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Abstract	

	 The	increasing	number	of	genetic	association	studies	conducted	in	multiple	

populations	provides	unprecedented	opportunity	to	study	how	the	genetic	architecture	of	

complex	phenotypes	varies	between	populations,	a	problem	important	for	both	medical	and	

population	genetics.	Here	we	develop	a	method	for	estimating	the	transethnic	genetic	

correlation:	the	correlation	of	causal	variant	effect	sizes	at	SNPs	common	in	populations.	We	

take	advantage	of	the	entire	spectrum	of	SNP	associations	and	use	only	summary-level	

GWAS	data.	This	avoids	the	computational	costs	and	privacy	concerns	associated	with	

genotype-level	information	while	remaining	scalable	to	hundreds	of	thousands	of	

individuals	and	millions	of	SNPs.	We	apply	our	method	to	gene	expression,	rheumatoid	

arthritis,	and	type-two	diabetes	data	and	overwhelmingly	find	that	the	genetic	correlation	is	

significantly	less	than	1.	Our	method	is	implemented	in	a	python	package	called	popcorn.	

	

Introduction	

Many	complex	human	phenotypes	vary	dramatically	in	their	distributions	between	

populations	due	to	a	combination	of	genetic	and	environmental	differences.	For	example,	

northern	Europeans	are	on	average	taller	than	southern	Europeans1	and	African	Americans	

have	an	increased	rate	of	hypertension	relative	to	European	Americans2.	The	genetic	

contribution	to	population	phenotypic	differentiation	is	driven	by	differences	in	causal	

allele	frequencies,	effect	sizes,	and	genetic	architectures.	Understanding	the	root	causes	of	

phenotypic	differences	worldwide	has	profound	implications	for	biomedical	and	clinical	

practice	in	diverse	populations,	the	transferability	of	epidemiological	results,	aiding	multi-

ethnic	disease	mapping3,4,	assessing	the	contribution	of	non-additive	and	rare	variant	

effects,	and	modeling	the	genetic	architecture	of	complex	traits.	In	this	work	we	consider	a	

central	question	in	the	global	study	of	phenotype:	do	genetic	variants	have	the	same	

phenotypic	effects	in	different	populations?	

While	the	vast	majority	of	GWAS	have	been	conducted	in	European	populations5,	

the	growing	number	of	non-European	and	multi-ethnic	studies4,6,7	provide	an	opportunity	

to	study	genetic	effect	distributions	across	populations.	For	example,	one	recent	study	used	

mixed-model	based	methods	to	show	that	the	genome-wide	genetic	correlation	of	
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schizophrenia	between	European	and	African	Americans	is	nonzero8.	While	powerful,	

computational	costs	and	privacy	concerns	limit	the	utility	of	genotype-based	methods.	In	

this	work,	we	make	two	significant	contributions	to	studies	of	transethnic	genetic	

correlation.	First,	we	expand	the	definition	of	genetic	correlation	to	better	account	for	a	

transethnic	context.	Second,	we	develop	an	approach	to	estimating	genetic	correlation	

across	populations	that	uses	only	summary	level	GWAS	data.	Similar	to	other	recent	

summary	statistics	based	methods9–20,	our	approach	supplements	summary	association	

data	with	linkage	disequilibrium	(LD)	information	from	external	reference	panels,	avoids	

privacy	concerns,	and	is	scalable	to	hundreds	of	thousands	of	individuals	and	millions	of	

markers.	Unlike	traditional	approaches	that	focus	on	the	similarity	of	GWAS	results21–25	we	

utilize	the	entire	spectrum	of	GWAS	associations	while	accounting	for	LD	in	order	to	avoid	

filtering	correlated	SNPs.	

	 In	a	single	population,	the	genetic	correlation	of	two	phenotypes	is	defined	as	the	

correlation	coefficient	of	SNP	effect	sizes18,26.	In	multiple	populations,	differences	in	allele	

frequency	motivate	multiple	possible	definitions	of	genetic	correlation.	Because	a	variant	

may	have	a	higher	effect	size	but	lower	frequency	in	one	population,	we	consider	both	the	

correlation	of	allele	effect	sizes	as	well	as	the	correlation	of	allelic	impact.	We	define	the	

transethnic	genetic	effect	correlation	(ρge,	previously	defined	by	Lee	et	al26	and	implemented	

in	GCTA)	as	the	correlation	coefficient	of	the	per-allele	SNP	effect	sizes,	and	the	transethnic	

genetic	impact	correlation	(ρgi)	as	the	correlation	coefficient	of	the	population-specific	allele	

variance	normalized	SNP	effect	sizes.	

	Intuitively,	the	genetic	effect	correlation	measures	the	extent	to	which	the	same	

variant	has	the	same	phenotypic	change,	while	the	genetic	impact	correlation	gives	more	

weight	to	common	alleles	than	rare	ones	separately	in	each	population.	Consider	the	case	of	

a	SNP	that	is	rare	in	population	1	but	common	in	population	2,	and	has	an	identical	effect	

size	in	both	populations.	In	this	case,	the	correlation	of	effect	sizes	(the	genetic	effect	

correlation	ρge)	is	1,	but	this	provides	an	incomplete	picture	of	the	relationship	between	the	

two	populations,	as	the	allele	has	a	much	bigger	impact	on	the	distribution	of	the	phenotype	

in	population	2.	Therefore,	we	define	the	genetic	impact	correlation	ρgi	as	the	correlation	of	

effect	sizes	after	normalizing	genotypes	to	have	mean	0	and	variance	1.	In	our	hypothetical	

case	ρgi	<ρge,	however	the	opposite	can	also	be	true.	Consider	again	the	case	of	a	SNP	rare	in	

population	1	but	common	in	population	2.	If	the	effect	size	is	large	in	the	first	population	

but	small	in	the	second,	then	ρge	may	be	much	less	than	1,	but	the	impact	of	the	allele	in	the	
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two	populations	will	be	similar	and	therefore	ρgi	will	be	close	to	1.	While	other	definitions	of	

the	genetic	correlation	are	possible	(see	discussion),	these	quantities	capture	two	important	

questions	about	the	study	of	disease	in	multiple	populations:	to	what	extent	do	the	same	

mutations	in	multiple	populations	differ	in	their	phenotypic	effects?	And,	to	what	extent	are	

these	differences	mitigated	or	exacerbated	by	differences	in	allele	frequency?		

