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Abstract. Reads from paired-end and mate-pair libraries are often uti-
lized to find structural variation in genomes, and one common approach
is to use their fragment length for detection. After aligning read-pairs
to the reference, read-pair distances are analyzed for statistically signif-
icant deviations. However, previously proposed methods are based on
a simplified model of observed fragment lengths that does not agree
with data. We show how this model limits statistical analysis of identify-
ing variants and propose a new model, by adapting a model we have
previously introduced for contig scaffolding, which agrees with data.
From this model we derive an improved improved null hypothesis that,
when applied in the variant caller CLEVER, reduces the number of
false positives and corrects a bias that contributes to more deletion calls
than insertion calls. A reference implementation is freely available at
https://github.com/ksahlin/GetDistr.

1 Introduction

Genomic structural variation, for example insertion and deletion of DNA, are
common in the human population and have been linked to various diseases and
conditions. The basic question scientists and clinicians want to answer is: given a
DNA sample from a donor and a suitable reference genome, what structural vari-
ants does the donor have in comparison to the reference? Methods for identifying
structural variants are continuously worked on, in terms of both experimental
protocols and bioinformatic analysis. Short-read technologies are, despite their
weaknesses, the primary data source because of the superior throughput/cost
ratio. It is today important to improve accuracy of predictions and in particular
to reduce the false-positive rate while retaining sensitivity. To that end, we have
worked on improving the statistical analysis of paired reads, using paired-end
(PE) or mate-pair (MP) libraries, for evaluating the significance of a detected
insertion or deletion.
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While aligned reads are important for identifying short variants and sub-
stitutions, larger variants and variants in repetitive regions where alignment is
difficult are easier detected by paired reads spanning over the region. In PE and
MP protocols, reads are from the ends of DNA fragments from the donor. PE
libraries have short-range fragment lengths (up to 100s bp), MP libraries are
long range (1000s bp), and they each have their own strengths and limitations.
PE libraries often has superior coverage and narrow fragment length distribu-
tion while long range MP libraries can span larger insertions and, at similar
read coverage, provide higher span coverage (the number of MP pairs separated
by a random position) than PE libraries, which in theory can make up for the
increased variation in individual fragment lengths by increasing statistical power
from more observations.

1.1 Previous work

Numerous structural variation algorithms using read pairs, and their fragment
length, to detect variants have been proposed. Many tools use only discordant
read pairs for downstream calling of variants, i.e., read pairs that align at a dis-
tance smaller than µ−kσ or larger than µ+kσ base pairs from each other, where
µ and σ are the mean and standard deviation of the fragment length distribu-
tion and k ∈ R [2,5,11,12,20]. This restriction may reduce the computational
demand, but it sacrifices sensitivity [17] by removing observations.

There are also tools with a statistical model/approach that utilizes all read
pairs. CLEVER [17] finds insertions and deletions based on statistically signif-
icant deviation of the mean fragment length of all reads5 over a position from
µ. This method finds more and smaller variants compared to methods that use
only discordant reads [17]. [9] models the number of discordant and concor-
dant read pairs (classified by a cutoff) over a region as following a binomial
distribution and finds inversions and deletions based on statistically significant
accumulation of discordant read pairs over regions. However, any binary classi-
fication cutoff causes loss of information [8], thus statistical power, as they do
not consider how much above or below the cutoff a fragment length is6. An-
other approach is non-parametric testing of the distribution over a region, e.g.,
using the Kolmogorov-Smirnov test [15], but as [17] noted, this is computation-
ally expensive. [10] presented a model to find the most likely common deletion
length from several donor genomes with different fragment length distributions
by maximizing the likelihood of observed fragment lengths given a deletion size
and each of the distributions.

These methods however assumes that the probability of a fragment length
being observed over a position/region follows the probability distribution of the

5 With some modifications to account for heterozygous variants. Only reads that have
enough overlap and similar fragment lengths are grouped together.

