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Abstract	
	
Software	for	rapid,	accurate,	and	comprehensive	microbial	profiling	of	metagenomic	sequence	data	on	a	
desktop	will	play	an	important	role	in	large	scale	clinical	use	of	metagenomic	data.	Here	we	describe	
LMAT-ML	(Livermore	Metagenomics	Analysis	Toolkit-Marker	Library)	which	can	be	run	with	24	GB	of	
DRAM	memory,	an	amount	available	on	many	clusters,	or	with	16	GB	DRAM	plus	a	24	GB	low	cost	
commodity	flash	drive	(NVRAM),	a	cost	effective	alternative	for	desktop	or	laptop	users.	We	compared	
results	from	LMAT	with	five	other	rapid,	low-memory	tools	for	metagenome	analysis	for	131	Human	
Microbiome	Project	samples,	and	assessed	discordant	calls	with	BLAST.	All	the	tools	except	LMAT-ML	
reported	overly	specific	or	incorrect	species	and	strain	resolution	of	reads	that	were	in	fact	much	more	
widely	conserved	across	species,	genera,	and	even	families.	Several	of	the	tools	misclassified	reads	from	
synthetic	or	vector	sequence	as	microbial	or	human	reads	as	viral.	We	attribute	the	high	numbers	of	
false	positive	and	false	negative	calls	to	a	limited	reference	database	with	inadequate	representation	of	
known	diversity.	Our	comparisons	with	real	world	samples	show	that	LMAT-ML	is	the	only	tool	tested	
that	classifies	the	majority	of	reads,	and	does	so	with	high	accuracy.		
	
Introduction	
	
Recent	studies	show	that	the	microbiome	plays	an	important	role	in	the	health	of	humans,	animals,	and	
natural	and	agricultural	systems.	[1-4]	Metagenomic	sequencing	of	human	microbiomes	has	already	
contributed	to	diagnosing	and	treating	sick	patients	[5],	and	is	poised	to	play	a	much	larger	role,	
provided	that	the	technique	can	deliver	accurate	and	timely	analysis	of	multi-gigabases	of	unassembled	
reads.	Metagenomic	analysis	typically	demands	substantial	computing	resources,	either	in	terms	of	CPU	
or	memory,	or	both,	and	run	times	can	exceed	the	time	for	sequencing.	[6]	As	institutions	invest	in	
sequencing	infrastructure,	they	may	not	have	a	parallel	capability	to	invest	and	maintain	large	compute	
clusters,	and	issues	of	patient	privacy	or	data	transfer	bottlenecks	may	discourage	cloud	or	centralized	
analysis.	For	large	datasets,	running	BLAST	analysis	on	Amazon’s	EC2	cloud	was	several	times	more	
expensive	than	the	sequencing	itself,	and	costs	of	sequencing	are	declining	faster	than	those	of	
computing.	[7]	Rapid,	sensitive,	and	accurate	methods	of	taxonomic	classification	of	the	sample	
contents	that	can	run	on	relative	low	price	desktop	machines	promise	a	solution.		
	
To	achieve	the	goal	of	fast,	accurate	metagenomic	analysis,	various	metagenome	analysis	software	
packages	reduce	the	original	sequence	database	to	a	smaller,	more	easily	searchable	marker-library	
containing	a	taxonomically	informative	subset.	Metaphlan2	[8]	matches	reads	to	a	small	set	of	marker	
genes,	single-copy	genes	present	in	many	bacteria,	or	clade-specific	genes	to	do	taxonomic	classification	
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and	abundance	estimation	without	attempting	to	classify	all	reads.	Kraken	[9]	matches	the	k-mers	
(k=31)	in	a	read	to	those	in	a	reference	database.	It	pre-computes	the	lowest	common	ancestor	(LCA)	of	
reference	sequences	containing	each	k-mer,	and	applies	a	tree	traversal	algorithm	to	taxonomically	
label	a	read	from	its	k-mers.		The	full	Kraken	database,	however,	does	not	fit	in	memory	on	common	
desktop	computing	systems.		The	MiniKraken	database	was	created	as	a	less	memory	resource	intensive	
alternative	for	running	on	desktop	systems.	Clinical	Pathoscope	[10]	aims	to	identify	pathogens	in	
clinical	samples	by	alignment	to	NCBI	bacterial	and	viral	reference	genomes	and	Bayesian	statistical	
confidence	estimation.	GOTTCHA	[11]	maps	reads	to	a	pre-computed	database	of	unique	subsequences	
at	multiple	taxonomic	ranks	(family,	genus,	species,	strain,	etc.).	SIANN	[12]	also	maps	reads	to	a	pre-
calculated	database	of	species-	and	strain-specific	regions	of	pathogens	and	their	near	neighbors.	Unlike	
the	other	methods	mentioned	here,	SIANN	was	designed	for	a	specific	task	of	rapidly	assessing	whether	
any	members	of	a	defined	set	of	pathogens	is	present	in	a	metagenomics	sample.	It	is	not	a	general-
purpose	metagenomics	tool.	SURPI	presents	another	recent	pathogen	detection	system,	which	uses	an	
approach	similar	to	Clinical	Pathoscope	by	mapping	reads	to	reference	genomes	for	organism	
identification,	but	it	requires	more	memory	(60	GB)	than	is	available	on	a	typical	desktop.	[5]	
	
LMAT	uses	a	reference	genome	database	that	contains	both	draft	and	finished	genomes	from	bacteria,	
archaea,	viruses,	and	some	eukaryotes	including	pathogenic	protozoa.	This	set	of	reference	genomes	is	
more	than	11-fold	larger	than	any	other	metagenome	analysis	reference	sequence	database.[13,	14]		
LMAT	indexes	every	k-mer	(k=20)	in	a	reference	genome	database	with	all	of	the	sequences	containing	
that	k-mer.	It	implements	a	“pruning”	strategy	to	retain	only	higher	level	taxonomic	labels	for	k-mers	
shared	by	more	than	some	pre-specified	number	of	sequences	down	a	taxonomic	branch.	It	still	retains	
multiple	taxonomic	nodes	and	genomes	per	k-mer,	and	thus	more	complete	information	about	which	
sequences	contain	a	k-mer	than	is	possible	with	an	LCA	approach,	which	stores	only	a	single	taxonomic	
node	per	k-mer.	This	allows	higher	resolution	(e.g.	species	and	strain)	calls	when	the	data	warrants.	The	
full	database	(LMAT	Grand)	requires	500	GB	of	DRAM	or	flash	memory	so	is	not	feasible	for	“desktop”	or	
typical	cluster	users.		LMAT-Grand’s	extensive	representation	of	genomic	variation	leads	to	labeling	a	
large	fraction	of	reads,	which	is	useful	for	some	applications	(such	as	read	binning	for	assembly)	but	is	
more	computationally	costly	than	may	be	needed	for	organism	identification.		The	LMAT	Marker	Library	
(ML)	reduces	the	RAM	requirements	by	preselecting	only	the	most	taxonomically	informative	and	non-
overlapping	(i.e.	non-redundant)	20-mers	for	indexing,	and	by	imposing	more	stringent	pruning.	Thus,	
memory	requirements	of	LMAT-ML	are	reduced	not	by	limiting	the	taxonomic	coverage	and	strain	
resolution	of	the	reference	database,	but	by	pre-selecting	the	subset	of	k-mers	with	the	highest	
taxonomic	information	content.	Moreover,	the	marker	library	approach	has	the	potential	to	run	at	least	
an	order	of	magnitude	faster	by	correctly	“ignoring”	the	less	taxonomically	informative	portions	of	the	
query	set.	Part	of	the	work	we	present	here	evaluated	several	LMAT-ML	pruning	levels	to	determine	the	
optimal	balance	between	memory,	speed,	and	consistency	of	results	compared	to	LMAT	Grand.	We	also	
compared	an	LMAT-ML	that	contained	only	microbial	k-mers	to	LMAT-ML+H	that	also	contained	all	the	
human	k-mers	in	LMAT	Grand.	
	