To	estimate	genetic	correlation,	we	take	a	Bayesian	approach	wherein	we	assume	

genotypes	are	drawn	separately	from	within	each	population	and	effect	sizes	have	a	normal	

prior	(the	infinitesimal	model27).	While	unlikely	to	represent	reality,	this	model	has	been	

used	successfully	in	practice8,16,17,28,29.	The	infinitesimal	assumption	yields	a	multivariate	

normal	distribution	on	the	observed	test	statistics	(Z-scores),	which	is	a	function	of	the	

heritability	and	genetic	correlation.	Rather	than	pruning	SNPs	in	LD10,30,31,	this	allows	us	to	

explicitly	model	the	resulting	inflation	of	Z-scores.	We	then	maximize	an	approximate	

weighted	likelihood	function	to	find	the	heritability	and	genetic	correlation.	This	method	is	

implemented	in	a	python	package	called	popcorn.	Though	derived	for	quantitative	

phenotypes,	popcorn	extends	easily	to	binary	phenotypes	under	the	liability	threshold	

model.	We	show	via	extensive	simulation	that	popcorn	produces	unbiased	estimates	of	the	

genetic	correlation	and	the	population	specific	heritabilities,	with	a	standard	error	that	

decreases	as	the	number	of	SNPs	and	individuals	in	the	studies	increases.	Furthermore,	we	

show	that	our	approach	is	robust	to	violations	of	the	infinitesimal	assumption.	

We	apply	popcorn	to	European	and	Yoruban	gene	expression	data32	as	well	as	GWAS	

summary	statistics	from	European	and	East	Asian	rheumatoid	arthritis	and	type-two	

diabetes	cohorts,33,34.	Our	analysis	of	gEUVADIS	shows	that	our	summary	statistic	based	

estimator	is	concordant	with	the	mixed	model	based	estimator.	We	find	that	the	mean	

transethnic	genetic	correlation	across	all	genes	is	low	(ρge=	0.320	(0.009)),	but	increases	

substantially	when	the	gene	is	highly	heritable	in	both	populations	(ρge=	0.772	(0.017)).	in	

RA	and	T2D,	we	find	the	genetic	effect	correlation	to	be	0.463	(0.058)	and	0.621	(0.088),	

respectively.		

Across	all	phenotypes	considered,	we	overwhelmingly	find	that	the	transethnic	

genetic	correlation	is	significantly	less	than	one.	This	observation	highlights	the	need	to	

study	phenotypes	in	multiple	populations	as	it	implies	that,	up	to	the	effects	of	un-observed	

variants,	effect	sizes	at	common	SNPs	tend	to	differ	between	populations.	This	indicates	

that	GWAS	results	may	not	transfer	between	populations,	and	therefore	disease	risk	

prediction	in	non-Europeans	based	on	current	GWAS	results	may	be	problematic,	
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necessitating	a	multi-population	approach	to	gain	insight	into	inter-population	differences	

in	the	genetic	architecture	of	complex	traits.	

	

Methods	

Our	method	takes	as	input	summary	association	statistics	from	two	studies	of	a	

phenotype	in	two	different	populations,	along	with	two	sets	of	reference	genotypes	each	

matching	one	of	the	populations	in	the	study.	Our	method	has	two	steps:	first,	we	estimate	

the	diagonal	elements	of	the	LD	matrix	products	Σ12,	Σ22	and	Σ1Σ2,	then,	using	these	

estimates,	we	find	the	maximum	likelihood	values	and	estimate	standard	errors	of	the	

parameters	of	interest:	h12,	h22	and	ρge	or	ρgi.	The	details	follow.	

	 Consider	GWAS	of	a	phenotype	conducted	in	two	different	populations.	Assume	we	

have	N1	individuals	genotyped	on	M	SNPs	in	study	one	and	N2	individuals	genotyped	on	the	

same	SNPs	study	two.	Let	X1,	X2	be	the	matrices	of	mean-centered	genotypes	in	study	one	

and	study	two,	respectively,	and	let	Y1,	Y2	be	their	normalized	phenotypes.	Let	f1,	f2	be	

vectors	of	the	allele	frequencies	of	the	M	SNPs	common	to	both	populations.	Assuming	

Hardy-Weinberg	equilibrium	within	each	population	separately,	the	allele	variances	are	σ12	

=	2f1(1	–	f1),	σ22	=	2f2(1	–	f2).	Let	β1,	β2	be	the	(unobserved)	per-allele	effect	sizes	for	each	SNP	

in	studies	one	and	two,	respectively.	The	heritability	in	study	one	is	then	h12	=	Σi	σ1i2	β1i2	

(and	likewise	for	study	two).	The	objective	of	this	work	is	to	estimate	transethnic	genetic	

correlation	from	summary	statistics	of	common	variants	 	(and	likewise	

for	study	two)	and	estimates	of	population	LD	matrices	(Σ1	and	Σ2)	from	external	reference	

panels.	Define	the	genetic	effect	correlation	ρge	=	Cor(β1,	β2)	and	the	genetic	impact	

correlation	ρgi	=	Cor(	σ1β1,	σ2	β2).	

We	assume	the	genotypes	are	drawn	randomly	from	each	population	and	that	

phenotypes	are	generated	by	the	linear	model	Y1	=	X1β1	+	ε1	(likewise	for	phenotype	two).	

