defined by Hou et al. [23] (referred to as the original 
definition) and compared them to the borders obtained by running TADbit on these 

interaction matrices (Fig. 3a,b,c). To this end we used the TADbit module to align 
multiple TAD boundaries from several experiments (Materials and Methods and Fig. 

3d). Overall, 81% of the borders defined by TADbit align within 20 kb of an original 
border when using the TADbit definition as reference (Fig. 3e). The number 

decreases to 67% of the borders when using the original definition as a reference. By 
forcing TADbit to identify the same number of borders as the original definition (1,110 

borders), the agreement increases to 74% within 20 kb. For comparison, the 

agreement of the TADbit border definitions between the three independent Hi-C 
experiments (BR, TR1 and TR2) is about 90%. The degree of similarity between the 

original and the TADbit definitions points to a variation of the algorithm sensitivity 
more than to real discrepancies (see Fig. 3d for instance). Moreover, the borders 

present only in the TADbit definition usually have a weak strength. Indeed, the 
agreement increases to 94% by comparing borders of 6 or higher strength as defined 

by TADbit. In summary, our results confirm the previously described TAD level 
partitioning of the Drosophila genome and provide a new algorithm to identify TAD 

borders and to assign a strength score to them. Such strength score could later be 

used to characterize the hierarchical organization of the genome in TADs or as an 
indicator of the confidence in the prediction (Fig. S2).  
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Automatic modeling of 50 genomic regions of the Drosophila genome 

Next, we used TADbit to model the 3D structure of 50 selected genomic regions of 

about 1 Mb each (Table S1). The 50 regions were selected based on their chromatin 
colors composition [22]. The selection included the top ten regions of the genome 

most enriched in each of the five defined chromatin colors. Given the non-
homogenous distribution of chromatin colors in the Drosophila genome, where the 

genome is composed of large stretches of black chromatin interspersed by shorter 
domains of blue, yellow and red chromatin (green chromatin is an exception, as it is 

mainly found in peri-centromeric regions and on chromosome 4), finding continuous 1 
Mb stretches of chromatin for the blue, yellow and red colors was not always possible 

(Fig. 4a). For instance, the highest red coverage in a 1 Mb region of the genome was 

only 22%. For yellow and blue, the maximum coverage was 48% and 52%, 
respectively, whereas for black and green chromatin types the maximum coverage 

was 98% and 100%, respectively.  

All the selected genomic domains yielded a Matrix Modeling Potential (MMP) score 

[21] ranging from 0.85 to 0.96, which is predictive of high accuracy models (Table 
S1). To model the 3D structure of the 50 regions, we used as input the Hi-C 

interaction matrix where each 10 kb bin was represented as a spherical particle in the 
model. All the particles were restrained in space based solely on their measured 

interactions, chain connectivity and excluded volume. Finally, the modeling 
parameters were optimized by maximizing the correlation between the contact map 

of the models and the input Hi-C interaction matrix (Materials and Methods and Table 

S1). All the 50 modeling exercises resulted in high correlations between the contact 
maps and the Hi-C interaction matrices, ranging form 0.83 to 0.93 (Fig. 4b and Table 

S1). All together, the modeled regions covered a total of 51.8 Mb of the Drosophila 
genome, forming the largest dataset of genomic regions modeled at 10 kb resolution 

(Fig. S3). 

 

Structural properties of the Drosophila chromatin colors 

The generated models were automatically analyzed by TADbit to further characterize 

their structural properties. In particular, among the set of descriptive measures 

available in TADbit, we calculated four main structural properties for each particle 
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(genomic bin) in the models (Materials and Methods). Those included: (i) 

accessibility, measuring how accessible from the outside a particle is; (ii) density, 
measuring the local compactness of the chromatin fiber; (iii) interactions, counting the 

number of particles within a given spatial distance from a selected particle; and (iv) 
angle, measuring the angle formed by a particle and its two immediate neighbor 

particles. To assess whether the different occupancy of proteins and chromatin 
modifications defining the five colors of chromatin had an influence on the 3D 

structure of the genome, we assigned to each particle one of the five chromatin 

colors if at least 50% of the 10 kb region was covered by this chromatin type [22]. 
Particles with non-homogenous colors were assigned to the undefined “white” color. 