6 Under a normal distribution, 100 continuous observations are statistically equivalent
to 158 binary observations for the best possible “cut point”, which is the mean. The
loss of information becomes worse the further away the cut point is from the mean,
e.g., µ± kσ, as k increases. In practice k ∈ [3, 6] in variant detection tools.
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full library fragment length distribution, which is not true [22]. Longer fragment
lengths span more positions than shorter fragment lengths, so over any position
in the genome there will be a bias towards read-pairs further apart than µ. This
observation bias of fragment sizes has been investigated earlier in an assem-
bly context, estimating the gap size between contigs [22,21,18]. The approaches
given in [21,18] are more general by using the exact (empirical) distribution
over the fragment length, which also makes them computationally demanding.
GapEst [22] assumes a normal fragment length distribution and derives an ana-
lytic expression for the likelihood of a gap size that scales very well, which opens
up for other applications where this type of problem needs to be calculated for
a large number of instances, e.g., structural variation detection. There is no
previous work known to the authors on incorporating this model, or a similar
one, to structural variation and investigating how it affects the balance between
detecting deletions and insertions.

1.2 Contribution

We use the statistical model given in [22] and present it in the context of struc-
tural variation detection. The model provides a probability distribution for the
fragment sizes we observe over a position (e.g., a potential breakpoint) or region.
Given this distribution we derive a null-hypothesis distribution to detect vari-
ants. We show that the corrected null-hypothesis agrees with both simulated and
biological data, while a commonly used null-hypothesis does not. We implement
the null-hypothesis in the state-of-the-art fragment-length based variant caller
CLEVER [17]. Although CLEVER uses constraints and assumptions that do
not agree with our model, we show that the detection of insertions and deletions
becomes more balanced and that the number of false positive calls decreases.
This is a promising first result as we could only apply a part of our theory in
CLEVER without a significant restructuring of the code. We also believe that
this work is a step towards creating a statistical rigorous approach for read pair
fragment lengths where we can detect indels to a much higher resolution than
cutoff based ones.

2 Methods

We will review a model used to determine contig distances in scaffolding [22] and
use it in the context of structural variation detection. Notation and assumptions
are presented in section 2.1. In section 2.2 we present the probability distribution
in a structural variation detection context. Section 2.4 discuss a commonly used
null-hypothesis used for detecting variants with fragment length and derives an
improved null-hypothesis using our model. Some text is deferred to an Appendix.

2.1 Notation and assumption

We refer to our model as the Observed Fragment Length (OFL) model. This
model carries no new concepts and makes the same assumptions as the Lander-
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Fig. 1: (a) Constants and variables in the OFL model. The figure illustrates the scenario
of an insertion in the donor genome of length δ at position p. Two reads (marked by
arrows) of length r are at distance o from each other, with the left read partially aligned
leaving s positions unaligned (softclipped). (b) Illustration of a full fragment size
distribution f(x) from N(4000, 2000) (blue line), from which H0 is derived. The green
dashed line shows the observed fragment distribution over any variant free position for
fragments coming from f(x) for the simplified case when r, s, δ = 0 (i.e., this is exactly
the function xf(x)). Red lines indicate the µ± 2σ quantiles of f(x). It is less likely to
observe a smaller fragment size over any given position in the genome (see density of
green distribution at red lines), as opposed to identical significance under f(x).

Waterman model [14], but adds a variable and some constants. We only state it
here for convenience of referencing to a model when we derive probabilities and
a null-hypothesis. Read pairs are sampled independently and uniformly from the
donor genome. Let G denote the length of the reference genome. Alignment of
read pairs to the reference genome yields our observations: distance o between
reads in a read pair, read length r, and number of allowed “inner”7 softclipped
bases s [16] in an alignment, see Figure 1a. Read-pair distances x come from a
library fragment length distribution f(x) (either given or estimated from align-
ments). We denote the mean and standard deviation of this distribution as µ
and σ. Finally, a parameter δ models the number of missing or added base pairs
in the reference, compared to the donor sequence. That is, if the donor sequence
contains an insertion, δ is negative and we say that the donor sequence has δ
added bases. Similarly, if the donor sequence contains a deletion, δ is positive
and we say that the donor sequence has δ deleted bases. For a given read-pair
with fragment length x, let wG,p(x) denote the probability that it spans over
position p on a genome of size G. As we do not model that any two positions
have different probabilities to be spanned over (reads are drawn uniformly), w
will not depend on p and we omit it and refer to wG(x) from now on.

2.2 Probability function over observed fragment lengths

The distribution and probabilities derived in this section closely matches those
given in [22] with the minor addition of the constant s. We restate the expressions
in a structural variation context for clarity.

