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Abstract. We investigated the evolution of the response of human, chicken, alligator 

and frog glucocorticoid receptors (GRs) to dexamethasone, cortisol, corticosterone, 

11-deoxycorticosterone, 11-deoxycortisol and aldosterone.  We find significant 

differences among these vertebrates in the transcriptional activation of their full length 

GRs by these steroids, indicating that there were changes in the specificity of the GR for 

steroids during the evolution of terrestrial vertebrates.  To begin to study the role of 

interactions between different domains on the GR in steroid sensitivity and specificity 

for terrestrial GRs, we investigated transcriptional activation of truncated GRs 

containing their hinge domain and ligand binding domain (LBD) fused to a GAL4 DNA 

binding domain (GAL4 DBD).  Compared to corresponding full length GRs, 

transcriptional activation of GAL4 DBD-GR hinge/LBD constructs required higher 

steroid concentrations and displayed altered steroid specificity, indicating that 

interactions between the hinge/LBD and other domains are important in glucocorticoid 

activation of these terrestrial GRs. 
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1. Introduction 

Glucocorticoids (Figure 1) regulate a variety of physiological functions 

including carbohydrate and protein metabolism, blood pressure, immune function and 

the body’s anti-inflammatory processes via transcriptional activation of the 

glucocorticoid receptor (GR) [1-5].  The GR and other steroid receptors belong to the 

nuclear receptor family, a large family of transcription factors, which includes receptors 

for thyroid hormone, retinoids and other small lipophilic molecules [6-10].  The GR 

and other steroid receptors have a characteristic modular structure consisting of an 

N-terminal domain (NTD) (domains A and B), a central DNA-binding domain (DBD) 

(domain C), a hinge domain (D) and a C-terminal ligand-binding domain (LBD) 

(domain E) [9, 11-14] (Figure 2).  The E domain alone is competent to bind steroids 

[11, 12, 15-18]. 

The NTD contains an activation function 1 [AF1] domain, which is a strong 

transcriptional activator of the GR [19-21].  Interestingly, AF1 is intrinsically 

disordered, unlike the DBD and LBD [21-23].  Allosteric interactions between AF1 

and other domains on the GR and coactivators lead to a conformational rearrangement 

of AF1 that is important in transcriptional activation of the GR [23-26].  Recent crystal 

structures of the DBD-Hinge-LBD domains of other nuclear receptors [13, 22] reveal 

that there is allosteric signaling between the DBD and LBD domains.  Moreover, for 

rat GR, there is evidence that allosteric interactions between DBD and other domains 

regulates gene transcription [27, 28]. 

Among terrestrial vertebrates, rodent [29] and human [20, 30-33] GRs have been 

the main focus of studies on glucocorticoid action, with dexamethasone [DEX] and 

cortisol [F] as the best studied steroids.  Reports of transcriptional activation by 

corticosteroids of the GR for other terrestrial vertebrates: amphibians, reptiles and birds, 

are limited [34, 35].  Oka et al. [34] reported half-maximal response (EC50) values for 

transcriptional activation of full length alligator GR by F, corticosterone [B], 

11-deoxycorticosterone [DOC] and aldosterone [Aldo].  Proszkowiec-Weglarz and 

Porter [35] found that B and Aldo were transcriptional activators of full length chicken 

GR.  Unexpectedly, the EC50 for transcriptional activation of chicken GR by Aldo and 

B was 0.8 nM and 1.8 nM, respectively, with the level of transcription due to B being 

about 30% higher than to Aldo.  Transcriptional activation by Aldo of alligator GR and 

chicken GR is surprising because it contrasts with Aldo’s low affinity [36] and 

transcriptional activation of human GR [30].  The EC50 of other corticosteroids for 

chicken GR was not determined. 
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Figure 1. Structures of various corticosteroids.
Cortisol and corticosterone are physiological glucocorticoids in terrestrial vertebrates and
 ray-finned fish [12, 52, 54].  Aldosterone, 11-deoxycorticosterone and 11-deoxycortisol are
 physiological mineralocorticoids [12, 38, 45, 48] with high affinity for human GR [30, 36].
11-deoxycortisol is both a mineralocorticoid and a glucocorticoid in lamprey [55]. 
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Figure 2. Comparison of domains in some terrestrial vertebrate GRs.
GRs from human, chicken, alligator and X. laevis are compared.  The functional A/B domain to E domains are schematically represented with the numbers of amino acid residues and the percentage of amino acid identity is depicted.
GenBank accession numbers: human GR (NM_000176), chicken GR (NM_001037826), alligator GR (AB701407), X. laevis GR (NM_001088062).
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These unexpected responses of alligator and chicken GRs to Aldo and our 

interest in the evolution of specificity for corticosteroids in the GR in vertebrates [12, 34, 