When	effect	sizes	β	are	assumed	inversely	proportional	to	allele	frequency,	as	is	commonly	

done16,29,	we	show	(Appendix)	that	under	the	linear	infinitesimal	genetic	architecture,	the	

joint	distribution	of	the	Z-scores	from	each	study	is	asymptotically	multivariate	normal	with	

mean	 	and	variance:	
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However,	when	effect	sizes	are	assumed	independent	of	allele	frequency	we	show:	

	

(2)	

	

	

Given	these	equations	for	variance,	the	quantities	ρgi	or	ρge	and	h12,	h22	can	be	estimated	by	

maximizing	the	multivariate	normal	likelihood,	

,	where	C	is	either	of	the	above	covariance	

matrices	(1)	and	(2).	Because	Σ1	and	Σ2	are	estimated	from	finite	external	reference	panels,	

maximum	likelihood	estimation	of	the	above	multivariate	normal	leads	to	over-fitting.	We	

employ	two	optimizations	to	avoid	this	problem.	First,	we	maximize	an	approximate	

weighted	likelihood	that	uses	only	the	diagonal	elements	of	each	block	of	Var(Z).	This	

allows	us	to	account	for	the	LD-induced	inflation	of	tests	statistics,	but	discards	covariance	

information	between	pairs	of	Z-scores,	and	therefore	leads	to	over-counting	Z-scores	of	

SNPs	in	high	LD.	To	compensate	for	this,	we	down	weight	Z-scores	of	SNPs	in	proportion	

their	LD.	Second,	rather	than	compute	the	full	products	Σ12,	Σ22	and	Σ1Σ2	over	all	M	SNPs	in	

the	genome,	we	choose	a	window	size	W	and	approximate	the	product	by	

.	These	optimizations	are	similar	to	those	employed	by	LD	score	

regression16.	The	full	details	of	the	derivation	and	optimization	are	provided	in	the	

appendix.	

	

Results	

Simulated	Genotypes	and	Simulated	Phenotypes	

	 We	simulated	50,000	European-like	(EUR)	and	50,000	East	Asian-like	(EAS)	

individuals	at	248,953	SNPs	from	chromosomes	1-3	with	allele	frequency	above	1%	in	both	

European	and	East	Asian	HapMap3	populations	with	HapGen235.	HapGen2	implements	a	

haplotype	recombination	with	mutation	model	that	results	in	excess	local	relatedness	

among	the	simulated	individuals.	To	account	for	this	local	structure,	we	used	Plink236	to	

filter	individuals	with	genetic	relatedness	above	0.05,	resulting	in	4499	EUR-like	indivudals	

and	4837	EAS-like	individuals.	From	these	simulated	individuals,	500	per	population	were	

chosen	uniformly	at	random	to	serve	as	an	external	reference	panel	for	estimating	Σ1	and	Σ2.		

l(⇢g{i,e}, h
2
1, h

2
2|Z,⌃,�) / �ln(|C|)� Z>C�1Z

(⌃a⌃b)ii =
w=i+WX

w=i�W

raiwrbiw

Var(Z) =

2

4
⌃1 +

N1+1
k�2

1k1
h2
1⌃1�2

1⌃1 ⇢ge
p
h2
1h

2
2

p
N1N2p

k�2
1k1k�2

2k1

⌃1

p
�2
1�

2
2⌃2

⇢ge
p

h2
1h

2
2

p
N1N2p

k�2
1k1k�2

2k1

⌃2

p
�2
2�

2
1⌃1 ⌃2 +

N2+1
k�2

2k1
h2
2⌃2�2

2⌃2

3

5

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2016. ; https://doi.org/10.1101/036657doi: bioRxiv preprint 

https://doi.org/10.1101/036657
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

In	each	simulation	effect	sizes	were	drawn	from	a	“spike	and	slab”	model,	where	

	with	probability	p	and	 	with	

probability	1-p.	ρgi	was	analytically	computed	from	the	simulated	effect	sizes	and	allele	

frequencies	in	the	simulated	reference	genotypes.	Quantitative	phenotypes	were	generated	

under	a	linear	model	with	i.i.d.	noise	and	normalized	to	have	mean	0	and	variance	1,	while	

binary	phenotypes	were	generated	under	a	liability	threshold	model	where	individuals	are	

labeled	cases	when	their	liability	exceeds	a	threshold	 ,	with	K	the	

population	disease	prevalence37.	

	 We	varied	h12,	h22,	ρge,	and	ρgi,	as	well	as	the	number	of	individuals	in	each	study	(N1,	

N2),	the	number	of	SNPs	(M),	the	population	prevalence	K,	and	proportion	of	causal	variants	

(p)	in	the	simulated	GWAS	and	generated	summary	statistics	for	each	study.	The	results	

shown	in	Figure	1	and	Figure	S1	demonstrate	that	the	estimators	are	nearly	unbiased	as	the	

genetic	correlation	and	heritabilities	vary.	Furthermore,	by	varying	the	proportion	of	causal	

variants	p	we	show	that	our	estimator	is	robust	to	violations	of	the	infinitesimal	assumption	

(Figure	S2).	In	figure	S3,	we	show	that	the	standard	error	of	the	estimator	decreases	as	the	

number	of	SNPs	and	individuals	in	the	study	increases.	Finally,	we	show	in	Table	S1	that	our	

estimates	of	the	heritability	of	liability	in	case	control	studies	are	nearly	unbiased.	