7 We call the side of the read that is closest to its mate “inner”.
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No variant First, we assume that donor and reference are identical, therefore
δ = 0 at any position. Given the OFL model, the probability that we observe a
read pair with fragment size x over a position p on a genome of length G is

P (x|δ = 0) =
wG(x)f(x)∑
x wG(x)f(x)

=
(x−2(r−s))

G f(x)∑
x

(x−2(r−s))
G f(x)

. (1)

Here f(x) is the probability to draw a fragment of length x from the full library
and wG(x) the probability that it spans over position p. The denominator is a
normalization constant to make P a probability. It is assumed that x ≥ 2(r−s).
For example, if the read length is 100 and maximum allowed softclipped bases
of an aligned read is 30 a read pair with fragment length 300 will have 300 −
2(100− 70) = 160 possible placements where it spans position p. For simplicity,
we omit the special case when p is near the end of a chromosome.

Modeling variant at a position Let δ be the unknown variant size. In this case
we cannot observe the true fragment length x of read pairs. What we observe is
instead o = x− δ (see Figure 1a). A modification of w(x) is needed as fragment
sizes is now required to span δ base pairs and have sufficiently many base pairs
on each side to be mapped (2(r − s)). We have

w(x, δ) =
1

G
max{x− δ − 2(r − s) + 1, 0}.

The 0 in the max function keeps the function weight to 0 in case we have no
possible placing of a paired read over a variant. We can simplify this function to
be expressed in o, as o = x− δ, and write w(o) = G−1 max{o− 2(r − s) + 1, 0}.

We see that the function w is constant for any given observation and can
therefore be interpreted as a “weight” function, hence the notation w.

2.3 Probability of variant size δ

We can express the probability of δ given observations as P (δ|o). Lacking prior
information about δ, we model it with the uniform distribution8. Using Bayes
theorem, we get

P (δ|o) =
P (o|δ)P (δ)

P (o)
∝ P (o|δ)P (δ) ∝ P (o|δ)

where P (o) and P (δ) are constant by the assumption of a uniform distribution.
We now have

P (o|δ) =
w(o|δ)f(δ + o|δ)∑

t w(t− δ)f(t)
(2)

8 A more informative prior could improve results, e.g., by fitting to the expected
frequency and length of variants, studied in [4,6]. By tailoring the prior we could
essentially obtain any specificity and sensitivity for a given indel size. We believe
that is promising future work.
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where the denominator is the sum of all possible fragment sizes that can be
observed given δ and f . We can now find the most likely δ using maximum
likelihood estimation (MLE) over (2). The time complexity for the MLE is O(n+
log t)9 if f ∼ N (with t continuous), where n is the number of observations [22].
Note that we implicitly get P (x|δ) since P (x|δ) = P (o+ δ|δ) = P (o|δ).

2.4 Null-hypothesis and statistical testing

Let Y
.
= O|δ = 0, that is, the random variable over observed fragment lengths

given δ = 0. Let ȳ
.
=

∑n
i=1 yi
n be the sample mean of observed fragment lengths.

Considering ȳ a random variable over experiments, it is commonly assumed that
ȳ ∼ N(µ, σ/

√
n), i.e., the distribution of the sample mean of f(x) under the cen-

tral limit theorem (CLT), and this distribution is used as null-hypothesis [5,17].
We call this null-hypothesis H0. Furthermore, the variant size δ is estimated
from observed fragment lengths o as δ̂ = µ − ō [5,17,9,12,20,10]. At first glance
this formula seems reasonable since we take the expected fragment size and sub-
tract the mean of the observations, but it has strong limitations. One is that δ̂
in this case has an upper bound of µ− 2(r− s) since o ≥ 2(r− s). This equation
implies that we can never span over a sequence longer than µ − 2(r − s). We
use Equation 2 to derive the correct mean and standard deviation of Y given
the OFL model, denoted µp and σp respectively. The derivation of µp is similar
to derivation of observed fragment size linking two contigs given in [22], and the
derivation of σp is a special case of the derivation of the variance of observed
fragment size linking two contigs given in [23]. See proof in Appendix 5.5.

Theorem 1. Given the OFL model, f ∼ N(µ, σ), and δ = 0, we have µp ≈

µ+ σ2

µ−(2(r−s)+1) and σp ≈ σ
√

1− σ2 (µ− (2(r − s) + 1))
−2

.