Each	of	the	above	methods	makes	different	tradeoffs	in	terms	of	memory,	speed,	sensitivity,	and	
accuracy.	We	chose	to	compare	these	marker	library	methods	using	data	from	actual	microbiome	data	
for	several	reasons.	Previous	studies	with	simulated	datasets	ensure	that	the	simulated	reads	come	
from	organisms	or	close	relatives	present	in	the	reference	database,	which	cannot	be	assumed	in	real	
samples.	Constructing	realistic,	robust	simulated	metagenomic	benchmarking	datasets	remains	a	
fundamental	challenge	and	will	benefit	from	emerging	community	efforts	to	construct	resources	
available	for	third	party	validation.		While	these	resources	develop,	our	goal	was	to	compare	tools,	
which	could	be	run	with	16	GB	of	RAM	or	less	on	an	important	target	subset	of	metagenomics	–	human	
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metagenomics	using	131	Human	Microbiome	Project	(HMP;	http://hmpdacc.org/HMASM/)	samples	
randomly	selected	to	span	body	sites	and	genders,	and	check	discordant	results	between	methods	with	
BLAST.	These	samples	may	contain	many	species	not	included	in	NCBI	RefSeq	
(http://www.ncbi.nlm.nih.gov/refseq/),	or	represented	only	as	draft	genomes,	as	well	as	some	that	have	
not	yet	been	sequenced.	Although	we	do	not	know	ground	truth,	we	looked	at	cases	of	disagreement	
between	the	LMAT-Grand	method	that	queries	the	most	comprehensive	reference	database	and	each	of	
the	marker	library	based	methods.	We	examined	the	reads	responsible	for	discordant	species	calls	using	
BLAST	[15]	searches	to	assess	if	they	were	most	likely	false	negatives	for	one	method	or	false	positives	
for	the	other.	We	report	on	the	speed	and	accuracy	of	these	metagenome	analysis	tools	for	HMP	
samples.		Our	evaluation	considers	a	hardware	configuration	of	16	GB	DRAM	and	a	low	cost	commodity	
NVRAM	in	the	form	of	a	solid-state	drive	(SSD),	which	should	be	accessible	for	use	with	existing	desktop	
computers.	The	LMAT	ML	databases	range	from	approximately	13	GB	to	19	GB	in	required	storage;	thus,	
this	range	covers	both	fitting	in	and	exceeding	the	available	DRAM.		This	range	allows	us	to	measure	
impact	of	database	size	on	LMAT	classification	performance.	
	
Materials	and	Methods	
	
Building	LMAT-ML	
	
The	LMAT	reference	genome	database	includes	1)	eukaryotic	sequence	of	fungi,	protozoa,	and	some	
multicellular	organisms	(from	organelles	labeled	as	whole	genome,	e.g.	mitochondria	and	chloroplasts);	
2)	draft	genomes	and	assembled	contigs	from	unfinished	Whole	Genome	Shotgun	(WGS)	genome	
sequencing	projects	(ftp://ftp.ncbi.nih.gov/genbank/wgs/);	and	3)	draft	and	finished	bacteria,	virus,	
archaea,	fungi,	and	protozoa	genomes	from	a	number	of	sequencing	centers	worldwide	with	publicly	
available	sequence	data	in	addition	to	those	from	NCBI1.		An	extensive	collection	of	artificial	vector	
sequence	[17]	is	also	included	to	filter	out	contaminating	sequence	in	draft	assemblies.	The	fungi	and	
protozoa	sequence	data	came	from	the	Fungi	and	Protist	Group	BioProjects	reported	in	the	NCBI	
eukaryotes	genome	report	(ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/eukaryotes.txt),	
and	BioProject	sequences	were	extracted	by	the	assembly	accession.		
	
To	select	the	k-mers	for	inclusion	in	LMAT-ML,	we	used	the	procedure	described	in	[14],	using	k=20	
instead	of	18,	and	adding	an	extra	step	to	remove	overlapping	k-mers	relative	to	a	reference	sequence		
(randomly	selected	from	those	containing	a	series	of	adjacent	k-mers).		Briefly,	the	objective	was	to	
identify	a	collection	of	k-mers	that	are	uniquely	associated	with	phylogenetically	distinct	sets	of	genomic	
sequence.		Groups	of	genomes	are	defined	by	their	shared	k-mers	with	a	minimum	of	200	k-mers	shared	
within	a	group	for	viral	genomes	and	1000	k-mers	shared	within	a	non-viral	group.		The	minimum	
thresholds	were	set	to	maintain	groups	of	genomes	that	retain	some	degree	of	phylogenetic	
relatedness.		Any	k-mer	found	in	more	than	one	group	was	eliminated	to	yield	a	set	of	k-mers	that	are	
uniquely	associated	with	different	levels	of	the	taxonomy	hierarchy.	Additionally,	k-mers	matching	
RepBase18.06	[16]	were	eliminated.		Since	the	resulting	k-mer	set	still	yielded	a	database	with	a	larger	
memory	footprint	than	would	be	practical	for	a	desktop	or	laptop,	k-mers	were	mapped	to	a	randomly	
selected	representative	sequence	from	the	genome	group	to	remove	multiple	adjacent	overlapping	k-

																																																													
1	Sanger	Center,	J.	Craig	Venter	Institute,	Baylor	College	of	Medicine,	Washington	University	in	
St.	Louis,	Beijing	Genome	Institute,	Integrated	Microbial	Genomes,	European	Molecular	Biology	
Laboratory,	etc.	
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mers.	Next,	synthetic	k-mers	from	LMAT-Grand	were	added	to	detect	synthetic/vector	sequences.	
Finally,	a	“+H”	version	of	the	LMAT-ML’s	was	created	to	use	the	human	k-mers	from	LMAT-Grand	to	
accurately	classify	human	host	sequences,	while	maintaining	small	memory	requirements.		
	
We	evaluated	two	taxonomy	pruning	strategies	to	improve	speed	and	reduce	the	memory	
requirements,	as	described	in	detail	in	[13].		Evaluating	these	pruning	strategies	is	necessary	to	assess	
the	possible	cost	in	lost	accuracy	while	improving	speed.		Such	an	evaluation	is	an	important	step	in	
understanding	the	potential	for	LMAT-ML	since	the	pruning	strategy	is	a	unique	property	of	LMAT’s	
approach	to	classification,	in	contrast	to	other	tools.		As	a	baseline,	when	no	pruning	is	used,	indicated	
as	“	–All”,	every	taxonomy	identifier	of	lowest	available	rank	(e.g.	species	or	strain)	for	a	given	k-mer	is	
retained	in	the	searchable	database.	The	–Min	pruning	option	(LMAT-ML-Min	and	LMAT-ML+H-Min)	
stores	only	the	lowest	common	ancestor	(LCA)	for	each	k-mer,	similar	to	the	approach	employed	by	
Kraken.			
	
The	alternative	pruning	option	tested	stores	a	maximum	of	10	taxonomy	identifiers	per	k-mer	(LMAT-
ML	and	LMAT-ML+H).		LMAT	databases	with	the	“+H”	label	include	all	human	k-mers	in	addition	to	the	
microbial	k-mers.		In	this	option	each	k-mer	is	linked	to	a	set	of	taxonomic	identifiers	that	contain	the	
lowest	common	ancestor	for	all	sequences	containing	the	k-mer	and	up	to	9	descendent	identifiers,	
which	must	retain	a	common	rank.		For	example,	if	the	LCA	is	of	rank	genus,	and	the	k-mer	is	found	in	
nine	or	fewer	distinct	species,	then	all	distinct	species	identifiers	would	be	retained.		If	the	k-mer	is	
found	in	more	than	nine	species	(but	only	one	genus)	then	only	the	genus	identifier	would	be	retained.		
	
The	LMAT	database	uses	a	two-level	index	data	structure	described	in	detail	in	[19]	to	improve	the	
efficiency	of	k-mer	search.		A	k-mer	is	represented	by	two	non-overlapping	bit	vectors,	with	a	20-mer	
represented	by	40	bits	and	the	first	N	bits	stored	in	the	first	level	of	the	index	and	the	second	20-N	
lower	order	bits	stored	in	the	second	level.	The	choice	of	N	was	optimized	for	use	with	the	ML.		A	split	of	
N=25	bits	was	selected,	which	reduced	the	size	of	the	ML	database	by	1.5	GB,	compared	with	previous	
settings	developed	for	use	with	the	full	database.		A	new	extension	to	the	LMAT	software	was	added	(v	
1.2.5),	enabling	the	two-level	split	to	be	specified	for	the	target	database.		This	feature	allows	each	
database	to	be	uniquely	tuned	for	efficient	use	of	space	adjusting	for	the	size	of	the	database.			The	split	
parameter	was	adjusted	from	the	previous	setting	used	for	the	larger	database	(LMAT-Grand)	to	deploy	
the	smaller	marker	databases	on	a	low	cost	SSD	device.			
	
