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Abstract

Striatal projection neurons form a sparsely-connected inhibitory network, and this
arrangement may be essential for the appropriate temporal organization of behavior.
Here we show that a simplified, sparse inhibitory network of Leaky-Integrate-and-Fire
neurons can reproduce some key features of striatal population activity, as observed in
brain slices. In particular we develop a new metric to determine the conditions under
which sparse inhibitory networks form anti-correlated cell assemblies with time-varying
activity of individual cells. We find that under these conditions the network displays
an input-specific sequence of cell assembly switching, that effectively discriminates
similar inputs. Our results support the proposal that GABAergic connections between
striatal projection neurons allow stimulus-selective, temporally-extended sequential
activation of cell assemblies. Furthermore, we help to show how altered intrastriatal
GABAergic signaling may produce aberrant network-level information processing in
disorders such as Parkinson’s and Huntington’s diseases.

Author Summary

Neuronal networks that are loosely coupled by inhibitory connections can exhibit
potentially useful properties. These include the ability to produce slowly-changing
activity patterns, that could be important for organizing actions and thoughts over
time. The striatum is a major brain structure that is critical for appropriately timing
behavior to receive rewards. Striatal projection neurons have loose inhibitory
interconnections, and here we show that even a highly simplified model of this striatal
network is capable of producing slowly-changing activity sequences. We examine some
key parameters important for producing these dynamics, and help explain how
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changes in striatal connectivity may contribute to serious human disorders including
Parkinson’s and Huntington’s diseases.

Introduction

The basal ganglia are critical brain structures for behavioral control, whose
organization has been highly conserved during vertebrate evolution [1]. Altered
activity of the basal ganglia underlies a wide range of human neurological and
psychiatric disorders, but the specific computations normally performed by these
circuits remain elusive. The largest component of the basal ganglia is the striatum,
which appears to have a key role in adaptive decision-making based on reinforcement
history [2], and in behavioral timing on scales from tenths of seconds to tens of
seconds [3].

The great majority (> 90%) of striatal neurons are GABAergic medium spiny
neurons (MSNs), which project to other basal ganglia structures but also make local
collateral connections within striatum [4]. These local connections were proposed in
early theories to achieve action selection through strong winner-take-all lateral
inhibition [5, 6], but this idea fell out of favor once it became clear that MSN
connections are actually sparse (nearby connection probabilities ' 10− 25% [7, 8]),
unidirectional and relatively weak [9, 10]. Nonetheless, striatal networks are
intrinsically capable of generating sequential patterns of cell activation, even in brain
slice preparations without time-varying external inputs [11, 12]. Following previous
experimental evidence that collateral inhibition can help organize MSN firing [13], an
important recent set of modeling studies argued that the sparse connections between
MSNs, though individually weak, can collectively mediate sequential switching
between cell assemblies [14, 15]. It was further hypothesized that these connections
may even be optimally configured for this purpose [16]. This proposal is of high
potential significance, since sequential dynamics may be central to the striatum’s
functional role in the organization and timing of behavioral output [17, 18].

In their work [14, 15, 16], Ponzi and Wickens used conductance-based model
neurons (with persistent Na+ and K+ currents [19]), in proximity to a bifurcation
from a stable fixed point to a tonic firing regime. We show here that networks based
on simpler leaky integrate-and-fire (LIF) neurons can also exhibit sequences of cell
assembly activation. This simpler model, together with a novel measure of structured
bursting, allows us to more clearly identify the critical parameters needed to observe
dynamics resembling that of the striatal MSN network. Among other results, we show
that the duration of GABAergic post-synaptic currents is crucial for the network′s
ability to discriminate different input patterns. GABAergic currents are abnormally
brief in mouse models of Huntington’s Disease (HD) [20], and we demonstrate how
this may produce the altered neural activity dynamics reported for symptomatic HD
mice [21]. Finally, dopamine loss weakens MSN-MSN interactions [22, 23], and our
results help illuminate the origins of aberrant synchronization patterns in Parkinson’s
Disease (PD).