These four measures provided an overview of the structural properties of each color 

in a particle-based manner. Models with decreasing amount of black, blue and green 
particles resulted in less compact and regular structures compared to those enriched 

in blue or black particles (Fig. 4c). For example, the top black region (98% black, 1% 
red and 1% white) had low accessibility throughout, combined with a relatively high 

density (interestingly, the lowest density for that region corresponds to the only red 
particle), high number of interactions and closed angle between particles (Fig. 4c last 

column).  

Overall, the chromatin colors showed distinct structural properties (Fig. 5). For 

example, black chromatin was the least accessible (median accessibility 26.5%), 
compared to green and blue (median accessibilities 34.4% and 34.3%, respectively) 

and to yellow and red (median accessibilities 46.5% and 51.6%, respectively). Black 

chromatin also featured the highest density in our models (median 212 bp/nm). This 
was slightly more than blue (207 bp/nm) and substantially more than green, yellow 

and red (182 bp/nm, 180 bp/nm, and 179 bp/nm, respectively). The chromatin type 
with most interactions was green (median 48.7 interacting particles within 250 nm) 

followed by black (45.3), yellow (43.7), blue (41.9), and red (37.9) chromatin. Finally, 
yellow and red chromatin featured the most extended fibers (median absolute angles 

94.6° and 89.7°, respectively), compared to blue (85.3°), green (82.6°) and black 

(80.3°). Taken together, the 3D models generated by TADbit indicate that the 

chromatin types of Drosophila have intrinsic and distinctive structural properties. 
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Discussion 

Here we introduced the first comprehensive computational library for 3C-based data 
handling, 3D modeling and model analysis. TADbit’s main scopes are: (i) read quality 

control and design of the mapping strategy; (ii) mapping of reads to the reference 
genome; (iii) interaction map filtering and normalization; (iv) interaction matrix 

analysis, including matrix comparison, TAD detection and TAD alignment; (v) 3D 
modeling of genomes and genomic domains; and (vi) 3D model analysis. A complete 

list of the computational functions implemented in TADbit is provided as 
Supplementary Text, each of which is more deeply described in the TADbit online 

documentation (http://3dgenomes.github.io/TADbit) together with complete tutorials 
covering each step from sequencing data to 3D model analysis. 

Here, TADbit was used to map, normalize, model and analyze a previously published 

dataset of Hi-C experiments in Drosophila Kc167 cells [23]. The resulting interaction 
maps confirmed previously described features of the 3D organization of the 

Drosophila genome, including the chromosomal arms territories, the clustering of 
centromeres, the separation of telomeres and the partitioning of the genome into 

TADs. The mapping strategy using GEM [30] gives similar results to those using 
Bowtie [33] and alternative protocols [23]. The TAD detection module of TADbit 

identified less TADs than previously reported. Part of the discrepancy is due to the 
arbitrary definition of TADs and the lack of knowledge about their real structure. 

TADbit contributes a scoring of TAD borders, which hints to the hierarchical nature of 
the genome organization in 3D. Indeed, the current debate on the exact nature of 

TADs and the existence of a hierarchical organization of domains at different 

resolutions [25] could be aided by assigning a score of robustness to each of the 
detected domain boundaries. 

We also used TADbit to automatically model a total of 50 genomic regions across the 
Drosophila genome, covering nearly 52 Mb at a resolution of 10 kb, which represents 

the larges dataset of 3D structures of genomic domains available today. TADbit can 
also be used to produce genome-wide models. Unfortunately, the computational time 

required to model the entire Drosophila genome at 10 kb resolution is very high and 
thus would not be available to many research groups world-wide. Our 3D models 

reveal distinct structural properties for the previously identified chromatin colors in 

Drosophila. It has been shown that the five types of Drosophila chromatin not only 
differ in protein composition but also in biochemical properties, transcriptional activity, 
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histone modifications, replication timing, and DNA binding factors targeting. They 

also differ in the sequence properties and the functions of the embedded genes. Now 
we demonstrate that the chromatin types also have specific and distinctive structural 

features (Fig. 5b). Importantly, these results shed light on the nature of the elusive 
black chromatin. Most chromatin markers are depleted in this environment, including 

those responsible for active repression of transcription. It is thus unclear how genes 
are maintained silent and why transcription factors do not bind to their consensus 

sequence in black chromatin. Our results suggest that part of the answer is that black 
chromatin is very compact and inaccessible to external factors. The high curvature of 

black chromatin fibers in the models suggests that those regions are intrinsically 
ordered or that they are compressed. The enrichment of the linker histone H1 in 

black chromatin may account for all these properties. 