Marker	library	comparisons	
	
We	used	a	set	of	131	HMP	samples	randomly	chosen	to	span	all	body	sites	for	both	genders	(Additional	
file	1:	131HMP_Samples.xlsx),	with	preprocessing	to	trim	non-biological	portions	of	reads	(adaptors),	
trim	or	replace	low	quality	bases	(Q<10)	with	N,	and	combined	paired	end	sequences	as	described	in	
[14].	We	compared	results	from	Clinical	Pathoscope	v1.0.3,	Metaphlan2	(db_v20),	GOTTCHA	
(downloaded	Sept.	2,	2014),	MiniKraken	(kraken-0.10.4-beta),	SIANN	(v1.12),	the	LMAT-ML+H,	and	the	
LMAT	Grand	database.	Each	method	was	run	with	default	parameters.	Clinical	Pathoscope	target	
databases	were	bacteria	and	virus,	and	host	filtration	database	was	human.	GOTTCHA	was	run	against	
the	GOTTCHA_BACTERIA_c3514_k24_u24_xHUMAN3x.species	and	
GOTTCHA_VIRUSES_c3498_k85_u24_xHUMAN3x.species	databases,	microbial	databases	in	which	24-
mers	matching	the	human	reference	genome	had	been	removed,	and	results	were	combined	for	
bacteria	and	viruses.	Results	from	all	LMAT-MLs	with	no	or	moderate	pruning	were	nearly	identical	in	
terms	of	consistency	with	the	LMAT-Grand	database,	while	results	were	slightly	worse	for	LMAT-ML-Min	
without	human	k-mers	(Figure	S1),	so	for	all	the	marker	method	comparisons	we	used	LMAT-ML+H.	We	
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uniformly	applied	the	default	cutoff	values	of	0.5	for	LMAT-Grand	and	0.2	for	LMAT-ML+H.	We	required	
a	minimum	of	100	reads	per	species	to	call	that	species	as	present	for	each	of	the	methods,	and	
observed	that	results	were	similar	across	thresholds	of	50-2000	reads	(results	not	shown).	Reads	for	
methods	that	reported	calls	as	percentages	of	mapped	or	total	reads	were	converted	to	absolute	
numbers	of	reads.	For	Metaphlan2,	since	the	relative	abundance	was	not	straightforward	to	convert	to	
read	counts,	we	used	the	percent	abundance	multiplied	by	the	total	number	of	reads	mapped	as	a	
proxy.	We	identified	the	NCBI	species-level	taxonomy	id	and	NCBI	species	name	for	all	species	and	strain	
calls	by	each	method,	a	nontrivial	process	since	some	methods	report	non-standard	species	names	and	
no	taxonomy	identifiers,	and	use	deprecated	GI	numbers,	which	are	not	in	the	current	NCBI	databases.		
	
For	each	method,	the	10	most	commonly	called	species	detected	by	that	method	and	not	by	LMAT-	
Grand	were	identified,	and	the	reads	identified	by	that	method	as	belonging	to	that	species	were	
extracted	based	on	parsing	the	bowtie2	or	SAM	output,	identifying	the	taxonomy	by	GI	number,	NCBI	
gene	ID	(Metaphlan2),	or	as	a	last	resort	by	organism	name,	using	NCBI	tables2.	We	acknowledge	that	
we	may	have	missed	extracting	some	reads	which	a	given	method	used	for	classification,	since	these	
methods	do	not	describe	standardized	procedures	for	read	extraction	and	call	validation.	For	
Metaphlan2	in	particular,	we	were	unable	to	extract	as	many	reads	as	we	expected	based	on	reported	
percentage	abundances.	Reads	were	combined	into	a	single	file	per	species	for	each	method.	These	
reads	were	then	compared	using	BLAST	(blastn		-evalue	0.0001		-max_target_seqs	5)	to	our	
comprehensive	database	of	all	bacterial	and	viral	sequences,	and	the	output	pruned	to	show	only	the	
matches	to	each	read	with	the	lowest	e-values,	allowing	multiple	matches	per	read	with	the	same	
lowest	e-value.	These	reads	were	also	compared	using	BLAST	to	a	comprehensive	database	of	vectors	
and	other	artificial	sequences,	containing	the	sequences	in	UniVec	as	well	as	Illumina	adaptors	and	a	
number	of	commercially	available	vector	sequences	[17].		The	reads	were	also	compared	using	LMAT	
with	the	Grand	database,	and	the	taxonomic	call	with	highest	read	count	was	reported.	
	
The	10	most	common	species	calls	made	by	LMAT-Grand	and	not	another	method	were	gathered	for	
each	method,	ignoring	Homo	sapiens	and	LMAT-Grand	classification	for	synthetic	constructs,	which	
LMAT-Grand	reports	as	a	“species”.	The	top	10	list	was	identical	for	Clinical	Pathoscope,	GOTTCHA,	and	
MiniKraken,	which	all	use	NCBI	RefSeq	to	build	their	reference	databases.	Reads	for	these	species	with	
LMAT-Grand	scores	of	at	least	1	were	extracted	and	compared	using	BLAST	against	our	comprehensive	
viral/bacterial	genome	database,	and	in	one	case	where	a	protozoa	was	uniquely	detected,	against	our	
protozoa	database.			
	
Results		
	
LMAT	databases	encode	11-147	times	more	sequence	data	representing	approximately	2-4	times	more	
species	than	other	methods	(Table	1).		The	memory	(DRAM	or	DRAM+NVRAM)	of	LMAT-ML	is	also	
higher	than	for	other	methods,	although	still	feasible	for	a	desktop,	particularly	when	supplemented	
with	low	cost	NVRAM.	
	

																																																													
2	ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/gi_taxid_nucl.dmp.gz,	
ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz,	
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2accession.gz	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 14, 2016. ; https://doi.org/10.1101/036681doi: bioRxiv preprint 

https://doi.org/10.1101/036681
http://creativecommons.org/licenses/by-nd/4.0/


	

	

Method	

Number	of	
species	in	
reference	
databaseⱡ	

Reference	
Genome	

Database	Size	
(Gbases)	

Memory	
required	
(GBytes)	

ClinicalPathoscope	 4280	 7.8	 4.6†	
Metaphlan2	 7147	 0.76	 3†	
GOTTCHA	 3461	 Not	available*	 8®	
MiniKraken	 5538	 9.97	 4¥	

LMAT-ML	 12632	 112.10**	

16+24	
NVRAM	or	24	

DRAM	
	
Table	1:	Reference	genome	database	size	and	number	of	species	represented	by	each	method.	
	
ⱡSpecies	counts	determined	by	counting	the	unique	NCBI	species	identifiers	from	all	sequences	in	the	
reference	database.	
*Original	reference	sequence	database	was	not	provided	with	download,	only	the	precomputed,	
compiled	marker	library	of	k-mers.	
**This	does	not	include	the	additional	k-mers	added	from	the	1000	Human	Genomes	Project,	since	
these	were	from	unassembled	genomes	as	described	in[13].	
†Estimated	using	/usr/bin/time,	correcting	for	the	bug	in	GNU	time	
(http://stackoverflow.com/questions/10035232/maximum-resident-set-size-does-not-make-sense)	by	
dividing	the	maximum	resident	set	size	by	4.	
¥Reported	by	[9]	
®Reported	by	https://github.com/poeli/GOTTCHA	
	
Runtime	performance	is	determined	by	database	size	
	
Table	2	shows	the	size	of	the	different	ML	databases	reflecting	the	different	pruning	strategies	(shown	
as	1,	10,	and	All	in	third	column	of	the	table).	Although	there	was	little	difference	in	taxonomic	
classifications	between	4	of	the	5	LMAT-ML	(Figure	S1),	the	choice	of	pruning	level	affects	memory	
requirements.	For	comparison,	LMAT-MLs	include	approximately	4.4-4.7	times	more	k-mers	than	
MiniKraken	but	require	3-4.7	times	more	memory.		However,	LMAT-ML-Min	maintains	a	lower	k-mer	
per	byte	ratio	than	MiniKraken	(7.6	versus	11.2),	which	is	likely	explained	by	LMAT’s	use	of	a	smaller	k	
(20	versus	32	for	MiniKraken).			
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Method	 Contains	human	
k-mers?	