The null-hypothesis is that there is no variant, thus δ = 0. Under CLT, as n
increases, we therefore have ȳ ∼ N(µp, σp/

√
n). Notice that we can calculate

µp and σp without the assumption f ∼ N(µ, σ) by using an empirical estimate
of f(x) from aligned read pairs. Nevertheless, the closed expression formulas in
Therorem 1 illustrates a basic feature of the model — larger variance increases
the discrepancy between µ and µp. It is also robust to non-normality, as we will
see in section 3.2. In case we have enough observations to motivate the Z-test,
we perform a simple Z-test and obtain a p-value based on a two sided test (both
deletions and insertions are tested for) using the z-statistic

z =
ȳ − µp
σp/
√
n
. (3)

We refer to the null-hypothesis test using (3) as H ′0. Thus, we have derived
a different distribution under the null-hypothesis which we advocate should be
used instead ofH0 . In case we have few observations (more often over insertions),

9 n to obtain sample mean ō, and log t to search the convex ML curve.
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Table 1: Library information. Reads were aligned with BWA-MEM [16] version
0.7.12 with default parameters. Physical coverage is c, for all reads, and c (pp),
for restricted proper pairs, i.e., read pairs that have both mates mapped in
correct orientation and within a distance that depends on a statistical filtering
of outliers based on the library distribution. The filtering bounds were roughly
10000, 6000, and 14000 bp for rhodo, plasm, and hs13 respectively. µ and σ are
the mean and standard deviation of the full fragment length distribution. True
mean insert-size and standard deviation over a position on the genome, µp and
σp (calculated as the average over all positions in the genome) and predictions
with closed formula, µ̂cp and σ̂cp, and exact calculation, µ̂ep and σ̂ep.

Organism r c c (pp) µ σ µp σp µ̂e
p σ̂e

p µ̂c
p σ̂c

p

rhodo 101 43 34.5 2640 1390 3480 1534 3446 1526 3434 1143
plasm 75 4.9 4.2 2955 524 3056 511 3056 517 3053 515
hs13 80 11.1 9.0 2947 1454 3688 1780 3719 1806 3705 1241

approximation with the Z-test is poor. To get an exact test we would need to
derive the distribution of

∑n
i=1 Yi, for n observations yi i ∈ [1, n]. This could

improve power to detect insertions, but we refrain from studying this in the
present paper.

3 Results

We discuss why modeling bias contributes to making deletion calls more frequent
than insertions calls in section 3.1. In section 3.2 we show that our corrected
hypothesis agrees with biological data, and in section 3.3 that how indel detection
is affected in CLEVER when our null-hypothesis is inserted.

3.1 Bias between detection of deletions and insertions

As donor fragments need to span over insertions (δ > 0), and this probability
is w(x, δ) = 1

G max{x − δ − 2(r − s) + 1, 0} according to the OFL model, it is
less likely that such fragments will be observed, as δ grows. We will therefore
have a lower sample size over insertions in general. This naturally gives less
power to detect an insertion compared to a deletion of similar size. However,
methods using H0 have less power than necessary. Firstly, as µp > µ, this gives
too many significant upper quantile p-values (deletions) and too few significant
lower quantile p-values (insertions). The difference in significance of observing a
fragment of size µ+ 2σ compared to observing a fragment of size µ− 2σ under
H0, compared to the when observed under H ′0 is seen in Figure 1b. Secondly, the
positive skew of the OFL distribution (Figure 1b) makes a Z-test approximation
less powerful compared to an exact test, especially for small sample sizes — as
is more likely for insertions.
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Fig. 2: (a) The fragment length distribution f(x) for the hs13 dataset and the red line is
a best fit of a truncated normal distribution. f(x) deviates significantly from a normal
distribution. Although the mean of f(x) is 2947, the average observed fragment length
over position p (µp) over all positions on hs13 shows that most values occur between
3000-4500 bp with the average around 3688 bp (d) — as approximately predicted from
µ̂e
p and µ̂c

p. Figure (b) and (c) shows the p-value distribution and CDF values from
using H0 (i.e., using µ and σ). Figure (e) and (f) shows the p-value distribution and
CDF values from using H ′0 (i.e., using µ̂e

p and σ̂e
p).