The previous conception of heterochromatin was closer to green (HP1-bound) or blue 
(Polycomb-bound) chromatin types. Interestingly, both of them are more accessible 

than black chromatin, yet green chromatin has a higher number of interactions. This 
indicates that green chromatin, compared to black chromatin, is a more open but 

irregular structure where specific interactions are more plausible within a distance 
cut-off. In contrast, the closed and regular organization of black chromatin results in 

fewer likely unspecific interactions per particle. This may somehow be related to the 
observation that the expression of some genes translocated to HP1-bound regions 

tends to fluctuate, a phenomenon known as position effect variegation [34]. We 
speculate that genes caught in this chromatin environment may be trapped in the 

local entanglement and physically locked away from their enhancers. 

Both yellow and red chromatin exhibit the most different structural features compared 
with black chromatin. Their 3D models are open and accessible, which is consistent 

with the fact that those regions are mostly transcribed and bound by many 
transcription factors. However, the overall protein occupancy in red chromatin is 

substantially higher than in yellow chromatin, yet their overall structural properties are 
relatively similar. This suggests that the extraordinary occupancy observed in red 

chromatin is not necessarily rooted in its conformational properties, but rather in 
mechanisms that operate at a finer scale. 

Additional studies will be needed to further investigate the molecular mechanisms 

associated to the structural properties of the chromatin types. However, our 3D 
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models, as well as their correlation with the epigenetic features, are a firm basis for 

future investigation on chromatin occupancy by proteins and it spatial organization.  
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Materials and Methods 

FASTQ quality check 

The TADbit pipeline starts by performing a quality control on the raw data in FASTQ 

format. This quality check is similar to the tests performed by the FastQC program 
[35] with adaptions for Hi-C datasets (see Fig. 1 and Fig. S1). In particular, it 

averages the PHRED scores along the sequenced reads as well as the proportion of 
“N” at each position. Additionally, the distribution of three categories of sequence 

sites can be plotted: (i) the proportion of undigested restriction enzyme (RE) sites; (ii) 
the proportion of ligated sites; and (iii) the proportion of non-ligated digested sites 

(i.e., the rest of sites). These three categories might be informative about possible 
artifacts in the 3C-based experiments. The first and the second categories are 

expected to be constant along the sequenced reads, although the proportion of 

ligation sites detected towards the read ends might be lower as a consequence of the 
interference of the streptavidin beads with the ligation of the sequencing adapters (as 

observed in the samples Hou-2012). The third category of sites consists of dangling-
ends sensu stricto (i.e., the reads starting with a digested restriction site). These 

statistics are useful to a priori assess the efficiency of the digestion (by comparing 
the proportion of ligated and digested sites versus undigested sites) as well as of the 

efficiency of ligation (by comparing the proportion of dangling ends versus ligated 
sites). For example, in the case of the samples Hou-2012, the digestion and ligation 

efficiencies are very similar between TR1 and TR2, while BR results in higher ligation 
efficiency. 

Iterative mapping 

TADbit implements an iterative mapping strategy that is a slightly modified version of 
the original ICE method developed for the HiClib library [31]. The minimal differences 

with the original ICE method are the mapper used (TADbit uses GEM [30]) and a 
more flexible way to define the position of the iterative mapping windows, which can 

now be fully defined by the user. 

Fragment based filtering 

The filtering strategy implemented in TADbit builds on previously described protocols 
[31] to correct all the computationally detectable experimental biases/errors. After 

mapping, TADbit can filter the reads depending on ten criteria (Fig. S4), which can be 

applied individually or as a set of filters. These criteria include:  
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1. Self-circles: reads mapped on different strand within a single RE fragment. 

The first read, in genomic coordinates, needs to be mapped in the reverse 
strand.  

2. Dangling-ends: reads mapped on different strand within a single RE fragment. 
The second read, in genomic coordinates, needs to be mapped in the reverse 

strand.  

3. Errors: reads mapped within a single RE fragment, both mapped on the same 

strand. 

4. Extra dangling-ends: reads mapped on different RE fragment but that are 

close enough (< 500 bp) to be likely from one single DNA fragment. 
Additionally, the reads need to be mapped on different strands with the 

second read mapping on the reverse strand. 