Maximum	
taxonomy	ids	
stored	per	k-
mer	

size	(GB)	 K-mers	

MiniKraken	 -	 1	 4.0	 357,913,941*	
LMAT-ML-Min	 no	 1	 12.1	 1,586,405,299	
LMAT-ML	 no	 10	 15.9	 1,586,405,299	
LMAT-ML+H	 yes	 10	 16.8	 1,697,066,355	
LMAT-ML-All	 no	 All	 18.1	 1,586,405,299	
LMAT-ML+H-All	 yes	 All	 18.9	 1,697,066,355	
Table	2:		Database	sizes	and	k-mer	counts	(for	LMAT)	given	configurations	that	vary	the	presence	of	
human	reference	k-mers	and	the	maximum	count	of	taxonomy	ids	listed	per	k-mer.		*For	comparison,	
we	include	an	estimate	of	MiniKraken’s	k-mer	count	based	on	12	bytes	per	k-mer	as	provided	by	the	
authors.[9]		
	
	

	
	
Figure	1:	Processing	rate	for	LMAT	using	5	database	configurations	and	four	additional	processing	
methods,	reported	per	CPU.			5	of	the	6	LMAT-ML	runs	use	SATA	II	SSD	for	storage.		LMAT-ML-ramfs,	the	
LMAT	database	is	stored	in	main	memory	on	a	“ramdisk”	(linux	“ramfs”)	file	system.	In	this	and	the	
following	figures,	MiniKraken	is	labeled	simply	as	‘Kraken’.	
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Figure	1	shows	processing	rates	for	LMAT	compared	with	the	four	classification	tools.		Each	box	plot	bar	
encompasses	the	results	from	8	HMP	sample	runs.		For	the	LMAT	runs	we	have	configured	five	marker	
libraries,	and	query	them	using	16	GB	of	DRAM	and	a	SATA	II	Ocz	500	GB	solid-state	drive.		To	compare	
performance	when	storing	the	database	completely	in	DRAM	memory,	we	show	the	performance	of	the	
LMAT-ML	database	on	a	compute	platform	with	24	GB	of	DRAM,	where	the	database	index	can	reside	in	
main	memory	without	paging	from	the	external	storage	device	using	a	ramdisk	(linux	ramfs),	as	
indicated	by	label	LMAT-ML-ramfs.		From	these	results	we	make	several	observations.	

(1) MiniKraken	has	approximately	5	times	faster	performance	than	our	baseline	LMAT	(at	most	10	
taxonomy	identifiers	per	k-mer).			Its	database	size	is	considerably	smaller	at	4	GB	in	contrast	to	
the	LMAT	databases	(Table	2);	thus,	it	should	have	greater	CPU	cache	hit	rates	on	average,	
which	can	have	a	profound	impact	on	performance.			

(2) LMAT-ML-Min	(singe	taxonomy	identifier	per	k-mer)	shows	faster	performance	than	our	
ramdisk	run	(LMAT-ML-ramfs).		This	identifies	the	increase	in	cost	of	processing	more	taxonomy	
identifiers.	

(3) LMAT-ML	(SSD	configuration)	is	within	4%	of	LMAT-ML-ramdisk.		While	we	estimate	that	as	
much	as	15%	of	the	database	would	not	be	available	in	buffer	cache	at	any	moment,	this	result	
indicates	that	this	ratio	of	database	size	to	total	DRAM	does	not	create	a	substantial	burden	on	
the	system’s	caching	mechanism.	

(4) The	LMAT-ML+H	and	both	LMAT-ML-All	databases	show	slower	performance.		In	all	cases,	the	
larger	database	size	means	less	of	it	can	fit	in	buffer	cache,	thus	requiring	more	NVRAM	access	
operations.		The	addition	of	human	appears	to	have	a	greater	impact	on	performance	than	the	
increase	in	taxonomy	identifiers	per	k-mer	indicating	that	the	number	of	distinct	k-mers	stored	
in	the	index	necessitates	more	NVRAM	access	operations.	

(5) Metaphlan2	is	faster	than	all	LMAT-ML	instances,	but	LMAT-ML-Min	is	within	20%.	
(6) All	LMAT	configurations	outperform	GOTTCHA	and	Clinical	Pathoscope	in	terms	of	speed,	

although	Clinical	Pathoscope	is	close	to	the	LMAT	configurations	that	contain	human	reference	
information.	

	
Comparing	the	organisms	detected	by	each	method	
	
SIANN	found	none	of	the	organisms	in	its	database	for	any	of	the	HMP	samples.	We	manually	searched	
for	several	pathogens	that	were	included	in	their	database	and	which	were	detected	by	both	
Metaphlan2	and	LMAT-Grand	but	not	SIANN,	and	these	included	Clostridium	symbiosum,	Burkholderia	
cenocepacia,	Staphylococcus	epidermidis,	S.	caprae,	S.	hominis,	S.	lugdensis,	and	S.aureus.	We	ran	it	on	
several	samples	with	known	spiked	pathogen	concentrations	[18]	to	verify	that	we	were	running	the	
software	correctly.	In	a	sample	with	10,000	genome	equivalents	(GE)	of	Bacillus	anthracis,	Burkholderia	
pseudomallei,	Francisella	tularensis,	and	Yersinia	pestis	and	an	unknown	concentration	of	Brucella	
spiked	into	a	background	of	human	DNA	and	sequenced	on	Ion	Torrent,	SIANN	detected	the	5	spiked	
pathogen	species	with	high	confidence	but	was	unable	to	make	a	correct	strain	call.	It	also	made	2	false	
positive	species	calls	for	organisms	that	were	not	present	(Francisella	novicida	and	Francisella	cf).	At	100	
GE	spike	in,	only	an	incorrect	strain	of	F.tularensis	was	detected	with	low	confidence,	and	none	of	the	
other	pathogens	present	were	detected.	LMAT	Grand	and	LMAT-ML+H	detected	all	5	pathogens	at	
10,000	and	100	GE.	LMAT	called	the	vast	majority	of	reads	at	the	species	level	(except	for	Brucella	
genus)	indicating	these	regions	are	conserved	across	multiple	genomes.	LMAT	with	10,000	GE	correctly	
called	Y.	pestis	Harbin	as	the	top	strain,	and	in	the	other	cases	the	top	strain	was	among	the	top	3	
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genomes	with	the	most	genome-specific	reads.	We	did	not	investigate	SIANN	further,	as	it	was	not	
designed	to	be	a	general	purpose	metagenomics	analysis	tool.		
	
An	important	component	of	identifying	the	organisms	present	in	a	metagenome	is	measuring	the	
number	of	reads	left	unclassified.	Even	as	microbial	diversity	in	genomic	databases	continues	to	grow,	
the	potential	for	novel	genes	or	organisms	to	remain	‘hidden’	in	the	sample	remains	high.		Thus,	the	
ability	to	reduce	the	number	of	reads	that	must	be	considered	for	assembly	or	other	more	in	depth	
analysis	through	time	consuming	sensitive	protein	searches	with	BLAST	or	profile	Hidden	Markov	
Models	must	be	considered	when	evaluating	the	completeness	of	a	method's	taxonomic	profiling.	
LMAT-Grand	classified	on	average	83%	of	the	reads	per	sample,	followed	by	LMAT-ML+H	(63%),	
MiniKraken	(35%),	Clinical	Pathoscope	(29%),	GOTTCHA	(14%),	and	Metaphlan2	(5%)	(Figure	2A).	LMAT-	
Grand	detected	an	average	of	178	species/sample,	LMAT-ML+H	154	species/sample,	MiniKraken	108	
species/sample,	Clinical	Pathoscope	67	species/sample,	Metaphlan2	42	species/sample,	and	GOTTCHA	
27	species/sample	(Figure	2B).	
	

	
Figure	2A:	Boxplots	showing	the	fraction	of	reads	that	each	method	classified	from	the	131	HMP	
samples.		
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Figure	2B:	Boxplots	of	the	number	of	species	that	each	method	classified	from	each	of	the	131	HMP	
samples.	LMAT	Grand	detected	on	average	11%	more	species	than	LMAT-ML+H	and	57%	more	species	
than	MiniKraken,	the	next	highest	method.	BLAST	results	suggest	a	large	number	of	MiniKraken	calls	are	
false	positives.	
	
Taxonomy	calls	made	using	LMAT-Grand	do	not	represent	a	complete	ground	truth	of	organisms	
present	in	a	sample.		Since	the	database	draws	on	the	most	complete	collection	of	sequenced	genomes	
among	databases	considered	it	is	useful	to	measure	the	relative	concordance	among	the	different	
methods	relative	to	LMAT-Grand.		The	overlap	between	each	method	and	LMAT-Grand	differed	
substantially	as	illustrated	in	Figure	3,	summing	species	calls	in	agreement	or	in	disagreement	with	those	
of	LMAT	Grand	across	the	131	samples.	MiniKraken	and	Clinical	Pathoscope	showed	relatively	little	
overlap	with	LMAT-Grand	species	calls,	GOTTCHA	and	Metaphlan2	overlapped	by	the	majority	of	their	
species	calls	but	only	covered	a	small	fraction	of	the	LMAT	Grand	calls,	and	LMAT-ML+H	and	LMAT	
Grand	agreed	almost	entirely.		
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Figure	3:	Venn	diagrams	illustrating	the	total	number	and	overlap	of	species	calls	for	the	131	HMP	
samples	by	each	method	with	LMAT	Grand,	in	order	of	increasing	overlap.			
	