3.2 Evaluating the accuracy of H ′
0

We evaluated the accuracy of our null-hypothesis on three mate pair libraries. We
used a mate pair library from Rhodobacter sphaeroides from [21] denoted rhodo,
a mate pair library from Plasmodium falciparum used in [13] denoted plasm, and
mate-pair data from a human individual in the CEPH 1463 family-trio10. For the
human dataset we aligned the reads to the complete human genome, but limited
analysis to chromosome 13. We call this dataset hs13. Table 1 shows information
about the datasets. Recall from section 2.4 that µp and σp are the true mean
and standard deviation of fragment lengths over a position that does not contain
a variant. Let µ̂cp and σ̂cp refer to the estimated quantity of µp and σp from the
closed formulas in Theorem 1. Similarly, let µ̂ep and σ̂ep be the estimates of µp
and σp by using an empirical distribution of f(x) (estimated from a sample) and
summing up the probabilities in equation (2) with δ = 0. Estimates and observed
values are shown in Table 1. It is our assumption that an overwhelming majority

10 http://www.ebi.ac.uk/ena/data/view/ERR262996
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Table 2: Insertions and deletions called with CLEVER using H0 and H ′0. Column δ
contains the size of 50 insertions and deletions, simulated on the reference genomes by
either deleting or inserting a δ bp sequence on the reference. A “0” indicates that the
original biological dataset was used.

H0 H ′0
Dataset δ TP (del/ins) FP (del/ins) TP (del/ins) FP (del/ins)

plasm 0 0 (0/0) 20 (6/14) 0 (0/0) 27 (6/21)
2000 89 (50/39) 22 (8/22) 89 (50/39) 38 (8/30)

rhodo 0 0 (0/0) 78 (78/0) 0 (0/0) 18 (14/4)
2000 49 (49/0) 54 (54/0) 57 (45/12) 13 (9/4)

sim-N(500,75) 75 94 (94/0) 0 (0/0) 78 (62/16) 0 (0/0)
100 110 (100/10) 0 (0/0) 188 (100/88) 0 (0/0)

ETP (hits) TC (del/ins) ETP (hits) TC (del/ins)

hs13 0 9 (31) 1740 (1740/0) 3 (4) 8 (8/0)

of positions are variant free11. Thus, we expect a model that fits data should give
a uniformly distributed p-value distribution. Our observations are summarized
below.
Predicting µp: µp is estimated very well by both µ̂ep and µ̂cp; compare Figures 2d
for hs13, and Figure 3b and 3d in Appendix for rhodo and plasm respectively
with the estimated values in Table 1. Hence, testing ō = µ̂ep (or µ̂cp) as in H ′0
introduce symmetrical cumulative distribution function (CDF) values, Figure 2f,
compared to CDF based on testing ō = µ̂ where all values are distributed around
1.0 — suggesting significant deletions, see Figure 2c.
Predicting σp: The closed formula predictions of σp works best if f(x) is normal
(plasm). For rhodo and hs13, σ̂ep and σ̂cp differs significantly and σ̂ep should be
used, compare σp with σ̂ep and σ̂cp in Table 1.
p-values: The p-value distribution (ideally uniform) greatly improves with H ′0
(Figure 2e) compared to p-values obtained with H0 (Figure 2b). Abnormalities
in the p-values are most likely explained by: alignment artifacts (some regions
are more difficult aligning to), fragment length bias [1,19], coverage bias from
GC-content, and in some cases, real variants, see evaluation of hs13 dataset in
section 5.7 of the Appendix. Similar p-value distributions are obtained on rhodo
and plasm genome (data not shown) — that should not contain any variants —
indicating that most of the enrichment of low p-values on hs13 is explained by
any of the former three causes.