	

Simulations	with	nonstandard	disease	models	

	 Our	approach,	as	well	as	genotype-based	methods	such	as	GCTA,	makes	

assumptions	about	the	genetic	architecture	of	complex	traits.	Previous	work	has	shown	that	

violations	of	these	assumptions	can	lead	to	bias	in	heritability	estimation38,	therefore	we	

sought	to	quantify	the	extent	that	this	bias	may	effect	our	estimates.	We	simulated	

phenotypes	under	six	different	disease	models.	Independent:	effect	size	independent	of	

allele	frequency.	Inverse:	effect	size	inversely	proportional	to	allele	frequency.	Rare:	only	

SNPs	with	allele	frequency	under	10%	affect	the	trait.	Common:	only	SNPs	with	allele	

frequency	between	40%	and	50%	affect	the	trait.	Difference:	effect	size	proportional	to	

difference	in	allele	frequency.	Adversarial:	difference	model	with	sign	of	beta	set	to	increase	

the	phenotype	in	the	population	where	the	allele	is	most	common.	Additional	genetic	

architectures	are	possible,	including	ones	where	effect	sizes	are	not	a	direct	function	of	

MAF39.		
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We	simulated	phenotypes	using	genotypes	with	allele	frequency	above	1%	or	5%	

and	compared	the	true	and	estimated	genetic	impact	and	effect	correlation	among	all	

models	(Table	1).	We	find	that	when	only	SNPs	with	frequency	above	5%	in	both	

populations	are	used,	the	difference	in	ρge	and	ρgi	is	minimal	except	in	the	most	adversarial	

cases.	Even	in	the	adversarial	model,	the	true	difference	is	only	7%.	Though	unlikely	to	

represent	reality,	the	four	nonstandard	disease	models	result	in	substantial	bias	in	our	

estimators.	When	SNPs	with	allele	frequency	above	1%	in	both	populations	are	included,	

the	differences	are	more	pronounced.	This	is	because	the	normalizing	constant	1/σ	rapidly	

increases	as	the	SNP	becomes	more	rare.	Indeed,	as	SNPs	become	more	rare	having	an	

accurate	disease	model	becomes	increasingly	important.	Therefore	we	proceed	with	a	5%	

MAF	cutoff	in	our	analysis	of	real	data,	and	use	the	notation	hc2	to	refer	to	the	heritability	of	

SNPs	with	allele	frequency	above	5%	in	both	populations	(the	common-SNP	heritability).	

Note,	however,	that	one	of	the	advantages	of	maximum	likelihood	estimation	in	general	is	

that	the	likelihood	can	be	reformulated	to	mimic	the	disease	model	of	interest.	

	

Validation	of	Popcorn	using	gene	expression	in	GEUVADIS	

We	compared	the	common-SNP	heritability	(hc2)	and	genetic	correlation	estimates	

of	popcorn	to	GCTA	in	the	gEUVADIS	dataset	for	which	raw	genotypes	are	publicly	available.	

gEUVADIS	consists	of	RNA-seq	data	for	464	lymphoblastoid	cell	line	(LCL)	samples	from	

five	populations	in	the	1000	genomes	project.	Of	these,	375	are	of	European	ancestry	(CEU,	

FIN,	GBR,	TSI)	and	89	are	of	African	ancestry	(YRI).	Raw	RNA-sequencing	reads	obtained	

from	the	European	Nucleotide	Archive	were	aligned	to	the	transcriptome	using	UCSC	

annotations	matching	hg19	coordinates.	RSEM	was	used	to	estimate	the	abundances	of	each	

annotated	isoform	and	total	gene	abundance	is	calculated	as	the	sum	of	all	isoform	

abundances	normalized	to	one	million	total	counts	or	transcripts	per	million	(TPM).	For	

eQTL	mapping,	Caucasian	and	Yoruban	samples	were	analyzed	separately.	For	each	

population,	TPMs	were	median-normalized	to	account	for	differences	in	sequencing	depth	

in	each	sample	and	standardized	to	mean	0	and	variance	1.	Of	the	29763	total	genes,	9350	

with	TPM	>	2	in	both	populations	were	chosen	for	this	analysis.		

For	each	gene,	we	conducted	a	cis-eQTL	association	study	at	all	SNPs	within	1	

megabase	of	the	gene	body	with	allele	frequency	above	5%	in	both	populations	using	30	

principal	components	as	covariates.	We	found	that	GCTA	and	popcorn	agree	on	the	global	

distribution	of	heritability	(Figure	S3),	and	that	GCTA’s	estimates	of	genetic	correlation	
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have	a	similar	distribution	to	popcorn’s	genetic	effect	and	genetic	impact	correlation	

estimates	(Figure	2).	While	the	number	of	SNPs	and	individuals	included	in	each	gene	

analysis	are	too	small	to	obtain	accurate	point	estimates	of	the	genetic	correlation	on	a	per-

gene	basis	(N=464,	M=4279.5),	the	large	number	of	genes	enables	accurate	estimation	of	

the	global	mean	heritability	and	genetic	correlation.	

	

Common-SNP	heritability	and	genetic	correlation	of	gene	expression	in	gEUVADIS	

We	find	that	the	average	cis-hc2	of	the	expression	of	the	genes	we	analyzed	was	

0.093	(0.002)	in	EUR	and	0.088	(0.002)	in	YRI.	Our	estimates	are	higher	than	previously	

reported	average	cis-heritability	estimates	of	0.055	in	whole	blood	and	0.057	in	adipose40,	

which	could	arise	for	several	reasons.	First,	we	remove	68%	of	the	transcripts	that	are	

lowly	expressed	in	either	the	YRI	or	EUR	data.	Second,	estimates	from	RNA-seq	analysis	of	

cell	lines	might	not	be	directly	comparable	to	microarray	data	from	tissue.	

The	average	genetic	effect	correlation	was	0.320	(0.010),	while	the	average	genetic	

impact	correlation	was	0.313	(0.010).	Notably,	the	genetic	correlation	increases	as	the	cis-

hc2	of	expression	in	both	populations	increases	(Figure	3).	In	particular,	when	the	cis-hc2	of	

the	gene	is	at	least	0.2	in	both	populations	the	genetic	effect	correlation	was	0.772	(0.017)	

while	the	genetic	impact	correlation	was	0.753	(0.018).	