5. Too close to a RE site: reads mapped to the start position too close (< 5 bp) 
to the RE cutting site, these are also referred to as “semi-dangling-ends” as 

they actually have, strictly speaking, at least one end dangling. 

6. Too short: reads mapped within a small restriction fragments (< 100 bp). Such 

RE fragments are smaller than the library read length and are likely an 
artifact. 

7. Too large: reads mapped within a large restriction fragments (> 100 kb, P < 
10-5 to occur in a randomized genome); they likely represent poorly 

assembled or repeated regions in the reference genome. 

8. Over-represented: reads coming from the top 0.5% most frequently detected 

RE fragments. Such reads are likely arising from PCR artifacts or may 

represent fragile regions of the genome as well as genome assembly errors. 

9. Duplicates: duplicate removal of read-pairs mapping in the exact same 

genomic coordinates are removed as probable PCR duplicates.  

10. Random breaks: reads mapping too far (> 500 bp) from the RE cutting site. 

This filter excludes potential non-canonical enzyme activity or random 
physical breakage of the chromatin. 

Interaction matrix cleaning and normalization 

Once filtered, the read-pairs are binned at a user-specified resolution (bin size) 

depending on the matrix density required by the analysis to be performed. However a 
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minimum amount of counts per bin is usually required for the normalization of the 

data. Indeed, the ICE correction [31], which converges when all the rows of the 
matrix have an equal number of normalized interactions, would fail when the density 

of the matrix is too low (e.g., rows with more than 50% of cells with no count). By 
default the ICE implementation excludes from the normalization the rows that 

represent the lowest 2% of the matrix. However, depending on the dataset, this 
number can greatly affect the result by either masking valid columns or keeping 

sparse columns that would impede the convergence of the normalization algorithm. 
To determine the threshold amount of interactions for masking columns, TADbit 

proceeds in two steps. First, the columns with zero counts are removed. Second, a 
polynomial is fitted to the empirical distribution of the total amount of interactions per 

column, and the first mode of this distribution is used to define the exclusion 

threshold value below which columns will be removed. This removal should not affect 
more than 5% of the columns in the matrix. 

After the column removal, the remaining bins are further normalized to remove local 
genomic biases (e.g., to correct for the genomic regions with higher mappability 

and/or PCR amplification). The normalization procedure implemented in TADbit is a 
modification of the iterative correction method of HiClib [31]. In the scheme 

implemented in HiClib, the raw counts for column i and row j are iteratively corrected 
until the sum of counts in all the rows converges towards a given value. In TADbit, 

the iterative correction is stopped when the difference between the columns counts is 
less than 10% or when a maximum number of iterations (set to 10) is reached, which 

accelerates the process. 

Comparison of interaction matrices 

Once normalized, the Hi-C contact matrices can be compared to estimate their 

degree of similarity. For this purpose, TADbit implements plotting functions 
(Supplementary Text) that allow visualizing the interaction matrices as squared heat-

maps, in which the two axes represent the genomic coordinates of the analyzed 
region and the color intensity is proportional to the interaction counts in log2. Besides 

matrix visualization, TADbit implements two comparison scores: (i) a Spearman rank 
correlation between bins in two matrices at increasing genomic distances (Fig. 2c) 

and (ii) a Pearson correlation between the first eigenvectors of each matrix (Fig. 2d). 

Although both measures aim at identifying whether two matrices are similar or not, 
they have different properties. The first one is sensitive to the matrix resolution and 
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decays as the genomic distance of the compared bins increases. The second one 

provides a more global comparison of the matrices and aims at identifying whether 
the internal correlations in the matrix (detected by its principal eigenvectors) are 

similar between the compared matrices. In typical Hi-C experiments, one expects the 
first three eigenvectors to be highly correlated between two similar interaction 

matrices. If two interaction matrices are similar (that is, with a Spearman rank 
correlation > 0.2 for all the genomic distances and the Pearson correlation of the first 

three eigenvectors > 0.7), they may be merged into a single experiment directly 
within TADbit. 

Genome segmentation into Topologically Associating Domains (TADs) 

TADbit analyzes the contact distribution along the genome and subsequently 

segments it into its constitutive TADs, with each TAD border corresponding to a 

vertical slice of the Hi-C interaction matrix. TADs can be computed on the interaction 
matrix from a single experiment or from the matrix resulting from the merge of 

different experiments. To calculate the position of borders between TADs along a 
chromosome, TADbit employs a breakpoint detection algorithm that returns the 

optimal segmentation of the chromosome under BIC-penalized likelihood. 