The	calls	by	GOTTCHA,	MiniKraken,	Metaphlan2,	and	Clinical	Pathoscope	share	higher	similarity	with	
those	of	LMAT-Grand	at	the	genus	level	than	at	the	species	level,	although	neither	species	nor	genus	
agreement	is	very	high	(Figure	4).	To	consider	the	possibility	that	the	LMAT-Grand	output	was	error	
prone,	a	detailed	analysis	of	the	discordant	calls	were	examined	using	BLAST	alignments	against	a	
comprehensive	microbial	database.	
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Figure	4:	The	fraction	of	species	(circles)	or	genera	(crosses)	detected	by	LMAT	Grand	that	were	also	
detected	by	a	given	method	versus	the	fraction	of	species	detected	by	a	given	method	that	were	not	
detected	by	LMAT	Grand,	averaged	across	the	131	HMP	samples.	If	the	calls	by	LMAT	Grand	are	correct	
as	indicated	by	BLAST	results	(see	below),	then	this	is	akin	to	sensitivity	versus	false	discovery	rate.	
	
	
Calls	made	by	other	methods	that	were	not	supported	by	LMAT	Grand	
	
All	the	marker	library	methods	except	LMAT-ML	detected	a	number	of	species	in	each	sample	that	
LMAT-Grand	did	not	(Figures	3	and	4).		Reads	were	extracted	from	a	given	method’s	mapping	results	for	
the	10	most	commonly	occurring	species	calls	that	differed	from	LMAT	Grand.	Figure	5	shows	the	sum	
of	these	extracted	reads	across	samples	and	species,	totaling	between	10,000	to	greater	than	1M	reads	
for	non-LMAT	methods.	With	orders	of	magnitude	fewer	reads	for	LMAT-ML+H	potential	false	positives,	
manual	inspection	revealed	that	the	difference	between	LMAT-ML+H	and	LMAT-Grand	lay	in	minor	
quantitative	differences	close	to	the	threshold	read	count	for	calling	a	species	as	present	rather	than	
qualitatively	different	calls.	BLAST	searches	with	these	reads	against	the	comprehensive	microbial	
genome	database	provided	evidence	in	support	or	contradiction	of	the	potential	false	positives,	
summarized	in	Figure	6	and	described	in	detail	for	each	method.	
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Figure	5:	Number	of	candidate	false	positive	reads	totaled	across	samples	for	the	top	10	most	common	
species	calls	that	were	not	detected	by	LMAT	Grand.	
	

	
Figure	6:	Fraction	of	best	BLAST	matches	to	species	called	by	the	indicated	method	that	were	discordant	
with	species	calls	by	LMAT-Grand.			
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These	were	for	the	most	commonly	called	species	by	the	indicated	method	that	were	not	detected	by	
LMAT-Grand	in	those	same	samples.	In	all	non-LMAT	methods,	only	a	minority	of	BLAST	hits	to	a	
comprehensive	sequence	database	supported	the	species	called	by	that	method,	suggesting	that	these	
were	incorrect	species	calls.	Calls	by	LMAT-ML+H	had	a	majority	of	matches	to	the	correct	species,	on	
average,	but	nearly	as	many	matches	to	other	species	in	the	genus,	supporting	genus	level	calls	for	some	
of	these	reads.	BLAST	results	provided	strong	support	for	LMAT-	Grand	calls	that	were	not	detected	by	
other	methods.	A	more	detailed	analysis	of	the	discordant	calls	for	each	method	is	now	given	in	the	
following	sections.	
	
MiniKraken	unsupported	calls	
	
MiniKraken	made	a	number	of	unsupported	calls	that	were	repeatedly	seen	across	half	or	more	of	the	
samples.	For	the	most	common	MiniKraken	species	calls	that	were	not	consistent	with	LMAT	species	
calls,	7	of	the	10	had	5%	or	fewer	BLAST	hits	to	the	species	identified	by	MiniKraken.	The	other	3	still	
had	a	minority	with	19-38%	of	BLAST	matches	to	the	MiniKraken	species,	and	the	most	common	LMAT	
classification	for	these	reads	was	at	the	genus	level	or	above.	The	unsupported	MiniKraken	species	call	
with	the	bulk	of	reads,	over	2	million,	had	99.5%	of	reads	matching	the	database	of	synthetic	sequences.	
These	BLAST	results	indicate	that	MiniKraken	calls	were	either	incorrect	and/or	overly	specific,	and	
failed	to	correct	for	contamination	of	reference	sequences	with	vector	and	other	artificial	sequence	
contaminants	(Supplementary	Table	S2).	
	
Clinical	Pathoscope	unsupported	calls	
	
Clinical	Pathoscope	commonly	called	a	number	of	bacteria	in	nearly	half	the	samples	which	were	not	
supported	by	LMAT-Grand	calls.	Of	reads	mapped	to	organisms	called	by	Clinical	Pathoscope	but	not	
LMAT-Grand,	most	had	fewer	than	1%	of	BLAST	hits	to	this	organism,	suggesting	that	organisms	with	the	
highest	similarity	to	these	reads	were	not	in	the	ClinicalPathoscope	database,	so	the	reads	were	mis-
attributed	to	other	species	with	homology	(Supplementary	Table	S3).	There	were	two	exceptions	for	
which	more	than	10%	of	the	lowest	e-value	BLAST	matches	were	to	the	organism	called	by	Clinical	
Pathoscope:	Propionibacterium	acnes	with	28%,	and	Bacteroides	vulgatus	with	17%,	although	these	are	
still	a	minority	of	BLAST	matches.	LMAT-Grand	classified	most	of	those	P.	acnes	reads	as	
genus,Propionibacterium,	order,Actinomycetales,	class,	Actinobacteria,	and	cellular	organisms.		LMAT-
Grand	called	the	majority	of	those	B.	vulgatus	reads	at	the	Bacteroides	genus	level,	in	addition	to	some	
thousands	of	reads	to	other	genera,	order	Bacteroidales,	phylum	Bacteroidetes,	and	superkingdom	
Bacteria.		The	fact	that	a	minority	of	BLAST	hits	are	to	the	organism	identified	by	Clinical	Pathoscope	
suggest	that	calls	by	Clinical	Pathoscope	may	be	overly	specific,	with	equivalent	similarity	to	many	
species.	In	addition,	up	to	19%	of	the	reads	for	some	of	these	unsupported	Clinical	Pathoscope	calls	had	
BLAST	matches	to	artificial	sequences,	indicating,	this	method	fails	to	adequately	control	for	
contamination	of	the	reference	database	by	artificial	sequences	such	as	vectors	and	adaptors.	
	
GOTTCHA	unsupported	calls	
	
Phage	dominated	the	calls	unique	to	GOTTCHA.		All	the	reads	which	GOTTCHA	labeled	as	Enterobacteria	
phage	lambda	matched	our	vector	and	other	synthetic	sequences	database,	and	LMAT	labeled	almost	all	
these	reads	as	synthetic	constructs	or	root	(Supplementary	Table	S4).	23%	of	the	reads	that	GOTTCHA	
called	as	Enterobacteria	phage	phiX174	sensu	lato	had	BLAST	matches	to	our	vector	database,	and	LMAT	
labeled	them	as	root,	superkindgom	Bacteria,	synthetic	sequences,	or	cellular	organisms.	Elements	of	
these	phage	are	used	for	genetic	engineering	and	as	controls	in	certain	Illumina	sequencing	protocols,	
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so	we	include	them	in	the	vector/synthetic	database,	so	this	result	is	not	surprising.	While	the	other	calls	
did	not	have	many	BLAST	matches	to	artificial	sequences,	only	a	minority	of	the	top	BLAST	hits	matched	
the	GOTTCHA	call	since	these	reads	were	widely	conserved	across	species	or	higher	ranks,	and	LMAT	
identified	these	reads	largely	as	root	or	genus	level	calls.	
	