In	order	to	verify	that	there	were	no	small-sample	size	or	conditioning	biases	in	our	

analysis,	we	analyzed	the	genetic	correlation	of	simulated	phenotypes	over	the	gEUVADIS	

genotypes.	We	sampled	pairs	of	heritabilities	from	the	estimated	expression	heritability	

distribution	and	simulated	pairs	of	phenotypes	to	have	the	given	heritability	and	a	genetic	

effect	correlation	of	0.0	over	randomly	chosen	4000	base	regions	from	chromosome	1	of	the	

gEUVADIS	genotypes.	Without	conditioning,	the	average	estimated	genetic	effect	

correlation	was	-0.002	(0.003),	indicating	that	the	estimator	remained	unbiased.	

Furthermore,	the	average	estimated	genetic	effect	correlation	was	not	significantly	different	

from	0.0	conditional	on	the	estimates	of	heritability	being	above	a	certain	threshold	(Figure	

S4).		

We	find	that	while	the	average	genetic	correlation	is	low,	the	genetic	correlation	

increases	with	the	cis-hc2	of	the	gene,	indicating	that	as	cis-genetic	regulation	of	gene	

expression	increases	it	does	so	similarly	in	both	YRI	and	EUR	populations.	This	may	help	

interpret	the	recent	observation	that	while	the	global	genetic	correlation	of	gene	expression	

across	tissues	is	low40,	cis-eQTL’s	tend	to	replicate	across	tissues41.	As	the	presence	of	a	cis-
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eQTL	indicates	substantial	cis-genetic	regulation,	an	analysis	of	eQTL	replication	across	

tissues	is	implicitly	conditioning	on	the	heritability	of	gene	expression	being	high	and	

therefore	may	indicate	much	higher	genetic	correlation	than	average.	

	

Summary	statistics	of	RA	and	T2D	

Finally,	we	sought	to	examine	the	transethnic	ρgi	and	ρge	in	RA	and	T2D	cohorts	for	

which	raw	genotypes	are	not	available.	We	obtained	summary	statistics	of	GWAS	for	

rheumatoid	arthritis	and	type-2	diabetes	conducted	in	European	and	East	Asian	

populations.	We	used	genotypes	from	504	East	Asian	and	503	European	individuals	

sequenced	as	part	of	the	1000	genomes	project	as	population-specific	external	reference	

panels	for	our	EAS	and	EUR	summary	statistics,	respectively.	We	removed	the	MHC	region	

(chromosome	6,	25–35	Mb)	from	the	RA	summary	statistics.	We	estimated	the	common-

SNP	heritability	and	genetic	correlation	using	2,539,629	SNPs	genotyped	or	imputed	in	both	

RA	studies	and	1,054,079	SNPs	genotyped	or	imputed	in	both	T2D	studies	with	allele	

frequency	above	5%	in	1000	genomes	EUR	and	EAS	populations.	The	hc2	and	genetic	

correlation	estimates	are	presented	in	Table	2.	Our	RA	hc2	estimates	of	0.177	(0.015)	and	

0.221	(0.026)	for	EUR	and	EAS,	respectively,	are	lower	than	a	previously	reported	mixed-

model	based	heritability	estimates	of	0.32	(0.037)	in	Europeans42.	Similarly,	our	T2D	hc2	

estimates	of	0.242	(0.013)	and	0.105	(0.021)	for	EUR	and	EAS,	respectively,	are	lower	than	

a	previously	reported	mixed-model	based	estimate	of	0.51	(0.065)	in	Europeans42.	We	

stress	that	this	discrepancy	is	likely	due	to	the	difference	between	common-SNP	heritability	

hc2	and	total	narrow-sense	heritability	hg2.	Furthermore,	estimates	of	the	heritability	of	T2D	

from	family	studies	can	vary	significantly43,44.	

	We	find	the	genetic	effect	correlation	in	RA	and	T2D	to	be	0.463	(0.058)	and	0.621	

(0.088),	respectively,	while	the	genetic	impact	correlation	is	not	significantly	different	at	

0.455	(0.056)	and	0.606	(0.083).		The	transethnic	genetic	impact	and	effect	correlation	for	

both	phenotypes	are	significantly	different	from	both	1	and	0	(Table	2),	showing	that	while	

there	is	clear	genetic	overlap	between	the	phenotypes,	the	per	allele	effect	sizes	differ	

significantly	between	the	two	populations.	

	

Discussion	

	 We	have	developed	the	transethnic	genetic	effect	and	genetic	impact	correlation	and	

provided	an	estimator	for	these	quantities	based	only	on	summary-level	GWAS	information	
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and	suitable	reference	panels.	We	have	applied	our	estimator	to	several	phenotypes:	

rheumatoid	arthritis,	type-2	diabetes	and	gene	expression.	While	the	gEUVADIS	dataset	

lacks	the	power	required	to	make	inferences	about	the	genetic	correlation	of	single	or	small	

subsets	of	genes,	we	can	make	inferences	about	the	global	structure	of	genetic	correlation	of	

gene	expression.	We	find	that	the	global	mean	genetic	correlation	is	low,	but	that	it	

increases	substantially	when	the	heritability	is	high	in	both	populations.	In	all	phenotypes	

analyzed,	the	genetic	correlation	is	significantly	different	from	both	0	and	1.	Our	results	

show	that	global	differences	in	SNP	effect	size	of	complex	traits	can	be	large.	In	contrast,	

effect	sizes	of	gene	expression	appear	to	be	more	conserved	where	there	is	strong	genetic	

regulation.	