Results

Measuring cell assembly dynamics

The model is composed of N leaky integrate-and-fire (LIF) inhibitory neurons [24, 25],
with each neuron receiving inputs from a randomly selected 5% of the other neurons
(i.e. a directed Erdös-Renyi graph with constant in-degree K = pN , where
p = 5%) [26]. The inhibitory post-synaptic potentials (PSPs) are modeled as
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b) c)

Figure 1. Cell activity characterization. a) Firing rates νi of 6 selected neurons
belonging to two anti-correlated assemblies, the color identifies the assembly and the
colors correspond to the one used in b) for the different clusters; b) raster plot
activity, the firing times are colored according to the assembly the neurons belong to;
c) cross-correlation matrix C(νi, νj) of the firing rates. The neurons in panel b) and c)
are clustered according to the correlation of their firing rates by employing the
k-means algorithm; the clusters are ordered in terms of their average correlation
(inside each cluster) from the highest to the lowest one (for more details see Methods).
The firing rates are calculated over overlapping time windows of duration 1 s, the
origins of successive windows are shifted by 50 ms. The system is evolved during 107

spikes, after discarding an initial transient of 105 spike events. Other parameters used
in the simulation: g = 8, K = 20, N = 400, kmean = Nact/15, ∆V = 5 mV and
τα = 20 ms. The number of active neurons is 370, corresponding to n∗ ' 93 %.

α-functions characterized by a decay time τα and a peak amplitude APSP . In
addition, each neuron i is subject to an excitatory input current mimicking the
cortical and thalamic inputs received by the striatal network. In order to obtain firing
periods of any duration the excitatory drives are tuned to drive the neurons in
proximity of the supercritical bifurcation between the quiescent and the firing state,
similarly to [14]. Furthermore, our model is integrated exactly between a spike
emission and the successive one by rewriting the time evolution of the network as an
event-driven map [27] (for more details see Methods).

Since we will compare most of our findings with the results reported in a previous
series of papers by Ponzi and Wickens (PW) [14, 15, 16] it is important to stress the
similarities and differences between the two models. The model employed by PW is a
two dimensional conductance-based model with a potassium and a sodium
channel [19], our model is simply a current based LIF model. The parameters of the
PW model are chosen so that the cell is in proximity of a saddle-node on invariant
circle (SNIC) bifurcation to guarantee a smooth decrease of the firing period when
passing from the quiescent to the supra-threshold regime, without a sudden jump in
the firing rate. Similarly, in our simulations the parameters of the LIF model are
chosen to be in proximity of the bifurcation from silent regime to tonic firing. In the
PW model the PSPs are assumed to be exponentially decaying, whereas we considered
α-functions.

In particular, we are interested in determining model parameters for which
uniformly distributed inputs I = {Ii}, where Ii ∈ [Vth, Vth + ∆V ], produce cell
assembly-like sequential patterns in the network. The main aspects of the desired
activity can be summarized as follows: (i) single neurons should exhibit large
variability in firing rates (CV > 1); (ii) the dynamical evolution of neuronal assemblies
should reveal strong correlation within an assembly and anti-correlation with neurons
out of the assembly. As suggested by many authors [9, 28] the dynamics of MSNs
cannot be explained in terms of a winners take all (WTA) mechanism, which would
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imply a small number of highly firing neurons, while the remaining would be silenced.
Therefore we searched for a regime in which a substantial fraction of neurons are
actively involved in the network dynamics. This represents a third criterion (iii) to be
fulfilled to obtain a striatum-like dynamical evolution.

Fig. 1 shows an example of such dynamics for the LIF model, with three pertinent
similarities to previously observed dynamics of real MSN networks [11]. Firstly, cells
are organized into correlated groups, and these groups are mutually anticorrelated (as
evident from the cross-correlation matrix of the firing rates reported in Fig. 1 (c)).
Secondly, individual cells within groups show irregular firing as shown in Fig. 1 (a).
This aspect is reflected in a coefficient of variation (CV ) of the inter-spike-intervals
(ISIs) definitely greater than one (see the black curve in Fig. 3 (b)) as observed
experimentally for the dynamics of rat striatum in-vitro [7, 9]. Thirdly, the raster plot
reported in Fig. 1 (b) reveals that a large fraction of neurons (namely,' 93 %) is
active.

A novel metric for the structured cell assembly activity

The properties (i),(ii), and (iii), characterizing MSN network activity, can be
quantified in terms of a single scalar metric Q0, as follows:

Q0 ≡ 〈CV 〉N × σ(C(νi, νj))× n∗ ; (1)

where 〈·〉N denotes average over the ensemble of N neurons, n∗ = Nact/N is the
fraction of active neurons Nact out of the total number, C(νi, νj) is the N ×N zero-lag
cross-correlation matrix between all the pairs of single neuron firing rates (νi, νj), and
σ(·) is the standard deviation of this matrix (for details see Methods). We expected
that suitable parameter values for our model could be selected by maximizing Q0.