37-39] motivated us to investigate the response to a panel corticosteroids of the GR 

from chicken and the amphibian [Xenopus laevis] for comparison to human and 

alligator GR with the goal of clarifying the evolution of corticosteroid specificity in 

terrestrial vertebrates.  In addition, we were interested in investigating the role of 

allosteric interactions between the domains A-C and domains D and E [13, 21-23, 

39-42] in the response of GRs to steroids.  The influence of this allosteric interaction 

on steroid responses has not been studied previously in non-mammalian terrestrial 

vertebrates.  For these studies we constructed a plasmid containing the GAL4 DBD 

fused to the D domain and E domain of the GR (GR-LBD). 

Interestingly, we found significant differences in the EC50s of these full length 

GRs to corticosteroids indicating that during the evolution of these terrestrial vertebrates 

there were changes in their response to various corticosteroids.  Moreover, in the 

presence of corticosteroids, truncated GRs containing a GR LBD fused to a GAL4 DBD 

had a higher EC50 value (weaker activation) than their corresponding full length GRs, 

indicating altered steroid specificity among these terrestrial vertebrate GRs and that the 

evolution of the response of terrestrial vertebrate GRs to different steroids was complex, 

and involved allosteric signaling between the domains D-E and other GR domains. 

 

2. Materials and Methods 

2.1 Chemical reagents 

DEX, F, corticosterone (B), aldosterone (Aldo), DOC and 11-deoxycortisol (S) 

were purchased from Sigma-Aldrich.  For the reporter gene assays, all hormones were 

dissolved in dimethylsulfoxide (DMSO) and the final concentration of DMSO in the 

culture medium did not exceed 0.1%. 

2.2 Construction of plasmid vectors 

The full-coding regions and D/E domains of the GR from X. laevis, alligator, 

chicken and human were amplified by PCR with KOD DNA polymerase (TOYOBO 

Biochemicals, Osaka, Japan).  The PCR products were gel-purified and ligated into 

pcDNA3.1 vector (Invitrogen) for the full-coding region or pBIND vector (Promega) 

for D-E domains [34]. 

2.3 Transactivation Assay and Statistical Methods 

CHO-K1 cells (Chinese hamster ovary cell) were used in the reporter gene assay.  

Transfection and reporter assays were carried out as described previously [34, 43].  All 

transfections were performed at least three times, employing triplicate sample points in 
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each experiment.  The values shown are mean ± SEM from three separate experiments, 

and dose-response data and EC50 were analyzed using GraphPad Prism.  Comparisons 

between two groups were performed using t-test, and all multi-group comparisons were 

performed using one-way ANOVA followed by Bonferroni test.  P < 0.05 was 

considered statistically significant. 

 

3. Results 

3.1 Different steroid-response for full length and truncated human, chicken, 

alligator and X. laevis GRs. 

3.11 Human GR 

In Figures 3A and B, we show corticosteroid-inducible transcriptional activation 

of full length and truncated (GAL4 DBD-GR LBD) human GRs by DEX, F, B, Aldo, 

DOC and S.  At 10-6 M, all corticosteroids induced transcription of full length human 

GR via the MMTV-reporter gene.  In contrast, truncated human GR had a strong 

response to DEX and F, a much weaker response to B, a small response to Aldo and no 

response to DOC and S. 

 

3.12 Chicken GR 

Transcription of full length chicken GR was activated by all corticosteroids at 

10-6 M, with a similar strong response to B, Aldo and DOC and a lesser response to 

DEX, F and S (Figure 3C).  Truncated chicken GR was strongly activated by B, F, 

DEX and Aldo, with a weaker response to DOC and S (Figure 3D). 