	
Metaphlan2	unsupported	calls	
	
There	were	4	organisms	commonly	called	by	Metaphlan2	that	were	unsupported	by	LMAT-Grand	calls:	
Dasheen	Mosaic	virus,	Streptococcus	sp.	GMD4S,	Catonella	morbi,	and	Abiotrophia	defectiva,	plus	some	
other	unsupported	calls	that	occurred	in	just	a	few	samples	(Supplementary	Table	S5).		In	contrast	to	
Clinical	Pathoscope,	Metaphlan2	unique	calls	had	very	few	matches	to	artificial	sequence.	Reads	that	
Metaphlan2	uniquely	labeled	as	Dasheen	mosaic	virus	and	Vicia	cryptic	virus	had	no	best	BLAST	matches	
to	these	viruses,	prompting	us	to	double	check	that	these	viruses	were	indeed	present	in	our	BLAST	
database.	LMAT	calls	for	these	reads	were	predominantly	to	Homo	sapiens,	plus	small	numbers	to	high	
level	classifications	such	as	taxonomy	root	node,	cellular	organisms,	and	various	bacterial	genera.	For	
some	of	the	organisms,	48%-68%	of	the	BLAST	matches	were	to	the	correct	organism,	but	there	were	as	
many	matches	of	the	same	quality	to	other	organisms,	suggesting	overly	specific	Metaphlan2	calls	to	
reads	conserved	at	the	genus	or	phylum	level.	Supporting	this	observation,	LMAT	calls	for	those	
particular	reads	were	overwhelmingly	at	the	phylum	and	genus	levels,	and	even	some	to	the	kingdom	
Bacteria	and	to	cellular	organisms.	For	other	Metaphlan2	species	calls,	LMAT	Grand	classified	more	of	
those	reads	to	several	near	neighbor	species	in	the	same	genus,	with	only	a	small	subset	of	those	reads	
classified	as	the	same	species	as	Metaphlan2	but	not	enough	to	reach	the	minimum	call	threshold	of	
100	reads	in	those	samples.	
	
LMAT-ML+H	unsupported	calls	
	
Unsupported	calls	were	less	common	and	less	consistent	across	multiple	samples	for	LMAT-ML+H	than	
for	the	other	methods,	and	involved	fewer	reads	(Figure	5).	When	we	investigated	LMAT-ML+H	
differences	from	the	Grand	database,	most	of	the	differences	were	in	samples	where	the	number	of	
reads	called	hovered	around	the	100	read	threshold,	so	that	species	called	by	LMAT-ML+H	were	also	
observed	in	the	Grand	results	but	at	abundances	just	below	100	reads	(Table	3).	LMAT-Grand	calls	for	
the	extracted	species	reads	from	the	LMAT-ML+H	runs	always	included	some	species	calls	to	the	species	
detected	by	LMAT-ML+H	for	those	reads,	as	well	as	a	larger	number	at	a	higher	taxonomy	level.	Manual	
inspection	of	many	examples	showed	that	both	LMAT-ML+H	and	LMAT-Grand	always	called	multiple	
species	in	the	genus,	although	the	distribution	of	reads	counts	among	those	species	differed.	The	
average	score	per	species	was	usually	lower	for	LMAT-ML+H	than	Grand.	LMAT	calculates	a	log	odds	
read	score	from	the	number	of	k-mer	matches	in	a	read	relative	to	a	null	model	simulated	with	random	
sequences	for	each	database,	adjusting	for	GC	content	and	read	length	of	the	null	model	to	match	that	
of	the	read.[14]	The	LMAT-ML+H	database	has	many	fewer	k-mers	than	the	Grand	database,	resulting	in	
lower	average	scores.		Low	scores	indicate	an	organism	has	best	similarity	to	that	taxonomic	call,	but	
does	not	perfectly	match	the	reference	sequence,	suggesting	a	novel	variant.	The	calls	to	Tetrahymena	
thermophila	had	average	read	scores	of	just	above	0.2	for	both	LMAT-ML+H	and	Grand,	and	so	were	
below	the	threshold	for	Grand	but	not	LMAT-ML+H.	These	reads	had	BLAST	matches	only	to	
Plasmodium	yoelii	and	Tetrahymena	thermophila,	and	were	very	repetitive	and	AT	rich.	Classification	of	
such	low	complexity	reads	is	a	challenge,	especially	considering	the	difficulty	of	assembling	reference	
genomes	for	protozoa	around	such	regions,	with	the	potential	for	misassembly	and	contamination	with	
host	and	other	eukaryotic	DNA.	In	summary,	differences	between	LMAT	Grand	and	LMAT-ML+H	were	
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more	likely	for	organisms	with	low	numbers	of	reads	or	low	scores,	i.e.	those	with	low	abundance	or	low	
similarity	to	that	genome	in	the	database.		
	

Species	

Number	
samples	
with	
unsupported	
call	

Fraction	
BLAST	
matches	
to	called	
species	

Fraction	
reads	
with	
matches	
to	
synthetic	
contructs	

Streptococcus_sp._M143	 21	 0.506	 0	 genus,Streptococcus	
Streptococcus_sp._GMD4S	 20	 0.164	 0	 genus,Streptococcus	
Streptococcus_sp._oral_taxon_071	 15	 0.279	 0	 genus,Streptococcus	
Streptococcus_sp._AS14	 13	 0.765	 0	 genus,Streptococcus	
Lachnospiraceae_bacterium_MSX33	 12	 0.607	 0	 order,Clostridiales	
Streptococcus_sp._GMD6S	 12	 0.333	 0	 genus,Streptococcus	
Bacteroides_vulgatus	 11	 0.852	 0	 genus,Bacteroides	
Tetrahymena_thermophila	 11	 0.5*	 0	 no	rank,cellular	organisms	
Streptococcus_pseudopneumoniae	 11	 0.658	 0	 genus,Bacteroides	
Streptococcus_mitis	 10	 0.852	 0	 genus,Streptococcus	
	
Table	3:	BLAST	analysis	of	unsupported	calls	by	LMAT-ML	
	
*BLASTed	against	a	database	of	protozoa	sequences	as	well	as	bacterial	and	viral,	and	using	-dust	no	-
word_size	20	options	to	BLAST	in	addition	to	the	options	described	in	methods	
	
	
Calls	made	by	LMAT-Grand	that	were	not	detected	by	other	methods	
	
LMAT-Grand	calls	had	strong	BLAST	support:	the	LMAT-identified	species	dominated	the	BLAST	matches.	
This	supports	the	notion	that	these	are	false	negatives	by	GOTTCHA,	MiniKraken,	Clinical	Pathoscope,	
and	Metaphlan2,	all	of	which	use	substantially	smaller	reference	databases	than	LMAT-Grand	(Table	4).	
These	were	not	isolated	false	negatives,	as	most	occurred	in	over	half	the	HMP	samples	we	compared.	
In	contrast,	for	LMAT-ML+H,	even	the	most	common	false	negatives	occurred	in	less	than	a	third	of	the	
samples.	For	the	LMAT-ML+H	comparisons,	in	every	case	we	examined,	the	species	was	actually	
detected	by	the	LMAT-ML+H	but	it	fell	under	the	100	read	count	threshold,	so	it	was	a	matter	of	slight	
quantitative	differences	near	the	threshold	rather	than	qualitative	differences,	the	same	result	as	
discussed	above	for	the	LMAT-ML+H	unique	calls.	This	suggests	that	when	using	LMAT-ML+H,	
adjustments	should	be	made	to	account	for	lower	sensitivity	of	LMAT-ML+H	than	LMAT	Grand.	LMAT-
ML+H	uses	the	identical	database	of	reference	genomes	as	LMAT	Grand,	downselecting	to	a	fraction	of	
the	most	taxonomically	informative	k-mers	and	removing	redundancy	by	eliminating	many	of	the	
overlapping	k-mers,	so	it	is	not	surprising	that	differences	between	the	two	databases	are	small.		
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Species	

Number	of	
samples	

with	call	by	
LMAT	

Grand	but	
not	other	
method	 method*	

Number	
reads,	
summed	
across	
samples	

Fraction	BLAST	
matches	to	
LMAT	Grand	
called	species	

Veillonella_dispar	 83	 CP,G,K	 127783	 0.949	
Streptococcus_infantis	 81	 CP,G,K	 777190	 0.956	
Granulicatella_adiacens	 81	 CP,G,K	 37017	 0.927	
Gemella_haemolysans	 80	 CP,G,K	 1099653	 0.995	
Porphyromonas_sp._oral_taxon_279	 78	 CP,G,K	 13566	 0.931	
Prevotella_oris	 77	 CP,G,K	 605452	 0.998	
Prevotella_salivae	 77	 CP,G,K	 4050496	 0.999	
Leptotrichia_wadei	 77	 CP,G,K	 3447770	 0.680	
Fusobacterium_periodonticum	 76	 CP,G,K	 11218643	 0.992	
Lachnoanaerobaculum_saburreum	 76	 CP,G,K	 823744	 0.833	
Streptococcus_oralis	 78	 M	 409051	 0.935	
Tannerella_sp._oral_taxon_BU063	 73	 M	 3267593	 1.000	
Streptococcus_pneumoniae	 73	 M	 410193	 0.957	
Streptococcus_agalactiae	 70	 M	 97079	 0.986	
Prevotella_sp._ICM33	 70	 M	 1433785	 0.940	
Veillonella_sp._oral_taxon_158	 68	 M	 8530	 0.878	
Neisseria_mucosa	 68	 M	 277668	 0.759	
Prevotella_sp._F0091	 68	 M	 411478	 0.919	
Actinomyces_sp._oral_taxon_175	 62	 M	 14421	 0.765	
Streptococcus_sp._M334	 62	 M	 456562	 0.876	
Streptococcus_suis	 37	 LMAT-ML+H	 1820	 0.917	
Candidatus_Saccharimonas_aalborgensis	 31	 LMAT-ML+H	 8636	 0.273	
Prevotella_sp._HJM029	 26	 LMAT-ML+H	 4381	 0.917	
Staphylococcus_sp._DORA_6_22	 26	 LMAT-ML+H	 8839	 0.921	
Streptococcus_sp._I-P16	 26	 LMAT-ML+H	 7223	 0.896	
Lactococcus_lactis	 25	 LMAT-ML+H	 690	 0.991	
Aggregatibacter_actinomycetemcomitans	 23	 LMAT-ML+H	 1095	 0.883	
Actinomyces_urogenitalis	 22	 LMAT-ML+H	 448	 0.616	
Streptococcus_sp._oral_taxon_056	 21	 LMAT-ML+H	 122	 0.656	
Streptococcus_sp._HSISS2	 20	 LMAT-ML+H	 4621	 0.929	
	 	 	 	 	