Our metric is inspired by a metric introduced to identify the level of cluster
synchronization and organization for a more detailed striatal microcircuit model [29].
However, that metric is based on the similarity among the point-process spike trains
emitted by the various neurons, whereas Q0 uses correlations between firing rate
time-courses. Furthermore, Q0 takes also in account the variability of the firing rates,
by including the average CV in Eq. (1), an aspect of the MSN dynamics omitted by
the metric employed in [29]. Within biologically meaningful ranges, we find values of
the parameters controlling lateral inhibition (namely, the synaptic strength g and the
the post-synaptic potential duration τα) that maximize Q0. As we show below, the
chosen parameters not only produce MSN-like network dynamics but also optimize the
network′s computational capabilities, in the sense of producing a consistent,
temporally-structured response to a given pattern of inputs while discriminating
between very similar inputs.

The role of lateral inhibition

In this sub-section we examine how network dynamics are affected by the strength of
inhibitory connections (Fig. 2). When these lateral connections are very weak
(parameter g close to zero), the dominant input to each neuron is the constant
excitation. As a result, most individual neurons are active (fraction of active neurons,
n∗, is close to 1) and firing regularly (CV close to zero). As lateral inhibition is made
stronger, some neurons begin to slow down or even stop firing, and n∗ declines towards
a minimum fraction of ' 50% (at g = gmin). As noted by Ponzi and Wickens [16], this
is due to a winner-take-all (WTA) mechanism: faster-firing neurons depress or silence
the neurons to which they are connected. This is evident from the distribution P (ISI)
of the average interspike intervals (ISI), which is peaked at low firing periods, and
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from the distribution of the CV exhibiting a single large peak at CV ' 0 (as shown in
the insets of Figs. S2 (a,b) and (d,e)).

As soon as g approaches gmin, the neuronal activity is no longer due only to the
winners, but also the losers begin to play a role. The winners are characterized by an
effective input Wi which is on average supra-threshold, while their firing activity is
driven by the mean current: winners are mean-driven [30]. On the other hand, losers
are on average below-threshold, and their firing is due to current fluctuations: losers
are fluctuation-driven [30]. For more details see Figs. S2 (c) and (f)). This is reflected
in the corresponding distribution P (ISI) (Fig. 2(b), red curve). The winners have
very short ISIs (i.e. high firing rates), while the losers are responsible for the long tail
of the distribution extending up to ISI ' 103 s. In the distribution of the coefficients
of variation (Fig. 2(b) inset, red curve) the winners generate a peak of very low CV
(i.e. highly-regular firing), suggesting that they are not strongly influenced by the
other neurons in the network and therefore have an effective input on average
supra-threshold. By contrast the losers are associated with a smaller peak at CV ' 1,
confirming that their firing is due to large fluctuations in the currents.

Counterintuitively however, further increases in lateral inhibition strength result in
increased neuronal participation, with n∗ progressively returning towards ' 1. The
same effect was previously reported by Ponzi and Wickens [16] for a different, more
complex, model. When the number of active neurons returns almost to 100%, i.e. for
sufficiently large coupling g > gmin, most of the neurons appear to be below threshold,
as revealed by the distribution of the effective inputs Wi reported in Figs. S2 (c) and
(f). Therefore in this case the network firing is essentially fluctuation-driven, and the
P (ISI) distribution is now characterized by a broader distribution and by the absence
of the peak at short ISI (as shown in Fig. 2 (b), blue line; see also Figs. S2(a) and
(d)). Furthermore the single neuron dynamics is definitely bursting, as shown by the
CV distribution now centered around CV ' 2 (inset of Fig. 2 (b), blue line; see also
Figs. S2(b) and (e)).

The transition between these two dynamical regimes, occurring at g = gmin, is due
to a passage from a state where some winner neurons were mean-driven and able to
depress all the other neurons, to a state at g >> gmin where almost all neurons are
fluctuation-driven and contribute to the network activity. The transition occurs
because at g < gmin the fluctuations in the effective input currents Wi are small and
insufficient to drive the losers towards the firing threshold (as shown in the insets of
Fig. S2 (c) and (f)). At g ' gmin the amplitude of the fluctuations becomes sufficient
for some losers to cross the firing threshold and contribute to the number of active
neurons. This will also reduce the winners′ activity. For g >> gmin the fluctuations of
Wi are sufficient to lead almost all losers to fire and no clear distinction between losers
and winners remains.