	 It	is	not	possible	to	draw	conclusions	about	polygenic	selection	from	estimates	of	

transethnic	genetic	correlation.	The	effect	sizes	may	be	identical	(!!" = 1)	while	polygenic	
selection	acts	to	change	only	the	allele	frequencies.	Similarly,	the	effect	sizes	may	be	

different	(!!" < 1)	without	selection.	Differences	in	effect	sizes	at	common	SNPs	can	result	
from	many	phenomena.	We	expect	un-typed	and	un-imputed	variants	differentially	linked	

to	observed	SNPs	to	contribute	significantly,	along	with	rare	or	population-specific	variants	

differentially	linked	to	observed	SNPs.	If	a	gene-gene	or	gene-environment	interaction	

exists,	but	only	marginal	effects	are	tested,	the	observed	marginal	effects	may	be	different	in	

each	population	due	to	allele	frequency	differences	even	if	the	interaction	effect	is	the	same	

in	both	populations,	and	this	will	result	in	decreased	genetic	correlation.	While	within-locus	

(dominance)	interactions	may	also	play	a	role45,	the	magnitude	of	this	effect	has	been	

debated46.	We	emphasize	that	we	cannot	differentiate	between	these	effects	on	the	basis	of	

this	analysis	alone,	and	further	research	is	required	to	establish	the	magnitude	of	the	

contribution	of	each	of	these	effects	to	inter-population	effect	size	differences.	

Estimates	of	the	transethnic	genetic	correlation	are	important	for	several	reasons.	

They	may	help	inform	best	practices	for	transethnic	meta-analysis,	potentially	offering	

improvements	over	current	methods	that	use	Fst	to	cluster	populations	for	analysis4.	

Further,	the	transethnic	genetic	correlation	constrains	the	limit	of	out	of	sample	phenotype	

predictive	power.	If	the	maximum	within	population	correlation	of	predicted	phenotype	P	

to	true	phenotype	Y	is	 ,	then	the	maximum	out	of	population	correlation	is	

	(Appendix).	Our	observation	that	for	RA,	T2D,	and	gene	expression	the	

genetic	correlation	is	low	shows	that	out	of	population	phenotypic	predictive	power	is	quite	
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low.	Similarly,	it	implies	that	disease	risk	assessment	in	non-Europeans	based	on	current	

GWAS	results	may	be	problematic,	necessitating	increased	study	of	disease	in	many	

populations	to	gain	insight	into	differences	in	genetic	architecture	and	improve	risk	

assessment.	

	 While	the	genetic	correlation	of	multiple	phenotypes	in	one	population	has	a	

relatively	straightforward	definition,	extending	this	to	multiple	populations	motivates	

multiple	possible	extensions.	In	this	work	we	have	provided	estimators	for	the	correlation	

of	genetic	effect	and	genetic	impact	but	other	quantities	related	to	the	shared	genetics	of	

complex	traits	between	populations	include	the	correlation	of	variance	explained	

	and	proportion	of	shared	causal	variants	between	the	two	

populations.	Interestingly,	while	our	goal	was	to	construct	an	estimator	that	determined	the	

extent	of	genetic	sharing	independent	of	allele	frequency,	we	observe	that	the	correlation	of	

genetic	effect	and	genetic	impact	are	similar.	Furthermore,	our	simulations	show	that	under	

a	random	effects	model	utilizing	only	SNPs	with	allele	frequency	above	5%	in	both	

populations	the	true	genetic	effect	and	genetic	impact	correlation	are	similar.	We	conclude	

that	at	variants	common	in	both	populations,	differences	in	effect	size	and	not	allele	

frequency	are	driving	the	transethnic	phenotypic	differences	in	these	traits.	

	 Our	approach	to	estimating	genetic	correlation	has	two	major	advantages	over	

mixed-model	based	approaches.	First,	utilizing	summary	statistics	allows	application	of	the	

method	without	data-sharing	and	privacy	concerns	that	come	with	raw	genotypes.	Second,	

our	approach	is	linear	in	the	number	of	SNPs	avoiding	the	computational	bottleneck	

required	to	estimate	the	genetic	relationship	matrix.	Conceptually,	our	approach	is	very	

similar	to	that	taken	by	LD	score	regression.	Indeed,	the	diagonal	of	the	LD	matrix	product	

in	one	population	are	exactly	the	LD-scores	( ).	One	could	ignore	our	likelihood-

based	approach	and	define	cross-population	scores	 	in	order	to	exploit	the	

linear	relationship	 	(a	similar	approach	can	be	taken	for	

the	genetic	effect	correlation).	Since	LD-score	regression	has	been	successfully	used	to	

compute	the	genetic	correlation	of	two	phenotypes	in	a	single	population,	this	derivation	

can	be	viewed	as	an	extension	of	LD-score	regression	to	one	phenotype	in	two	different	

populations.	The	main	difference	in	our	approach	is	choosing	maximum	likelihood	rather	
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than	regression	in	order	to	fit	the	model.	A	comparison	of	our	method	to	the	ldsc	software	

shows	they	perform	similarly	as	heritability	estimators	(Figure	S5).	

	 Of	course,	our	method	is	not	without	drawbacks.	First,	it	requires	a	large	sample	

size	and	large	number	of	SNPs	to	achieve	standard	errors	low	enough	to	generate	accurate	

estimates.	Until	recently	large	sample	GWAS	have	been	rare	in	non-European	populations,	

though	they	are	becoming	more	common.	Similarly,	reference	panel	quality	may	suffer	in	

non-European	populations	and	this	may	impact	downstream	analysis47.	Second,	it	is	limited	

to	analyzing	relatively	common	SNPs,	both	because	having	an	accurate	disease	model	is	

important	for	the	analysis	of	rare	variants	and	because	effect	size	and	correlation	coefficient	

estimates	have	a	high	standard	error	at	rare	SNPs16.	Third,	our	analysis	is	currently	limited	

to	SNPs	that	are	present	in	both	populations.	Indeed	it	is	currently	unclear	how	best	to	

handle	population-specific	variants	in	this	framework.	Fourth,	our	estimator	of	ρ	is	

bounded	between	-1	and	1.	This	may	induce	bias	when	the	true	value	is	close	to	the	

boundary	and	the	sample	size	is	small.	Finally,	admixed	populations	induce	very	long-range	

LD	that	is	not	accounted	for	in	our	approach	and	we	are	therefore	limited	to	un-admixed	

populations16.		