The number of interactions between loci i and j separated by Δ nucleotides is 

assumed to have a Poisson distribution with parameter wij exp(α + β Δ), where α and 

β are TAD-dependent constants and wij is the normalization factor for the cell at 
coordinates (i,j) of the Hi-C contact matrix. Breakpoint detection methods were 

developed to segment time series in uniform blocks. In the case of Hi-C data, the 
correspondence with times series is not straightforward because the measured signal 

is two-dimensional. This issue is resolved by considering that a single observation is 

the vector of interactions of a locus with all other loci, in other words, an observation 
is a column of the Hi-C matrix. In this view, a TAD defines a vertical slice of the Hi-C 

matrix. Each cell of this slice belongs to one of three categories: the contacts 
between the TAD and all upstream loci, the intra-TAD contacts, and the contacts 

between the TAD and all downstream loci. From there, the algorithm proceeds in two 
phases. In the first, the log-likelihood of every slice (defined by a start and end 

position) is computed. If the slice does not cover exactly one TAD, at least one of the 
three categories described above will be composite, which will cause a misfit. As a 

result, the total log-likelihood of this slice will be low. If the slice covers exactly one 
TAD, all three categories will be uniform and the log-likelihood of the slice will be 
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high. The search for the optimal decomposition of the Hi-C matrix is carried out by a 

dynamic programming algorithm based on the following property: if Lk(s,e) denotes 
the log-likelihood of the optimal segmentation of the slice (s,e) into k sub-slices, then 

!!(1, !) = min (!!!! 1, ℎ + !! ℎ + 1, !  

where the minimum is taken over all the values of h. This formula allows computing 

the optimal segmentation recursively. 

To assign a border score or strength value, the likelihood of each TAD border in the 

optimal segmentation is penalized by a value equal to the expected gain in log-
likelihood for adding a TAD border after the optimum is reached, and the dynamic 

programming segmentation is restarted. The whole process is carried out 10 times, 

and each time a border is on the optimal segmentation, it is penalized by this 
constant. The strength of a TAD border is the number of times it was included in the 

optimal segmentation, and it thus ranges from 1 to 10. TAD borders with a score 
greater than 5 will be considered “robust”, meaning that they are reproducible among 

different runs; conversely, TAD borders with a score lower than 5 will be considered 
“weak”, and are likely to be undetectable in replicates or at other resolutions. 

Alignment of TAD boundaries 

TAD borders are conserved across different cell types and even across species, 

indicating that topological domains may play an important role in the organization of 
chromatin in metazoan genomes [3]. To assess whether TAD borders are conserved 

throughout different experiments, we implemented a multiple-experiment border 

alignment algorithm. Starting from different border definitions of the same genomic 
region, TADbit aligns each TAD to a consensus TAD list, either using the classic 

Needleman-Wunsch algorithm [36] or using a method based on reciprocal closest 
boundaries (bd). In the latter method, the boundary bd1 will be aligned to its closest 

boundary bd2 if and only if bd1 is the closest boundary of bd2. Finally, to assess its 
statistical significance, the resulting alignment is compared to a randomized set of 

borders obtained by shuffling the TADs, or by randomly picking TADs from a 
distribution of TAD lengths built from the original alignment. 

Three-dimensional (3D) modeling of genomic domains. 

In TADbit, the three-dimensional (3D) models of selected genomic domains are 

generated by transforming the input 3C-based interaction maps into a set of spatial 

restraints that are later satisfied using the Integrative Modeling Platform (IMP) [37], 
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as previously described [12]. Briefly, 3D modeling with TADbit is based on three main 

steps: (i) the chromatin domain to be modeled is represented by a set of particles, 
one per experimental bin of the interaction matrix; (ii) the input interaction data is z-

scored and translated into spatial restraints between pairs of particles; and (iii) using 
Simulated Annealing and Monte Carlo sampling, the imposed restraints are satisfied 

by building an ensemble of structures whose contact maps correlate as much as 
possible with the input interaction matrix. 