Table	4:	BLAST	analysis	of	calls	made	by	LMAT	Grand	but	not	other	methods.	
	
*CP=Clinical	Pathoscope,	G=GOTTCHA,	K=Kraken,	M=Metaphlan2	
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Detecting	Eukaryotes	
	
The	LMAT	databases	(all	variants)	are	the	only	metagenomic	analysis	tools	that	include	Eukaryotic	
sequences	in	addition	to	human	in	the	reference	database.	As	a	result,	we	were	able	to	classify	reads	
matching	fungi,	protozoa,	plants,	and	animals	(Table	S1).	The	majority	of	eukaryotic	reads	were	human,	
followed	by	Fungi	phylum	Dikarya,	in	which	many	genera	and	species	were	detected.		Reads	were	
detected	from	dog	(Canus,	Canus	lupus,	or	Canus	lupus	domesticus;	3	samples	with	49-578	reads	each).	
The	fungal	genus	Malassezia	had	particularly	large	numbers	of	reads	in	many	samples,	an	expected	
result	for	a	genus	naturally	found	on	the	skin	of	many	animals.	Small	numbers	of	reads	for	various	
pathogenic	protozoa	in	the	phylum	Apicomplexa	were	detected,	including	Plasmodium,	Acanthamoeba	
castellanii,	Eimeria	(coccidiosis	in	livestock),	Hammondia	hammondi,	and	Toxoplasma	gondii.	Five	
samples	contained	unusually	high	numbers	of	reads	(~20,000)	of	Hammondia	hammondi,	which	relies	
on	cats	as	its	definitive	host.	One	stool	sample	had	~2,700	reads	of	Blastocystis	hominis,	a	
gastrointestinal	parasite	of	disputed	pathogenicity.	Several	samples	contained	1000-3000	reads	of	
Entamoeba	nuttalli,	known	to	cause	illness	in	non-human	primates.	The	freshwater	ciliated	protozoan	
Tetrahymena	thermophila	was	detected	in	a	number	of	samples,	most	often	with	low	read	count,	except	
a	few	cases	with	thousands	of	reads.		One	retroauricular	crease	sample	had	~9,500	reads	classified	as	
Trypanosoma	cruzi	(Chagas	disease	or	sleeping	sickness),	which	can	persist	unnoticed	in	the	host	for	
decades,	although	detection	on	skin	may	not	mean	the	host	is	infected.	Small	numbers	of	reads	of	
Trichomonas	vaginalis	were	detected	in	a	handful	of	samples.	While	the	bulk	of	calls	were	bacterial,	
these	observations	suggest	that	further	study	confirming	the	present	of	eukaryote	reads	in	the	HMP	
data	is	warranted.		Many	draft	eukaryotic	sequences	appear	to	contain	misassembled	human	and	
vector/synthetic	sequence,	and	we	have	invested	substantial	effort	to	control	and	correct	for	this	
contamination	[14].		We	conducted	spot	checks	with	BLAST	on	reads	assigned	to	eukaryotes	(including	
Malassezia	and	Canus	lupus)	to	confirm	that	obvious	miss-assignment	errors	were	not	present.		
Nevertheless,	non-human	eukaryote-classified	reads	deserve	an	extra	measure	of	caution,	such	as	
demanding	higher	read	count	or	score	thresholds	for	calling	a	species	as	present.		LMAT-ML+H	is	less	
sensitive	than	LMAT	Grand	for	these	organisms,	as	manual	comparisons	of	several	of	these	species	
showed	fewer	reads	and	lower	scores	in	the	ML,	but	it	is	still	capable	of	detecting	these	organisms	using	
16-24	GB	memory.		
	
Discussion	
	
Sensitivity	was	too	low	for	SIANN	to	be	feasible	for	clinical	samples,	and	false	positives	were	seen	in	
samples	with	pathogen	at	high	spiked	concentrations.		MiniKraken	processed	metagenome	reads	the	
fastest,	but	it	was	also	the	least	accurate	on	the	real	world	HMP	samples,	with	poor	BLAST	support	for	
the	species	it	commonly	detected	and	a	large	number	of	missed	species	that	did	have	strong	BLAST	
support,	and	classified	an	average	of	about	a	third	of	the	reads.	Clinical	Pathoscope	and	GOTTCHA	also	
had	poor	accuracy,	they	were	the	slowest	classifiers	in	our	tests,	and	they	failed	to	classify	even	larger	
percentages	of	reads.	MetaPhlan2	was	faster	than	LMAT-ML,	although	it	only	classified	an	average	of	5%	
of	reads	and	missed	many	species	that	were	clearly	present	based	on	BLAST	results.		LMAT-ML	ran	on	
average	at	about	half	the	speed	of	MetaPhlan2	and	required	24	GB	of	DRAM	to	avoid	any	performance	
penalty	for	paging	the	database	index,	more	than	other	marker	library	methods.	However,	LMAT-ML+H	
classified	over	60%	of	reads	and	showed	far	better	accuracy	than	other	marker	library	methods	as	
verified	by	BLAST,	delivering	results	nearly	as	complete	as	those	of	LMAT	Grand	with	only	a	fraction	of	
the	memory	requirements,	at	a	speed	capable	of	analyzing	a	gigabase-sized	sample	in	about	3.5	minutes	
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with	24	CPU	and	24	GB	of	DRAM.		Additionally,	the	performance	penalty	for	16	GB	versus	24	Gb	is	
roughly	50%	slower	with	the	smaller	available	DRAM	(when	using	LMAT-ML+H).	
	
The	processing	rate	of	LMAT-ML	databases	are	affected	by	two	key	factors,	the	rate	at	which	the	index	
can	be	accessed,	and	the	classification	rate	of	an	individual	read,	which	is	impacted	by	the	number	of	
taxonomy	identifiers	retrieved	for	each	constituent	k-mer	in	the	read.		Fast	access	to	the	index	is	
impacted	by	the	size	of	the	database,	with	larger	databases	requiring	additional	paging.	
	
We	consider	the	use	of	the	SATA	II	SSD	as	it	provides	a	relatively	low	cost	alternative	to	DRAM	for	
storage.	Current	advertised	prices	for	DRAM	are	about	$11	and	for	SATA	SSD	$0.75	per	gigabyte,	and	
mid	tier	PCIe	flash	around	$5/GB.		We	present	the	use	of	an	SSD	with	LMAT	and	limited	memory	in	
contrast	to	previous	experiments	with	PCIe	flash	with	larger	LMAT	database	indexes	[19].		Additional	
experimentation	with	the	larger	Grand	database	and	SATA	SSD	with	limited	main	memory	have	
demonstrated	subpar	performance.		For	the	smaller	ML	databases,	however,	the	performance	reduction	
with	SATA	SSD	was	minor,	since	demands	on	main	memory	were	much	lower.	Although	LMAT	runs	
faster	in	DRAM	only,	we	estimate	that	a	laptop/desktop	with	16	GB	RAM	and	a	24	GB	flash	drive	will	
perform	rapid	and	accurate	metagenome	analyses	with	LMAT-ML+H.		
	