 

3.13 Alligator GR 

Transcription of full length alligator GR was activated by all corticosteroids at 

10-6 M, with a similar strong response to B, Aldo and DOC and a lower response to 

DEX, F and S (Figure 3E).  Truncated alligator GR was strongly activated by DEX, F, 

B and Aldo, with lower response to S and a very weak response to DOC (Figure 3F). 

 

3.14 X laevis GR 

Transcription of full length X. laevis GR was activated by all corticosteroids at 

10-6 M, with a similar strong response to DEX, F, B, Aldo and DOC and a lower 

response to DOC and much lower response to S (Figure 3G).  Truncated X. laevis GR 

was strongly activated by DEX and B, with a much lower response to F and Aldo and a 

no response to DOC and S (Figure 3H). 
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Figure 3. Ligand-specificities of human, chicken, alligator and X. laevis full length 

GRs and LBD GRs. 

Full-length human GR (A), chicken GR (C), alligator GR (E), and X. laevis GR (G) 

were expressed in CHO-K1 cells with an MMTV-luciferase reporter.  Plasmids for 

corresponding truncated GRs (human (B), chicken (D), alligator (F) and X. laevis (H) 

containing the D domain and LBD (E domain) fused to a GAL4-DBD were expressed 

in CHO-K1 cells with a luciferase reporter containing GAL4 binding site.  Cells were 

treated with 10-6 M DEX, F, B, Aldo, DOC, S or vehicle alone (DMSO).  Results are 

expressed as means ± SEM, n=3.  Y-axis indicates fold-activation compared to the 

activity of control vector with vehicle (DMSO) alone as 1. 

 

3.15 EC50 values for transcriptional activation of full length human, chicken, 

alligator and X. laevis GRs 

Next we examined the concentration-dependence of transcriptional activation of 

full length terrestrial vertebrate GRs by DEX, F, B, Aldo, DOC and S (Figure 4, Table 

1).  Compared to the other steroids, DEX has the lowest EC50 for all of the full length 

GRs (Table 1).  Interestingly, there are significant differences among the GRs of the 

EC50s for other corticosteroids, including F and B, which are the major physiological 

glucocorticoids in terrestrial vertebrates.  For example, for full length GRs, B has a 

lower EC50 than F for X. laevis GR, while F has a lower EC50 than B for human, 

chicken and alligator GR. 

Table 1. EC50 values for transcriptional activation by corticosteroids of terrestrial 

vertebrate GRs 

A. Full length GR (A-E domains) 

 

DEX F B Aldo DOC S 

Human GR-Full 1.7x10-10 5.6x10-9 2.0x10-8 8.2x10-8 1.1x10-8 5.0x10-8 

Chicken GR-Full 2.8x10-11 6.0x10-11 2.3x10-10 2.0x10-9 6.3x10-10 1.7x10-10 

Alligator GR-Full 1.4x10-10 2.0x10-10 3.5x10-10 2.7x10-9 2.6x10-9 3.5x10-10 

Xenopus GR-Full 7.3x10-9 5.6x10-8 5.1x10-9 4.4x10-8 2.3x10-8 5.3x10-7 

B. Truncated GR (GAL4-DBD+GR-D+E domains) 

 

DEX F B Aldo DOC S 

Human GR-LBD 8.3x10-9 1.2x10-6 - - - - 

Chicken GR-LBD 2.5x10-10 1.6x10-9 6.5x10-9 7.7x10-8 - 6.6x10-8 

Alligator GR-LBD 3.1x10-9 7.7x10-9 4.9x10-8 1.6x10-7 - 1.2x10-7 

Xenopus GR-LBD 6.7x10-8 - 4.8x10-8 - - - 
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Figure 4. Concentration-dependent transcriptional activation by corticosteroids of 

full length and truncated human, chicken, alligator and X. laevis GRs. 

Plasmids encoding full length GRs (A: human GR, C: chicken GR, E: alligator GR, G: 

Xenopus GR) or plasmids encoding the GAL4-DBD fused to the D domain and LBD of 

GRs (B: human GR, D: chicken GR, F: alligator GR, H: Xenopus GR) were expressed 

in CHO-K1 cells.  Cells were treated with increasing concentrations of F, B, Aldo, 

DOC, S or vehicle alone (DMSO).  Y-axis indicates fold-activation compared to the 

activity of control vector with vehicle (DMSO) alone as 1. 