Structural clustering of the resulting 3D models 

To assess the structural similarity of the generated models, TADbit first structurally 

aligns them using a pair-wise rigid-body superposition that minimizes the RMSD 
between the superimposed conformations [38]. Then, the Smirror  score of a given pair 

of models i and j is computed as: 

!!"##$!!,! = !"!!,!×!"#$!! !"# !"#$%
!"#!! !"# !"#$  

Where Eqvi,j is the number of equivalent positions between two superimposed 
structures within a specific distance cut-off; dRMSDn is the normalized (i.e., the 

dRMSD divided by the maximal dRMSD in all structural comparisons) distance 
RMSD between two aligned structures; and RMSDn is the normalized RMSD 

between two aligned structures. This results in a comparison matrix, consisting of all-
against-all Smirror scores, which is then used to resolve structural mirrors 

(conformations with the same IMP objective function that are mirrors of each other). 

Next, the comparison matrix is input to the Markov Cluster Algorithm (MCL) program 
[39] for generating unsupervised sets of clusters of structurally related models. Once 

the clusters are defined, a representative model of each cluster is compared to obtain 
the final dRMSD used to build the dendrograms of structural similarity between 

clusters (Fig. 4a). The resulting clusters can be then used independently for the 
analysis of the generated 3D structures, avoiding thus misinterpretations of the 

structural variability inherent to the population-based nature of 3C-based 
experiments. 

Structural analysis of the resulting 3D models 

We have implemented a series of structural analysis in TADbit to be applied on the 

generated 3D models (see online documentation and tutorials 

http://3dgenomes.github.io/TADbit) and outputs several measures to describe the 
architecture of the model. Here, we detail the implementation of the four measures 
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used to analyze the structural properties of the fly chromatin types: particle 

accessibility, particle density, particle interactions, and particle angle. 

The particle accessibility assesses whether a chromatin locus in the 3D models is 

accessible to a hypothetical macromolecule (e.g., a transcription factory). To 
compute this measure, a mesh surface around each particle in the model is first 

generated. Each point of the mesh represents the center of an object of a user-
defined radius (75 nm by default). Next, TADbit checks for each of the points of this 

mesh whether another particle lies within the specified radius. In that case, that 
specific mesh point is considered buried and may not be accessed by any other 

particle or macromolecule. Finally, the accessibility of each particle is computed as 
the percentage of non-buried mesh points around it.  It is important to note that when 

modeling only part of a genome, the non-modeled part is not taken into account in 

the accessibility measure and thus its result needs to be interpreted with caution. 

The particle density assesses the amount of DNA base pairs “packed” within the sum 

of Euclidian distances between a given particle and its n immediate neighbors. Thus, 
the density measure is simply calculated as the number of base pairs per nm of 

chromatin fiber. 

The particle interactions assesses whether a particular locus in the 3D models is in 

spatial proximity with other loci. Therefore, this measure depends on a distance cutoff 
value that is set depending on the scaling factor internally used in TADbit to relate 

genomic distances to Euclidian distances.  

The particle angle measures the angle (in degrees) formed by three consecutive 

particles in the 3D models. Similarly as for the density measure, the angle can be 

computed between n distant particles. 

Each of these statistics can be calculated independently on consecutive particles or 

smoothed by averaging the measures in windows across a user-defined number of 
particles. 

Output and visualization of 3D models 

Although TADbit includes a simple three-dimensional model viewer using matplotlib 

[40], it is designed to be compatible with other visualizing tools, including TADkit 
(http://www.3DGenomes.org/TADkit). Currently, TADbit can generate three output 

formats for the model 3D coordinates: 
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• A simple XYZ format storing the 3D Cartesian coordinates of each particle, as 
well as any description of the model domain that the user might have 

previously documented through TADbit. This is a per model format, which 
results in an individual file per model. 

• A Chimera Marker format (CMM), which can be used as input for the Chimera 
molecular viewer [41]. This is also a per model format. 