3.3 Implementing the corrected null-hypothesis in CLEVER

In this section we illustrate as a proof-of-concept how the corrected hypothesis
H ′0 (with µ̂ep and σ̂ep) balances the ratio between detected insertions and dele-
tions. We applied H ′0 in CLEVER (v 1.1). However, we want to emphasize that

11 Even small variants δ � σ will not affect the model much.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 14, 2016. ; https://doi.org/10.1101/036707doi: bioRxiv preprint 

https://doi.org/10.1101/036707
http://creativecommons.org/licenses/by/4.0/


we did not tailor the statistical tests as needed to fit the assumptions made by
their particular method. This limits the performance improvement. To further
improve results with CLEVER, we would need to (1) implement exact tests for
few observations — giving more power to detect insertions, (2) use the OFL-
model for CLEVER’s discovery of positions to study, (3) based on our model
adjust CLEVER’s methods to handle, e.g., heterozygous variants and controlling
the false discovery rate. This would require additional modeling and significant
restructuring of the code and we do not consider it here. Our aim here is only to
illustrate how the simple adjustment of inserting H ′0 instead of H0 in CLEVER
has a significant impact on the output. We investigated how the replacement
of H ′0 instead of H0 changed variant calls from CLEVER on hs13, rhodo and
plasm as well with ideal condition simulated data denoted sim-N(·, ·) (full sim-
ulated results in Appendix section 5.6). For simulated variants, similarly to [17],
a prediction is classified as a true positive (TP) if the breakpoint prediction is
not further than one mean insert size (i.e., at most µ− 2r) away from the true
breakpoint. Otherwise it is classified as a false positive (FP). All variant calls on
rhodo and plasm that are not from simulated variants are assumed to be false
positives.

Because hs13 likely harbors true variants, we used annotated variants from
dbVar [7], together with manual inspection in BamView [3], to assess if hits are
true or false positives. For a deletion call in CLEVER with start and end coor-
dinates ps, pe and a deletion in dbVar with coordinates qs, qe, we let max del =
max(pe − ps, qe − qs) and overlap = min{0,min(pe, qe) − max(ps, qs)}. We let
hit value = overlap/max del and a call is a hit if hit value > T , where 0 < T <
1 is a threshold. Because dbVar contains a large amount of annotated variants
from several individuals and CLEVER produces many calls under H0, roughly
173, 106 and 40 hits are expected by chance with T = 0.25, 0.5, 0.75 (estimation
in section 5.3), which is similar numbers to the observed hits from CLEVER:
226, 109 and 31 respectively under T = 0.25, 0.5, 0.75. We therefore further man-
ually evaluated the hits produced with T = 0.75 by looking for coverage drop
and accumulation of softclips near each breakpoint. This gave us Estimated True
Positives (ETP) as a rough measure of the TP rate for hs13. Therefore, we re-
port ETP and Total Calls (TC) for hs13 in Table 2, contrary to simple TP and
FP for the other data sets where we have the ground truth.

Improvements: From Table 2 and Figure 5 (Appendix) we see that CLEVER
with H0 detects significantly more deletions than insertions of the same sizes.
Using H ′0, reduces this bias to some extent by increasing the detection of inser-
tions across all data sets. CLEVER also returns significantly fewer false positive
deletion calls with H ′0, see rhodo Table 2 and sim-N(300, ·). Even though H0

have more sensitivity in calling deletions on hs13, the signal disappears in the
overwhelming amount of total calls, compare ETP and TC for H0 and H ′0 in
Table 2.

Deterioration: A consequence of using H ′0 is fewer deletion calls, which
unfortunately also removes some true positive deletion calls (see Figure 5 and
Table 2). It also increases the FP insertion calls on plasm, see Table 2. We believe
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that calling variants with the plasm library carries additional difficulties due to
its GC-poor genome sequence, such as positional fragment length bias [1,19].

Additional evidence that most calls with H0 on hs13 are FPs are found
by comparing statistics on CLEVER’s deletion calls (Figure 6) and numbers
reported in recent extensive studies [4,6]. For example, [4] provide frequency dis-
tributions for both previously discovered and new deletions on single genomes.
Roughly 250 deletions have lengths over 1000 bp (inspection of plot). The simpli-
fying assumption that large-indel distribution is uniform over chromosomes gives
around 8 expected deletions12 in size range 1000 bp. This approximate number,
and the fact that almost all calls were removed when using H ′0 corroborates,
that the vast majority (in the order of > 99%) of calls with H0 are FPs — likely
a consequence of using H0 : µp = 2410 compared to the true value µp = 3719.