 

Aldo, which is a mineralocorticoid, has an EC50 of 2.7 nM and 44 nM 

respectively, for alligator GR and X. laevis GR and an EC50 of 2 nM and 82 nM, 

respectively, for chicken and human GR.  DOC, which also is a mineralocorticoid, has 

an EC50 of 2.6 nM and 23 nM, respectively, for alligator GR and X. laevis GR, and an 

EC50 of 0.63 nM and 110 nM, respectively, for chicken GR and human GR.  

Interestingly, S has an EC50 of 0.17 nM and 0.35 nM, respectively, for chicken and 

alligator GR, and a much higher EC50 for human GR [50 nM] and X. laevis GR [530 

nM]. 

 

3.16 EC50 values for transcriptional activation of truncated (GAL4 DBD-GR 

LBD) terrestrial vertebrate GRs 

The concentration-dependence of transcriptional activation of truncated 

terrestrial vertebrate GRs by DEX, F, B, Aldo, DOC and S is shown in Figure 4 and 

Table 1.  Transcriptional activation by several steroids was dramatically different 

among the terrestrial vertebrate GRs that lacked the A-C domains.  For example, 

truncated human GR has a strong response to DEX (EC50 = 8.3 nM) and a very weak 

response to F (EC50 = 1.2 µM), and no significant response to B, Aldo, DOC or S.  

This contrasts to truncated chicken GR, which has nM EC50s for DEX, F and B, and a 

weaker but significant response to Aldo and S.  Only DOC does not activate truncated 

chicken GR.  Truncated alligator GR has nM EC50s for DEX and F, a weaker but 

significant response to B (EC50 = 49 nM), a weak response to Aldo (EC50 = 0.16 µM) 

and S (EC50 = 0.12 µM) and no response to DOC. 

These results suggest that allosteric signaling between the hinge/LBD and one or 

more of the A, B and C domains influences the response of terrestrial vertebrate GRs to 

corticosteroids. 
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4. Discussion 

There are several reports of the response to different corticosteroids of the 

mammalian GR [20, 29-33, 39, 44].  However, the EC50s for steroid activation of GRs 

from other terrestrial vertebrates have not been studied in depth.  Proszkowiec-Weglarz 

and Porter [35] investigated the EC50 of B and Aldo for chicken GR.  Other steroids 

were not studied.  Oka et al. [34] investigated transcriptional activation of alligator GR 

by F, B, Aldo, DOC, and S, but not by DEX.  Here we report differences in the 

response of full length GRs from X. laevis, alligator, chicken and humans to a panel of 

corticosteroids, providing evidence for the evolution of selectivity of terrestrial 

vertebrate GRs for F, B, Aldo, DOC and S.  We confirm that Aldo has nM EC50s for 

both full length chicken and alligator GR [34, 35].  This contrasts with full length 

human and X. laevis GR, for which the EC50 of Aldo is 82 nM and 44 nM, respectively.  

In addition, we find that DOC, another mineralocorticoid [38, 45, 46], also has a lower 

EC50 (0.6 nM) for full length chicken GR than for human GR (110 nM) and X. laevis 

GR (23 nM).  S also has a substantially lower EC50 for chicken GR (0.17 nM) and 

alligator GR (0.35 nM) compared to human GR (50 nM) and X. laevis GR (953 nM).  

Together these data indicate that there were significant changes in the response to 

corticosteroids during the evolution of terrestrial vertebrates. 

Our studies with truncated GRs (hinge-LBD) indicate that one or more of the 

A, B and C domains are important in the response of the GR to corticosteroids.  We 

find that all of the truncated GRs (hinge-LBD) have substantially higher EC50s for all 

corticosteroids.  For example, the EC50s of DEX and F for truncated human GR 

increased to 8.3 nM and 1.2 µM, respectively.  Moreover, Aldo, B, DOC and S have an 

EC50 greater than 1 µM for truncated human GR.  Also, F, Aldo, DOC and S have an 

EC50 greater 1 µM for truncated X. laevis GR.  DOC has an EC50 greater 1 µM for 

truncated chicken and alligator GR.  Among the corticosteroids that we studied, 

transcriptional activation of the GR by DEX is least sensitive and by DOC is most 

sensitive to the loss of the A, B and C domains. 