The reported results explain why the variability σ(C) of the cross-correlation
matrix has a non monotonic behaviour with g (as shown in the middle panel in
Fig. 2(a)). At low coupling σ(C) is almost zero, since the single neuron dynamics are
essentially independent one from another, while the increase of the coupling leads to
an abrupt rise of σ(C). This growth is clearly associated with the inhibitory action
which splits the neurons into correlated and anti-correlated groups. The variability of
the cross-correlation matrix achieves a maximum value for coupling slightly larger
than gmin, where fluctuations in the effective currents begin to affect the network
dynamics. At larger coupling σ(C) begins to decay towards a finite non zero value.
These results confirm that the most interesting region to examine is the one with
coupling g > gmin, as already suggested in [16].

The observed behaviour of CV , n∗ and σ(C) suggests that we should expect a
maximum in Q0 at some intermediate coupling g > gmin, as indeed we have for both

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2016. ; https://doi.org/10.1101/036608doi: bioRxiv preprint 

https://doi.org/10.1101/036608
http://creativecommons.org/licenses/by-nc-nd/4.0/


studied cases as shown in Fig. 2 (c) and (d). The initial increase in Q0 is due to the
increase in CV and n∗, while the final decrease, following the occurrence of the
maximum, is essentially driven by the decrease of σ(C). For larger ∆V the neurons
tend to fire regularly across a wider range of small g values (see Fig. 2 (d)), indicating
that due to their higher firing rates a larger synaptic inhibition is required to influence
their dynamics. On the other hand, their bursting activity observable at large g is
more irregular (see the upper panel in Fig. 2 (a); dashed line and empty symbols).

To assess whether parameters that maximize Q0 also allow discrimination between
different inputs, we alternated the network back and forth between two distinct input
patterns, each presented for a period Tsw. During this stimulation protocol, we
evaluated the state transition matrix (STM) and the associated quantity ∆Md. The
STM measures the similarity among the firing rates of the neurons in the network
taken at two different times. The metric ∆Md, based on the STM, has been
introduced in [16] to quantify the ability of the network to distinguish between two
inputs. In particular, ∆Md is the difference between the average values of the STM
elements associated with the presentation of each of the two stimuli (a detailed
description of the procedure is reported in the sub-section Discriminative and
computation capability and in Methods).

To verify whether the ability of the network to distinguish different stimuli is
directly related to the presence of dynamically correlated and anti-correlated cell
assemblies, we generated a new metric, Qd. This metric is defined in the same way as
Q0, except that in Eq. (1) the standard deviation of the correlation matrix is replaced
by ∆Md. As it can be appreciated from Figs. 2(c) and 2(d) the metrics Qd and Q0

behave similarly, indicating that indeed Q0 becomes maximal in the parameter range
in which the network is most effectively distinguishing different stimuli. We speculate
that the emergence of correlated and anti-correlated assemblies contributes to this
discriminative ability.

We note that we observed maximal values of Q0 for realistic lateral inhibition
strengths, as measured from the post-synaptic amplitudes APSP . Specifically, Q0

reaches the maximum at g = 4 (g = 8) for ∆V = 1 mV (∆V = 5 mV) corresponding
to APSP = 0.368 mV (APSP = 0.736 mV), comparable to previously reported
experimental results [7, 28, 9] (for more details see Methods).