	 Our	analysis	leaves	open	several	avenues	for	future	work.	We	approximately	

maximize	the	likelihood	of	an	!×!	multivariate	normal	distribution	via	a	method	that	uses	
only	the	diagonal	elements	of	each	block,	discarding	covariance	information	between	Z-

scores.	A	better	approximation	may	lower	the	standard	error	of	the	estimator,	facilitating	

an	analysis	of	the	genetic	correlation	of	functional	categories,	pathways	and	genetic	regions.	

We	would	also	like	to	extend	our	analysis	to	include	population	specific	variants	as	well	as	

variants	at	frequencies	between	1-5%	or	lower	than	1%.	Our	simulations	indicate	that	

having	an	accurate	disease	model	is	important	for	determining	the	difference	between	the	

genetic	effect	and	genetic	impact	correlation	when	rare	variants	are	included.	Maximum	

likelihood	approaches	are	well	suited	to	different	genetic	architectures.	For	example,	one	

could	estimate	both	the	global	relationship	between	allele	frequency	and	effect	size	and	the	

global	relationship	between	per-SNP	FST	and	genetic	correlation	by	incorporating	

parameters	α	and	ϒ	into	the	prior	distribution	of	the	effect	sizes,	

.		We	expect	that	incorporating	

these	parameters	will	improve	estimates	of	heritability	and	genetic	correlation	while	

revealing	important	biological	insights.	
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Appendix

Consider two GWAS of a phenotype conducted in di↵erent populations populations. Assume we have N1

individuals genotyped or imputed to M SNPs in study one and N2 individuals genotyped or imputed to

M SNPs in study two. Let X1, X2 and Y1, Y2 be the matrices of mean-centered genotypes and phenotypes

of the individuals in study one and two, respectively, with f1, f2 the allele frequencies of the M SNPs

common to both populations. Assuming Hardy-Weinberg equilibrium, the allele variances are �2
1 = 2f1(1�

f1),�2
2 = 2f2(1� f2). Let �1,�2 be the (unobserved) per-allele e↵ect sizes for each SNP in studies one and

two, respectively. Define the genetic impact correlation ⇢
gi

= Cor(
p
�2
1�1,

p
�2
2�2) and the genetic e↵ect

correlation ⇢
ge

= Cor(�1,�2). We present a maximum likelihood framework for estimating the heritability of

the phenotype in study 1 and it’s standard error, the heritability of the phenotype in study 2 and it’s standard

error, and the genetic e↵ect and impact correlation of the phenotype between the studies and it’s standard

error given only the summary statistics Z1, Z2 and reference genotypes G1, G2 representing the populations

in the studies. We assume that genotypes are drawn randomly from populations with expected correlation

matrices ⌃1 (and similarly for study two), and that every SNP is causal with a normally distributed e↵ects

size (though this assumption is not necessary in practice, see Figure S1).

Genetic impact correlation

Let X 0
1 = X1p

�

2
1

(and similarly for study 2) be normalized genotype matrices. We consider the standard linear

model for generation of the phenotypes, where

Y1 = X 0
1�1 + ✏1

Y2 = X 0
2�2 + ✏2

For convenience of notation let h2
ix

= ⇢
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p
h2
1h

2
2. We assume the SNP e↵ects follow the infinitesimal model,

where every SNP has an e↵ect size drawn from the normal distribution, and that the residuals are independent

for each individual and normally distributed:
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where h2
1, h

2
2 are the heritability of the disease in study one and two, respectively, and ⇢

gi

is the genetic

impact correlation.

Using the above model, we compute the distribution of the observed Z scores as a function of the reference

panel correlations and the model parameters (h2
1, h

2
2, ⇢gi). Given a distribution for Z and an observation of

Z we can then choose parameters which give the highest probability of observing Z. First, we compute the

distribution of Z. It is well known that the Z-scores of a linear regression are normally distributed given

� when the sample size is large enough. Since P(Z) / P(Z|�)P(�) and the product of normal distributions

is normal, we only need to compute the unconditional mean and variance of Z to know its distribution.

Specifically, let Z = [Z>
1 , Z>

2 ]>, then it’s mean is

E[Z] = E

2

4
X

0>
1 Y1p
N1

X

0>
2 Y2p
N2

3

5 =

2

4
1p
N1

(E[X 0>
1 X 0

1]E[�1] + E[X 0>
1 ]E[✏1])

1p
N2

(E[X 0>
2 X 0

2]E[�2] + E[X 0>
2 ]E[✏2])

3

5 = 0

The within-population variance is:
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where r
pij

= ⌃
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is the correlation coe�cient of SNP i and j in population p. Similarly, the between-

population variance is:
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where ⌃(i) denotes the i’th row of ⌃ and ⌃(j) denotes the j’th column. The covariance of the Z-scores is

2
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C = Var(Z) =
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and Z ⇠ N (0, C).

Genetic e↵ect correlation

Let h
ex

= ⇢
ge

p
h2
1h

2
2. We modify the procedure above to use mean-centered instead of normalized genotype

matrices and model the distribution of the e↵ect sizes as
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Notice that a linear model with e↵ects sizes acting on un-normalized genotypes is the same as a linear model

with e↵ect sizes acting on normalized genotypes under the substitution �1,2 !
q

�2
1,2�1,2. Therefore the

covariance of Z-scores on the per allele scale can be immediately inferred from the prior derivation
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Approximate maximum likelihood estimation

Let C =

2

4 C11 C12

C21 C22

3

5 be either of the above covariance matrices written in block form. We approximately

optimize the above likelihood as follows: first we find h2
1 and h2

2 by maximizing the likelihood corresponding

to C11 and C22, then we find ⇢
gi

or ⇢
ge

by maximizing the likelihood corresponding to C12:
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◆

Because we are discarding between-SNP covariance information (Cov(Z1i, Z1j)), highly correlated SNPs will

be overcounted in our approximate likelihood. As a simple example, notice that two SNPs in perfect LD

will each contribute identical terms to the approximate likelihood, and therefore should be downweighted

by a factor of 1/2. The extent to which SNP i is over-counted is exactly the i’th entry in it’s corresponding

3
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LD-matrix product. Therefore we let wgi
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to reduce the

variance in our estimates of the parameters h2
1, h

2
2, ⇢gi and ⇢
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.