While	all	methods	aim	to	classify	reads	at	the	most	specific	level	possible,	that	level	of	specificity	must	
be	supported	by	the	data.	All	of	the	methods	other	than	LMAT	failed	to	identify	genus,	family,	phylum,	
or	even	higher	levels	of	conservation	in	the	HMP	reads,	and	thus	reported	overly	specific	calls.	
Databases	like	RefSeq	have	only	one	representative	sequence	for	many	species	and	some	genera,	and	
documentation	explicitly	states	that	more	than	one	strain	will	be	included	only	in	exceptional	
circumstances	as	determined	manually	by	NCBI	staff	[20].	This	renders	suspect	any	strain	calls	made	by	
classifiers	relying	on	Refseq,	since	there	are	not	enough	near	neighbors	to	resolve	at	this	level.	In	
addition,	MiniKraken,	Clinical	Pathoscope,	and	GOTTCHA	made	errors	by	misclassifying	reads	as	
microbial	that	were	much	more	likely	to	be	artificial	sequences	from	sample	preparation.		Metaphlan2	
did	not	misclassify	artificial	sequences,	but	it	did	misclassify	human	reads	as	viral.	We	and	others	[9,	21]	
have	found	substantial	contamination	of	draft	genomes	with	adaptor,	vector,	and	other	synthetic	
sequences	and	human	or	other	host	sequences.	LMAT-Grand	and	LMAT-ML	specifically	label	synthetic	
and	human	k-mers	and	then	apply	a	greedy	strategy	to	detect	reads	with	these	sequences.	This	allows	
the	LMAT	database	to	contain	large	numbers	of	draft	sequences	to	span	novel	strain	and	species	
diversity	without	misclassifying	human	and	synthetic	reads	as	microbial	due	to	contaminated	draft	
assemblies.		
	
MiniKraken,	Clinical	Pathoscope,	and	GOTTCHA	reference	sequences	consist	of	NCBI	RefSeq	complete	
bacterial,	archaeal,	viral	genomes	and	the	human	reference	genome,	and	Metaphlan2	and	SIANN	use	
even	smaller	subsets	of	these	sequences.	With	LMAT-Grand	and	LMAT-ML,	we	extend	the	reference	
database	to	span	every	microbial	genome	in	the	public	domain,	and	more,	so	that		
LMAT	is	the	only	metagenome	classification	software	that	includes	1)	eukaryotic	sequence	in	both	the	
Grand	and	the	LMAT-ML	databases,	enabling	the	classification	of	fungi,	protozoa,	and	some	multicellular	
organisms	(from	organelles	labeled	as	whole	genome,	e.g.	mitochondria	and	chloroplasts);	2)	draft	
genomes	and	assembled	contigs	not	contained	in	NCBI	RefSeq;	and	3)	draft	and	finished	bacteria,	virus,	
archaea,	fungi,	and	protozoa	genomes	from	a	number	of	sequencing	centers	worldwide	with	publicly	
available	sequence	data	in	addition	to	those	from	NCBI.	While	sequences	available	from	these	sites	
eventually	appear	in	NCBI	databases,	they	may	be	publicly	available	years	before	release	at	NCBI,	and	
many	strains	may	never	become	a	part	of	NCBI	RefSeq.		
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Since	LMAT	includes	all	available	strains	(genomes)	that	have	been	sequenced,	it	should	provide	more	
accurate	species	resolution	and	reporting	of	the	closest	strains	in	the	database	than	other	methods.	
LMAT	reports	the	number	of	reads	matching	multiple	strains,	and	for	those	reads	conserved	across	
multiple	strains,	then	it	reports	only	the	species	level	match,	since	NCBI	taxonomy	nodes	in	general	do	
not	exist	for	clades.	Even	for	isolates	with	sequenced	genomes,	there	may	be	more	than	one	best	strain	
match	for	different	subsets	of	reads	due	to	evolution	from	the	original	sequenced	isolate	during	
propagation,	lateral	gene	transfer,	recombination,	and	sequencing	error.	A	phylogenetic	approach	is	
probably	necessary	to	accurately	place	new	sequence	in	the	broader	context	of	other	isolates,	possibly	
using	assembly,	alignment	or	SNPs,	provided	there	is	sufficient	genome	coverage.	Other	methods	that	
fail	to	include	many	species	and	strains	in	their	reference	database	cannot	resolve	specific	strains.	
Results	presented	here	show	that	these	methods	are	incorrect	or	overly	specific	even	in	their	species	
and	genus	level	classifications.			
	
Not	only	is	LMAT	the	only	method	that	can	detect	eukaryotic	sequences,	it	reports	calls	to	plasmids	
versus	chromosomes	for	distinguishing	the	presence	of	these	mobile	genetic	elements.	Metaphlan2,	
GOTTCHA	and	MiniKraken	do	not	detect	plasmids,	and	make	only	taxonomic	calls.	Clinical	Pathoscope	
does	identify	reads	by	database	entry,	so	it	is	possible	to	distinguish	plasmid	from	chromosomal	
matches.	LMAT	distinguishes	plasmid	calls,	and	creates	a	file	exclusively	listing	the	plasmids	detected,	
and	also	includes	those	plasmid	calls	in	the	overall	results	summary	with	all	taxonomic	calls.	For	
methods	other	than	LMAT,	there	is	no	process	described	in	the	manuals	for	extracting	reads	responsible	
for	a	given	call,	making	it	difficult	to	verify	those	calls,	and	do	additional	analyses	such	as	assembly,	per	
species	gene	annotation,	SNP	analyses,	or	distinguish	matches	to	plasmid	versus	chromosome.	Plus,	
failure	to	report	standardized	NCBI	taxonomy	identifiers	for	all	calls	by	some	of	the	methods,	plus	use	of	
nonstandard	or	outdated	species	names	and	GI	numbers	not	in	the	current	NCBI	database	makes	the	
process	especially	challenging.	We	encourage	software	developers	to	describe	procedures	for	extracting	
reads	for	the	taxonomic	calls	made	by	the	method,	to	facilitate	call	verification	from	the	reads	
responsible	for	each	call.	
	
Alignment	based	methods	(e.g.	BLAST	and	read	mapping)	scale	linearly	with	the	number	of	bases	in	the	
reference	database.	To	scale	with	an	ever	growing	pool	of	reference	genomes,	alignment-based	
software	must	reduce	to	only	a	subset	of	the	available	data	by	excluding	strain	variants,	draft	genomes,	
and	non-microbial	kingdoms.	As	a	consequence,	these	methods	fail	to	classify	large	numbers	of	reads,	
report	overly	specific	classifications	for	sequences	which	in	fact	are	more	widely	shared	across	taxa,	and	
either	misclassify	or	fail	to	detect	all	the	species	and	genera	missing	from	the	database.	In	addition,	
alignments	require	a	cap	on	the	maximum	number	of	alignments	to	return	to	retain	reasonable	run	
times.	We	have	observed	that	for	highly	conserved	sequences	(like	16S	rRNA	or	housekeeping	genes)	
where	there	may	be	thousands	of	additional	unreported	matches	over	that	maximum,	the	sort	order	of	
reporting	matches	can	result	in	biases	and	overly	specific	calls	for	taxa	that	may	not	actually	be	present.	
In	contrast,	the	k-mer	based	approach	has	the	advantage	of	retaining	and	condensing	conserved	
subsequences	so	that	adding	related	reference	genomes	increases	the	database	size	only	for	novel	k-
mers	and	the	small	increment	of	adding	that	genome	tag	to	existing	k-mers	already	stored.	Thus,	the	
database	size	grows	as	a	function	of	sequence	diversity,	not	as	a	strictly	linear	increase	with	the	number	
of	bases	in	the	reference	database.	We	have	plans	to	add	more	eukaryotic	genomes	to	the	LMAT	
database	(e.g.	mosquitos,	nematodes,	ticks,	plants),	to	classify	more	reads	from	environmental	samples,	
which	should	be	tremendously	helpful	in	fields	such	as	bioenergy,	microbial	ecology,	industrial	
metagenomics,	and	environmental	biosurveillance.	[4]	Many	eukaryotes	have	extremely	large	and	
repetitive	genomes	[22],	so	a	k-mer	that	scales	with	diversity	rather	that	the	genome	size	including	
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more	eukaryotes	should	further	reduce	the	number	of	unclassified	reads,	and	improve	our	ability	to	
separate	reads	for	truly	novel,	unknown	microbes	for	further	analysis.	
	
Comparing	results	from	actual	HMP	samples	across	6	metagenome	analysis	software	packages,	we	
found	that	the	LMAT	Marker	Library	“LMAT-ML+H”	classified	microbial	contents	most	accurately	and	
comprehensively	due	to	its	reliance	on	a	reference	database	1-2	orders	of	magnitude	larger	than	that	of	
other	software	and	representing	2-4	times	more	species.	Its	speed	is	competitive	with	other	tools,	and	
although	memory	demands	are	higher,	they	are	still	well	within	the	price	range	of	a	standard	desktop	
machine	with	24GB	of	memory	or	16GB	memory	with	a	low	cost	SSD	drive.	
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