The role of the post-synaptic time scale

In brain slice experiments IPSCs/IPSPs between MSNs last 5-20 ms and are mainly
mediated by the GABAa-receptor [7, 31]. In this sub-section, we will examine the
effect of the the post-synaptic time constant τα. As τα is increased from 2 to 50 ms,
the values of of both metrics Q0 and Qd progressively increase (Fig. 3(a)), with the
largest variation having already occurred by τα = 20 ms. To gain more insights on the
role of the PSP in shaping the structured dynamical regime, we show for the same
network the distribution of the single cell CV , for τα = {2, 9, 20} ms (Fig. 3(b)).
Narrow pulses (τα ' 2 ms) are associated with a distribution of CV values ranging
from 0.5 to 1, with a predominant peak at one. By increasing τα one observes that the
CV distributions shift to larger and larger CV values. Therefore, one can conclude
that at small τα the activity is mainly Poissonian, while increasing the duration of the
PSPs leads to bursting behaviours, as in experimental measurements of the MSN
activity [21]. In particular in [21], the authors showed that bursting activity of MSNs
with a distribution P (CV ) centered around CV ' 2 is typical of awake wild-type mice.
To confirm this analysis we estimated the distribution of CV2: A CV2 distribution
with a peak around zero denotes very regular firing, while a peak around one indicates
the presence of long silent periods followed by rapid firing events (i.e. a bursting
activity). Finally a flat distribution denotes Poissonian distributed spiking. It is clear
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Figure 2. Metrics of structured activity vs lateral inhibition strength. a)
Metrics entering in the definition of Q0 versus the synaptic strength g. From top to
bottom: Averaged coefficient of variation 〈CV 〉N , standard deviation of the
cross-correlation matrix σ(C), and the fraction of active neurons n∗. The solid
(dashed) line refers to the case ∆V = 1 mV (∆V = 5 mV). The minimum number of
active neurons is achieved at g = gmin, this corresponds to a peak amplitude of the
PSP APSP = 0.064 mV (APSP = 0.184 mV) for ∆V = 1 mV (∆V = 5 mV) (for more
details see Methods). b) Distributions P (ISI) of the average ISI for a fixed ∆V = 5
mV and for two different coupling strengths, g = 4 (red triangle-up symbol) and
g = 10 (blue triangle-down). Inset, the distribution P (CV ) of the CV of the single
neurons for the same two cases. c) Q0 and Qd, as defined in Eqs. (1) and (16), versus
g for ∆V = 1 mV. d) Same as c) for ∆V = 5 mV. Other parameters as in Fig. 1
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Figure 3. Metrics of structured activity vs post-synaptic time duration. a)
Metrics Q0 (in solid line) and Qd (dashed) as a function of the pulse time scale for the
parameter values {∆V, g} = {5 mV, 8} corresponding to the maximum Q0 value in
Fig. 2(d). Probability distribution functions P (CV ) (P (CV2)) for the coefficient of
variation CV (local coefficient of variation CV2) are shown in b) (in c)) for three
representative τα = {2, 9, 20} ms, displayed by employing the same symbols and colors
as indicated in a). For these three cases the average firing rate in the network is
〈ν〉 = {8.81, 7.65, 7.35} Hz ordered for increasing τα-values. Other parameters as in
Fig. 1

from Fig. 3(c) that by increasing τα from 2 to 20 ms this leads the system from an
almost Poissonian behaviour to bursting, where almost regular firing inside the burst
(intra-burst) is followed by a long quiescent period (inter-burst) before starting again.

The distinct natures of the distributions of CV for short and long pulses raises the
question of what mechanism underlies such differences. To answer this question we
analyzed the distribution of the ISI of a single cell in the network for two cases: in a
cell assembly bursting regime (corresponding to τα = 20 ms) and for Poissonian
unstructured behavior (corresponding to τα = 2 ms). We expect that even the single
neurons should have completely different dynamics in these two regimes, since the
distributions P (CV ) at τα = 2 ms and 20 ms are essentially not overlapping, as shown
in Fig. 3(b). In order to focus the analysis on the effects due to the synaptic inhibition,
we have chosen, in both cases, neurons receiving exactly the same external excitatory
drive Is. Therefore, in absence of any synapses, these two neurons will fire with the
same period ISI0 = τm log[(Is − Vr)/(Is − Vth)] = 12 ms, corresponding to a firing rate
of 8.33 Hz not far from the average firing rate of the networks (namely, 〈ν〉N ' 7− 8
Hz). Thus these neurons can be considered as displaying typical activity in both
regimes. As expected, the dynamics of the two neurons is quite different, as evident
from the P (ISI) presented in Fig. 4(a) and (b). In both cases one observes a long
tailed exponential decay (with decay rate νD) of P (ISI) corresponding to a Poissonian
like behaviour. However the decay rate νD is slower for τα = 20 ms with respect to
τα = 2 ms, namely νD ' 2.74 Hz versus νD ' 20.67 Hz. Interestingly, the main
macroscopic differences between the two distributions arises at short time intervals.
For τα = 2 ms, (see Fig. 4(b)) an isolated and extremely narrow peak appears at ISI0.
This first peak corresponds to the supra-threshold tonic-firing of the isolated neuron,
as reported above. After this first peak, a gap is clearly visible in the P (ISI) followed
by an exponential tail. The origin of the gap resides in the fact that ISI0 >> τα,
because if the neuron is firing tonically with its period ISI0 and receives a single PSP,
the membrane potential has time to decay almost to the reset value Vr before the next
spike emission. Thus a single PSP will delay the next firing event by a fixed amount
corresponding to the gap in Fig. 4(b). Indeed one can estimate analytically this delay
due to the arrival of a single α-pulse, in the present case this gives ISI1 = 15.45 ms, in
very good agreement with the results in Fig. 4(b). No further gaps are discernible in
the distribution, because it is highly improbable that the neuron will receive two (or
more) PSPs exactly at the same moment at reset, as required to observe further gaps.
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The reception of more PSPs during the ramp up phase will give rise to the exponential
tail in the P (ISI). In this case the contribution to the CV comes essentially from this
exponential tail, while the isolated peak at ISI0 has a negligible contribution.