Furthermore, rather than compute the full products ⌃2
1, ⌃

2
2 and ⌃1⌃2 over all M SNPs in the genome, we

choose a window size W and approximate the product by (⌃
a

⌃
b

)
ii

=
P

w=i+W

w=i�W

r
aiw

r
biw

. Though maximum

likelihood estimation admits a straightforward estimate of the standard error via the fisher information, we

found these estimates to be inaccurate in practice. Instead, we use block jackknife with block size equal to

min(100, M

200 ) SNPs to ensure that blocks are large enough to remove residual correlations.

Out of population prediction of phenotypic values

Consider using the results of a GWAS with perfect power in population 2 to predict the phenotypic values of

a set of individuals from population 1. This defines the upper limit of the correlation of true and predicted

phenotypic values. Let the true values of the e↵ects sizes in population 2 be �2. Let the true phenotypes

in population 1 be Y = X1�1 + ✏1 while the predicted phenotypes are P = X1�2. We are interested in the

correlaiton of the predicted and true phenotypes ⇢MAX

Y P

= Cor(Y, P ). Notice that, given X, the true and

predicted phenotype of each individual is an a�ne transformation of a multivariate normal random variable
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as N ! 1
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Figure	Titles	and	Legends	

Figure	1:	True	and	estimated	genetic	impact	and	effect	correlation.	All	simulations	

conducted	with	simulated	EUR	and	EAS	heritability	of	0.5	using	4499	simulated	EUR	and	

4836	simulated	EAS	individuals	at	248,953	SNPs.	

Figure	2:	Distribution	of	genetic	correlation	comparison	between	popcorn	and	GCTA.	

Distribution	was	computed	using	a	gaussian	kde	on	the	set	of	genetic	correlation	estimates.	
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Figure	3:	Genetic	correlation	as	a	function	of	heritability	for	gene	expression.	The	mean	and	

standard	error	of	the	genetic	correlation	of	the	set	of	genes	with	h12	and	h22	exceeding	

threshold	h	in	each	analysis	(y-axis)	is	plotted	against	h	(x-axis).	

Tables	

	 MAF	>	0.01	 MAF	>	0.05	

Model	 	 	 	 	 	 	 	 	
Independent	 0.500	 0.478	 0.500	 0.460	 0.500	 0.488	 0.509	 0.469	

Inverse	 0.431	 0.500	 0.567	 0.496	 0.479	 0.500	 0.555	 0.482	

Rare	 0.500	 0.467	 0.382	 0.863	 0.500	 0.496	 0.998	 0.756	

Common	 0.500	 0.500	 0.522	 0.493	 0.500	 0.500	 0.502	 0.496	

Difference	 0.500	 0.416	 0.354	 0.435	 0.500	 0.461	 0.410	 0.412	

Adversarial	 0.710	 0.604	 0.525	 0.651	 0.714	 0.667	 0.601	 0.675	

Table	1:	True	and	estimated	values	of	the	genetic	impact	and	effect	correlation	in	simulated	

EUR-like	and	EAS-like	genotypes.	Results	are	the	average	of	100	simulations	with	

phenotype	heritability	of	0.5	in	each	population.	

	

	

	

	

	

	

	

	

	

	

	

	

Table	2:	Heritability	and	genetic	correlation	of	RA	and	T2D	between	EUR	and	EAS	

populations.	EUR	RA	data	contained	8,875	cases	and	29,367	controls	for	a	study	prevalence	

of	0.23.	EAS	RA	data	contained	4,873	cases	and	17,642	controls	for	a	study	prevalence	of	

0.22.	RA	disease	prevalence	was	assumed	to	be	0.5%	in	both	populations7.	T2D	EUR	data	

contained	12171	cases	and	56862	controls	for	a	study	prevalence	of	0.18.	T2D	EAS	data	

⇢ge ⇢gi ⇢̂ge ⇢̂gi ⇢ge ⇢gi ⇢̂ge ⇢̂gi

	 	 hEUR2	liability	 hEAS2	liability	 ρge	 ρgi	

RA	 Est.	(SE)	 0.18	(0.02)	 0.22	(0.03)	 0.46	(0.06)	 0.46	(0.06)	

	 95%	CI	 [0.15,	0.21]	 [0.16,	0.28]	 [0.34, 0.58]	 [0.34, 0.58]	

	 p>0	 3.90e-32	 1.89e-17	 1.37e-15	 8.16e-16	

	 p<1	 0.0	 3.1e-197	 2.53e-20	 4.87e-22	

T2D	 Est.	(SE)	 0.24	(0.01)	 0.11	(0.02)	 0.62	(0.09)	 0.61	(0.08)	

	 95%	CI	 [0.22,	0.26]	 [0.07,	0.15]	 [0.44,	0.80]	 [0.45,0.77]	

	 p>0	 2.41e-77	 5.73e-7	 1.70e-12	 2.85e-13	

	 p<1	 0.0	 0.0	 1.066e-05	 2.06e-06	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2016. ; https://doi.org/10.1101/036657doi: bioRxiv preprint 

https://doi.org/10.1101/036657
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

contained	6952	cases	and	11865	controls	for	a	study	prevalence	of	0.37.	T2D	EUR	

prevalence	was	assumed	to	be	8%33	while	T2D	EAS	prevalence	was	assumed	to	be	9%48.	
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