Analysis of the crystal structures of a protein containing the C-D-E domains 

of peroxisome proliferator-activated receptor gamma (PPARγ)-retinoid X receptor 

(RXR), hepatocyte nuclear factor 4 (HNF-4α) and RXR-liver X receptor (LXR) reveal 

interactions between the C and E domains [13, 22, 47].  Although a structure of a GR 

containing the C-D-E domains has not been solved, several laboratories have reported 

that that the amino terminal A-B domains influence transcriptional activation of the GR 

[21, 23, 24, 26].  In addition the C domain on rat GR has allosteric effects on gene 

transcription [27, 28, 42].  Together this supports a complex mechanism in which 
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allosteric interactions between A, B, C and E domains in the GR regulate the specificity 

of the transcriptional response to corticosteroids. 

4.1 Evolution 

It is interesting that human mineralocorticoid receptor [MR] [48-50] and 

zebrafish MR [51] have an interaction between the domains A and B and the LBD, 

which regulates transcriptional activation by Aldo.  The A/B domains on human and 

zebrafish MR can interact with each other’s LBD, indicating that this is an ancient 

property of the MR [47].  The GR and MR are descended from a common ancestor [12, 

37, 52, 53], which suggests that the role in transcriptional activation of the interaction 

between the A/B and LBD domains arose in their common ancestor.  Further studies of 

the role in transcriptional activation of the A, B and C domains on the GR and MR 

should provide insights into the evolution of steroid specificity in these receptors. 
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Figure 1. Structures of various corticosteroids. 

Cortisol and corticosterone are physiological glucocorticoids in terrestrial vertebrates 

and ray-finned fish [12, 52, 54].  Aldosterone, 11-deoxycorticosterone and 

11-deoxycortisol are physiological mineralocorticoids [12, 38, 45, 48] with high affinity 

for human GR [30, 36].  11-deoxycortisol is both a mineralocorticoid and a 

glucocorticoid in lamprey [55]. 

 

Figure 2. Comparison of domains in some terrestrial vertebrate GRs. 

GRs from human, chicken, alligator and X. laevis are compared.  The functional A/B 

domain to E domains are schematically represented with the numbers of amino acid 

residues and the percentage of amino acid identity is depicted. 

GenBank accession numbers: human GR (NM_000176), chicken GR (NM_001037826), 

alligator GR (AB701407), X. laevis GR (NM_001088062). 

 

Figure 3. Ligand-specificities of human, chicken, alligator and X. laevis full length 

GRs and LBD GRs. 

Full-length human GR (A), chicken GR (C), alligator GR (E), and X. laevis GR (G) 

were expressed in CHO-K1 cells with an MMTV-luciferase reporter.  Plasmids for 

corresponding truncated GRs (human (B), chicken (D), alligator (F) and X. laevis (H) 

containing the D domain and LBD (E domain) fused to a GAL4-DBD were expressed 

in CHO-K1 cells with a luciferase reporter containing GAL4 binding site.  Cells were 

treated with 10-6 M DEX, F, B, Aldo, DOC, S or vehicle alone (DMSO).  Results are 

expressed as means ± SEM, n=3.  Y-axis indicates fold-activation compared to the 

activity of control vector with vehicle (DMSO) alone as 1. 

 

Figure 4. Concentration-dependent transcriptional activation by corticosteroids of 

full length and truncated human, chicken, alligator and X. laevis GRs. 

Plasmids encoding full length GRs (A: human GR, C: chicken GR, E: alligator GR, G: 

Xenopus GR) or plasmids encoding the GAL4-DBD fused to the D domain and LBD of 

GRs (B: human GR, D: chicken GR, F: alligator GR, H: Xenopus GR) were expressed 

in CHO-K1 cells.  Cells were treated with increasing concentrations of F, B, Aldo, 

DOC, S or vehicle alone (DMSO).  Y-axis indicates fold-activation compared to the 

activity of control vector with vehicle (DMSO) alone as 1. 
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