On the other hand, if τα > ISI0, as in the case reported in Fig. 4(a), P (ISI) does
not show anymore a gap, but instead a continuous distribution of values. This because
now the inhibitory effects of the received PSPs sum up, leading to a continuous range
of delayed firing times of the neuron. The presence of this peak of finite width at short
ISI in the P (ISI) plus the exponentially decaying tail are at the origin of the

observed CV > 1. In Fig. 4 (e) and 4 (f) the distributions of the coefficient CV
(i)
2 are

also displayed for the considered neurons as black lines with symbols. These
distributions clearly confirm that the dynamics are bursting for the longer synaptic
time scale and essentially Poissonian for the shorter one.

We would like to understand whether it is possible to reproduce similar
distributions of the ISIs by considering an isolated cell receiving Poissonian distributed
inhibitory inputs. In order to verify this, we simulate a single cell receiving K
uncorrelated spike trains at a rate 〈ν〉N , or equivalently, a single Poissonian spike train
with rate K〈ν〉N . Here, 〈ν〉N is the average firing rate of a single neuron in the
original network. The corresponding P (ISI) are plotted in Fig. 4 (c) and 4 (d), for
τα = 20 ms and 2 ms, respectively. There is a remarkable similarity between the
reconstructed ISI distributions and the real ones (shown in Fig. 4(a) and (b)) , in

particular at short ISIs. Also the distributions of the CV
(i)
2 for the reconstructed

dynamics are similar to the original ones, as shown in Fig. 4 (e) and 4 (f). Altogether,
these results demonstrate that the bursting activity of coupled inhibitory cells is not a
consequence of complex correlations among the incoming spike trains, but rather a
characteristic related to intrinsic properties of the single neuron: namely, its tonic
firing period, the synaptic strength, and the post-synaptic time decay. The
fundamental role played by long synaptic time in inducing bursting activity has been
reported also in a study of a single LIF neuron below threshold subject to Poissonian
trains of exponentially decaying PSPs [32].

Obviously this analysis cannot explain collective effects, like the non trivial
dependence of the number of active cells n∗ on the synaptic strength, discussed in the
previous sub-section, or the emergence of correlations and anti-correlations among
neural assemblies (measured by σ(C)) due to the covarying of the firing rates in the
network, as seen in striatal slices and shown in Fig. 1 (c) for our model. To better
investigate the influence of τα on the collective properties of the network we report in
Fig. S4(a) and (b) the averaged CV , σ(C), n∗ and ∆Md for τα ∈ [2, 50] ms. As
already noticed, the network performs better in mimicking the MSN dynamics and in
discriminating between different inputs at larger τα (e.g. at 20 ms). However, what is
the minimal value of τα for which the network still reveals cell assembly dynamics and
discriminative capabilities ? From the data shown in Fig. S4(a) one can observe that
σ(C) and ∆Md attain their maximal values in the range 10 ms ≤ τα ≤ 20 ms. This
indicates that clear cell assembly dynamics with associated good input pattern
discrimination can be observed in this range. However, the bursting activity is not
particularly pronounced at τα = 10 ms, where 〈CV 〉N ' 1. Therefore only the choice
τα = 20 ms fulfills all the requirements.