• A JSON format, designed to be scalable and broadly used, containing a 

description of the Hi-C experiment, the input restraints used during the 
modeling, any additional description of the model domain that the user might 

have previously documented through TADbit, the Cartesian coordinates of all 
the models and the model clusters, in case they have been previously 

calculated by TADbit. This is a per ensemble format, which results in a single 
file per experiment. This file format is fully compatible with the 3D genome 

browser TADkit. 
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FIGURES 
 

 
 

Figure 1. TADbit flowchart. Main functions of the TADbit library from FASTQ files to 

3D model analysis. TADbit accepts many input data types such as FASTQ files, 

interaction matrices and 3D models. A series of python functions in TADbit 
(Supplementary Text) allow for the full analysis of the interaction data, interaction 

matrices as well as derived 3D models.  
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Figure 2. Hi-C interaction maps at 100 kb resolution for the entire Drosophila 
genome. (a) Raw, filtered and normalized genome-wide interaction maps for the BR 

dataset. Only after the normalization of the data, the enriched interaction between 
centromere regions of the Drosophila chromosomes can be observed. (b) Normalized 

maps for the TR1 and TR2 datasets. (c) Comparison of the normalized Hi-C maps 
between the three datasets at 100 kb resolution. The Spearman correlation was 

computed between off-diagonal regions as a function of their genomic distance. (d) 
Matrices of Pearson correlation coefficients of main eigenvectors from the three Hi-C 

datasets (that is, BR, TR2 and TR2). The data shows the expected high correlation of 
the top three eigenvectors [31]. (e) Genomic coverage of the mapped reads per 

chromosome from the SUM dataset. (f) Hi-C normalized interaction matrix at 100 kb 

resolution for the SUM dataset. The three main eigenvectors of the normalized 
interaction matrix mark the position of centromeres (E1), chromosomes (E2), and 

chromosome arms (E3). TADbit automatically generated all the plots in the figure.  
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Figure 3. TAD border detection and comparison with the results from Hou et al. [23] 
(a) Hi-C normalized interaction matrix at 10 kb resolution for the first 4.5 Mb of 

chromosome 2L in the Drosophila genome. Interactions matrix and TAD borders 
were obtained from published data [23]. (b) Hi-C normalized interaction matrix from 

the same genomic region and resolution as in panel a. The interaction counts are as 
previously published [23] but the TAD borders are those defined by TADbit. (c) Hi-C 

normalized interaction matrix from the same genomic region and resolution as in 
panel a. Interaction data and TAD borders are both generated by TADbit. (d) TAD 

border alignments between the three differently processed experimental data: 
borders defined in Hou et al. [23] (Hou-2012, top graph), borders defined by TADbit 

using the Hou-2012 matrix (mid graph), and borders and matrix determined by 

TADbit (bottom graph). Dark and light grey arches indicate TADs with higher and 
lower than expected intra-TAD interactions, respectively. TAD borders are indicated 

with a black arrow for the Hou-2012 defined borders and by color arrows for the 
TADbit identified borders. TADbit border robustness (from 1 to 10) is identified by a 

color gradient from blue to red. (e) Comparison of the agreement between the aligned 
TAD borders in the three datasets. As a reference, the horizontal grey line indicates a 

±20 kb (2 bins) agreement between the biological replica (BR) and the first technical 

replicate (TR1) as determined by TADbit. The plots in panels a to d were 

automatically generated by TADbit.   
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Figure 4. TADbit 3D models and structural properties. (a) Genomic coordinates, 

chromatin color proportions, 3D models and structural clustering for the five regions 
with highest coverage for each color in the Drosophila genome. The ensemble of 

models for cluster number 1 (the most populated cluster) for each color is 

represented by its centroid as a solid tube colored by its particle colors. The 
ensemble around the centroid is simulated by a transparent surface covering a 

Gaussian smooth surface 150 nm away from the centroid. Figures of 3D models 
were produced by Chimera [41]. The structural clustering of the 2,000 models 

produced per region were aligned with TADbit and clustered by structural similarity. 
Most modeled regions segregate into two large clusters corresponding to mirror 

images of each other. (b) Comparison of the input interaction Hi-C matrix to a contact 
map from the 2,000 built models per region, with Spearman correlation coefficient. (c) 

Structural properties by particle are shown for accessibility (percentage), density (bp 
per nanometer), interactions (number), and angle (degree). The background of the 

plot represents the color assigned to each of the particles in the models. TADbit 

automatically generated all plots. 
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Figure 5. Structural properties of the five described chromatin colors. (a) Distribution 
of each of the four structural properties (that is, accessibility, density, interactions, 

and angle) grouped by chromatin colors (including the undefined “white” color for 
particles of non-homogeneous coloring). Statistical significance of the differences as 

computed by Tukey’s ‘Honest Significant Difference’ test (*: p < 0.01, ***: p < 0.001, 
ns: non-significant). (b) Schematic representation of the structural properties of the 

five colors for the Drosophila chromatin. 
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