4 Conclusions

We stated a probability distribution of observed fragment length over a position
or region and derived a new null-hypothesis for detecting variants with fragment
length, which is sound and agrees with biological data. Applied in CLEVER, our
null-hypothesis detects more insertions and reduces false positive deletion calls.
Results could be further improved by deriving an exact distribution instead
of a Z-test and updating CLEVER’s edge-creating conditions to agree with
our model. The presented model, distribution, and null-hypothesis are general
and could be used together with other information sources such as split reads,
softclipped alignments, and read-depth information.
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5 Appendix

5.1 Program versions and parameters

For CLEVER we used version v2.0-rc1 with parameters sorted, use xa, -f, -w
work dir. For BWA we used BWA-mem version 0.7.12 with default parameters.

5.2 Rhodo and plasm libraries
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Fig. 3: (a) rhodo library fragment size distribution. (b) Histogram over observed mean
fragment length µp for all positions in the rhodo genome. (c) plasm library fragment
size distribution. (d) Histogram over observed mean fragment length µp for all positions
in the plasm genome.

5.3 Expected number of dbVar hits

Because there are many calls and annotated variants, we here provide a rough
estimation of the number of expected hits at random. Let k be the number of
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variants in dbVar and m be the number of variant calls. For any pair of lengths
of a deletion call and an annotated variant in dbVar under inspection, let Cmin
and Cmax be the smallest and largest length in the pair, respectively. Let CT be
the total number of positions that two variants can be placed on, such that they
will overlap with at least TCmax base pairs (an overlap of T · Cmax base pairs
is required to be counted as a hit for threshold T , see section 3.3). Under the
assumption that variant calls and annotated variants are randomly placed on the
genome, we have that CT = max{0, (Cmin+Cmax−1)−2TCmax}. We now have
that for k non-overlapping annotated variants of the same size and one variant
call, the probability that a call will hit at least one annotated variant under
threshold T is a simple summation of possible placements divided by genome
size, i.e., pT = kCT

G . Furthermore, the expected number of hits (assuming calls
are randomly generated from the genome) is obtained as ET [hits] = mpT . The
limitation with this simplified formula is that it assumes fixed sizes of both calls
and annotated variants when, in fact, they are random variables. We also assume
that the variants are not overlapping.

Under these assumptions, we can now estimate the expected number of false
hits based on numbers matching our data. For instance, we let a call be of size
2500 bp (most frequent size, see Figure 6), and we let the annotated variants all
be 2000 bp (rough median estimation by inspecting variant lengths v with 250 <
v < 8000, Figure 4). We chose 250 < v < 8000 because most variants outside
this interval will get a low hit value, as most calls are in this range Figure 6b. A
rough estimation of the number of “non-redundant” (many annotated variants
have identical start and end coordinates and some of them approximately the
same start and stop) is 3000. We get this number by counting the number of
variants that has overlap/size diff ≤ b where overlap = min{0,min(pe, qe) −
max(ps, qs)} (from section 3.3) and size diff = |(pe − ps)− (qe − qs)|. Thus, a
low value suggests either a unique location or size compared any other variant,
we get the k = 2747, 3217 and, 3504 for b = 1, 2, 3 respectively. Notice that these
remaining variants are only used to get a rough estimation for k in this section.
All variants are used to find hits as described in section 3.3. We get E0.25[hits] =

1740 ∗ 3000·((2000+2500−1)−2·0.25·2500)
98M = 173, and similarly E0.5[hits] = 106, and

E0.75[hits] = 40. These are very rough estimations of the number of hits we
could expect at random given k annotated variants and m variant calls which
could be compared to the observed CLEVER hits 226, 109 and 31. Even though
our calculation builds on many simplifications, the derived expected number of
hits at random and the observed hits shows similar trends — suggesting that
the majority of hits are expected at random.

5.4 Reference implementation of the p-value evaluation

The implementation of this analysis is available from https://github.com/

ksahlin/GetDistr/tree/develop/getdistr/assemblymodule. We want to em-
phasize that this is not intended to be a software for variant calling — but merely
serves as a reference implementation.
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Fig. 4: Cumulative length distribution of annotated variants in dbVar (>50 bp). Out
of variants 250 < v < 8000, 2000 seems to be the median length. The reason for looking
at variants 250 < v < 8000 is that smaller or larger variants than this size will have
very low hit value as most calls are far from these cutoffs, Figure 6.