Interestingly, genetic mouse models of Huntington’s disease (HD) revealed that
spontaneuous IPSCs in MSNs has a reduced decay time and half-amplitude duration
compared to wild-types [20]. Our analysis clearly indicate that a reduction of τα
results in more stochastic single-neuron dynamics, as indicated by 〈CV 〉N ' 1, as well
as in a less pronounced structured assembly dynamics (Fig. S4(a)). This resembles
what observed for the striatum dynamics of freely behaving mice with symptomatic
HD [21]. In particular, the authors have shown in [21] that at the single unit level HD
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Figure 4. Single neuron statistics. First row : distributions P (ISI) for one
representative cell in the network are shown in black. Second row: the corresponding
Poissonian reconstruction of the P (ISI) are reported in red. In all plots the main
figure displays the distributions at short ISIs, while the inset is a zoom out of the

whole distribution. Third row: single neuron distribution of the CV
(i)
2 for the

considered neuron (black solid lines with circles) and its Poissonian distribution (red
dashed line with squares). The left (right) column corresponds to τα = 20 (2 ms). The
network parameters are ∆V = 5 mV and g = 8, and the others as in Fig. 1, both the
examined neurons have Is = −45.64 mV. For the Poissonian reconstruction the
frequencies of the incoming uncorrelated spike trains are set to 〈ν〉N ≈ 7.4 Hz
(〈ν〉N ≈ 8.3 Hz) for τα = 20ms (τα = 2ms), as measured from the corresponding
network dynamics. The distributions are obtained by considering a sequence of 109

spikes in the original network, and 107 events for the Poissonian reconstruction.
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mice reveals a CV ' 1 in contrast to CV ' 2 for wild-type mice, furthermore the level
of correlation among the neural firings was definitely reduced in HD mice.

Origin of the cell assemblies

A question that we have not addressed so far is: how do cell assemblies arise ? Since
the network is purely inhibitory it is reasonable to guess that correlation
(anti-correlation) among groups of neurons will be related to the absence (presence) of
synaptic connections between the considered groups. In order to analyze the link
between the correlation and the network connectivity we compare the clustered
cross-correlation matrix of the firing rates C(νi, νj) (shown in Fig 5 (a)) with the
associated connectivity matrix Cij (reported in Fig. 5 (b)). The cross-correlation
matrix is organized in k = 15 clusters via the k-means algorithm, therefore we obtain
a matrix organized in a k × k block structure, where each block (m, l) contains all the
cross-correlation values of the elements in cluster m with the elements in cluster l.
The connectivity matrix is arranged in exactly the same way, however it should be
noticed that while C(νi, νj) is symmetric, the matrix Cij is not symmetric due to the
unidirectional nature of the synaptic connections. From a visual comparison of the
two figures it is clear that the most correlated blocks are along the diagonal and that
the number of connections present in these diagonal blocks is definitely low, with
respect to the expected value from the whole matrix. An exception is represented by
the largest diagonal block which reveals, however, an almost zero level of correlation
among its members. We have highlighted in blue some blocks with high level of
anti-correlations among the elements, the same blocks in the connectivity matrix
reveal a high number of links. A similar analysis, leading to the same conclusions was
previously reported in [14].

To make this comparison more quantitative, we have estimated for each block the
average cross-correlation, denoted as 〈C〉ml, and the average probability pml of
unidirectional connections from the cluster l to the cluster m. These quantities are
shown in Fig. 5 (c) for all possible blocks. The correlation 〈C〉ml decreases with the
probability pml, and a linear fit to the data is reported in the figure as a solid black
line. However, there are blocks that are outliers with respect to this fit. The blocks
along the main diagonal (black squares) all have high correlation values 〈C〉mm and
low probabilities pmm, smaller than the average probability p = 0.05, shown as a
dashed vertical red line in Fig. 5 (c). An exception is represented by a single black
square located exactly on the linear fit in proximity of p = 0.05 this is the large block
with almost zero level of correlation among its elements previously identified.
Furthermore, the blocks with higher anticorrelation, denoted as blue triangles in the
figure, have probabilities pml definitely larger than 5 %. The exceptions are two
triangles lying exactly on the vertical dashed line corresponding to 5 %. This is due to
the fact that the pml are not symmetric, and it is sufficient to have a large probability
of connections in only one of the two possible directions between blocks m and l to
observe anti-correlated activities between the two assemblies.