To obtain the subset of reads over every position on which we calculate a
p-value from we only need to read through a sorted bam-file twice (sampling
from f(x) and calculating the metrics over each base pair). We use a window of
positions on which read pairs it keeps in memory. Thus, the implementation for
such an analysis has low time complexity and is scalable to a full human genome.
The hs13 data takes around 1h and a maximum of 4Gb to process using one core
(python code). This implementation can also be further extensively optimized.

5.5 Derivation of Result 1 and 2

From [22] we have x̄ > µ+ σ2

µ+1 , since µ+ σ2

µ+1 is the expected fragment length
over any base pair. The greater sign comes from the lack of the constraint that at
least r−s bases should be aligned on each side of p. Such constraint is needed in
practice. For example, CLEVER uses s = 2 in its implementation which means
that at least r−2 base pairs from both reads must be located on respective sides
of the variation. BreakDancer has no such criterion, but the criterion is then
imposed on the read aligner being able to map at least r− s bases on respective
sides. This gives the condition x ≥ 2(r − s).

Let µp denote the mean of the distribution of reads spanning p. An exact
value of µp can be obtained for arbitrary distributions f by calculating the
expected fragment length in equation 2 with δ = 0, a = G and x ≥ 2(r− s). We
can however give an accurate approximation of µp by letting q = 2(r − s) + 1
and substituting the 1’s to q’s in [22] (section 2.4, derivation of equation 2). We
get Result 1 from this calculation. The derivation is identical, we therefore omit
it here and only discuss why it’s an accurate approximation.

The approximation is motivated as follows. The derivation in [22] (section
2.4) is assuming infinite support. Therefore, the above approximation is only
accurate if the upper and lower boundaries are not located near high density
regions of f (e.g.. near the mode if f ∼ N). It is easy to motivate that G (the
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upper boundary) satisfies this. The lower boundary q is in practice also small
enough to make the area between −∞ and q be negligible. The general conclusion
that x̄ > µ is already stated in [22]. Here, we also observe that x̄ increases as
the constraint x ≥ 2(r − s) increases.

Similar to above, let σp be the standard deviation of the distribution of reads
spanning a position p. Using the relation xf(x) = µf(x)− σ2f ′(x), we have

V arp(X) =

= Ep[X
2]− Ep[X]2 =

∫
x2

(x− q)f(x)

µ− q
dx− (µ+

σ2

µ− q
)2 =

=

∫
x3f(x)

µ− q
dx− q

∫
x2f(x)

µ− q
dx− (µ+

σ2

µ− q
)2 =

=
µE[X2] + 2σ2E[X]

µ− q
− qE[X2]

µ− q
− (µ+

σ2

µ− q
)2 =

= σ2 − σ4

(µ− q)2

From this derivation. We immediately get the result in Theorem 1. The ap-
proximation of σp is following from the same assumptions as in the derivation
of µp above and is a special case of the result in [23]. For hypotheses testing
of variants with the assumptions above, µp should be used in H0 and σp in the
significance test.

5.6 CLEVER calls simulated data

We simulated 100 insertions and deletions respectively with sizes 10, 20, 30,
40, 50, 75, 100. We also simulated three different paired end libraries with µ =
300, 400, 500 and σ ∈ 25, 50, 75 of 100bp error-free reads. All variations were on
a distance of µ + 6σ from each other and enough reads were generated so that
CLEVER estimated µ and σ within 0.5 base pairs accuracy in all experiments
— ideal conditions. Results are shown in Figure 5. We note that most of the
variant sizes investigated here are too small to be detected with fragment length
in cutoff based approaches without accepting a large amount of false positives.
For example, the default cutoffs of considered fragment lengths in BreakDancer
and Ulysses need to differ from µ with 3σ and 6σ respectively.
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Fig. 5: True and false positives for CLEVER when detecting insertions (dashed lines)
and deletions (solid lines) of different sizes (x-axis) on a simulated genome with 100x
(uniform) coverage from a normally distributed read pair library N(µ, σ). The insert
size distribution was accurately inferred by CLEVER in all simulations. The colors
indicate three different library widths, σ ∈ {25, 50, 75}. Shaded area displays difference
between number of insertions and deletions detected, and in a well-balanced test this
area should be small. The experiment is performed for H0 (a,c,e) and H ′0 (b,d,f).
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5.7 CLEVER deletion length calls on hs13
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Fig. 6: Length histogram of deletion calls on hs13. (a) Full histogram, and (b) a zoom-in
of the region [−8000, 0].
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