Having clarified that the origin of the assemblies identified from the correlations of
the firing rates is directly related to structural properties of the networks, we would
like to understand if the neurons belonging to the assemblies also share other
properties. In particular, we can measure the similarity of the neurons within each
block (m, l) by estimating the block averaged similarity metrics eml introduced in
Eq. (10) in Methods. This quantity measures how similar are the effective synaptic
inputs Wi of two neurons in the network. In Fig. 5 (d) we report 〈C〉ml versus eml for
all the blocks. It is evident that the diagonal blocks (black squares in the figure) have
a higher similarity value emm with respect to the average (the vertical red dashed line
in Fig. 5 (d)). Thus suggesting that correlated assemblies are formed by neurons with
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a) b)

Figure 5. Cell assemblies and connectivity. a) Cross-correlation matrix C(νi, νj)
of the firing rates organized according to the clusters generated via the k-means
algorithm with k = 15, the clusters are ordered as in Fig. 1(c) from the highest to the
lowest correlated one. b) Connectivity matrix Cij with the indices ordered as in panel
a). Here, a black (copper) dot denotes a 1 (0) in Cij , i.e. the presence of a synaptic
connection from j to i. c) Average cross-correlation 〈C〉ml among the elements of the
matrix block (m, l) , versus the probability pml to have synaptic connections from
neurons in the cluster l to neurons in the cluster m. d) 〈C〉ml versus the block averaged
similarity metrics eml. Black squares indicate the blocks along the diagonal delimited
by black borders in panel a) and b); blue triangles denote the ten blocks with the
lowest 〈C〉ml values, which are also delimited by blue edges in a) and b). The vertical
red dashed line in panel c) denotes the average probability to have a connection
p = 5% and in panel d) the value of the metrics eml averaged over all the blocks. The
black solid line in panel c) is the linear regression to the data (〈C〉ml ≈ 0.15− 3.02pml,
correlation coefficient R = −0.72). Other parameters as in Fig. 1.

similar effective inputs and with few structural connections among them. However, the
observed anticorrelations are only due to structural effects since the most
anticorrelated blocks (blue triangles in Fig. 5 (d)) do not reveal any peculiar similarity
value eml. Similar results have been obtained by considering the neural excitability Ii
instead of the effective synaptic input Wi.

Discriminative and computational capability

In this sub-section we examine the ability of the network to perform different tasks:
namely, to respond in a reproducible manner to stimuli and to discriminate between
similar inputs via distinct dynamical evolution. For this analysis we have always
compared the responses of the network obtained for a set of parameters corresponding
to the maximum Q0 value shown in Fig. 2(d), where τα = 20 ms, and for the same
parameters but with a shorter PSP decay time, namely τα = 2 ms.

To check for the capability of the network to respond to cortical inputs with a
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a) b)

Figure 6. Sequential switching. a) Raster plot associated to the two input
protocols I(1) and I(2). The circles denote the clusters of active neurons appearing
repetitively after the presentation of the stimulus I(1). Vertical lines denote the
switching times between stimuli. The clustering algorithm employed to identify the
different groups is applied only during the presentation of the stimulus I(1), therefore
the sequential dynamics is most evident for that particular stimulus. b) Averaged
State Transition Matrix D , obtained by considering a 4Tsw × 4Tsw sub-matrix
averaged over r = 5 subsequent time windows of duration 4Tsw (see the section
Methods for details). The inputs I(1) and I(2) are different realization of the same
random process, they are obtained by selecting N current values Ii from the flat
interval [Vth, Vth + ∆V ]. The input stimuli are switched every Tsw = 2 s. Number of
clusters k = 35 in a). Other parameters as in Fig. 1.

reproducible sequence of states, we perform a simple experiment, following the
protocol described in [15, 16], where two different inputs I(1) and I(2) are presented
sequentially to the system. Each input persists for a time duration Tsw and then the
stimulus is switched to the other one and this process is repeated for the whole
simulation time. The raster plot measured during such an experiment is shown in
Fig. 6 (a) for τα = 20 ms. Whenever one of the stimuli is presented, a specific sequence
of activations can be observed. Furthermore, the sequence of emerging activity
patterns is reproducible when the same stimulus is again presented to the system, as
can be appreciated by observing the patterns encircled with black lines in Fig. 6 (a).

Furthermore, we can quantitatively compare the firing activity in the network at
different times by estimating the STM. Similarity is quantified by computing the
normalized scalar product of the instantaneous firing rates of the N neurons measured
at time ti and tj . We observe that the similarity of the activity at a given time t0 and
at successive times t0 + 2mTsw is high (with values between 0.5 and 0.75), while it is
essentially uncorrelated with the response at times corresponding to the presentation
of a different stimulus, i.e. at t0 + (2m− 1)Tsw (since the similarity is always smaller
than 0.4) (here, m = 1, 2, 3...). This results in a STM with a periodic structure of
period Tsw with alternating high correlated blocks followed by low correlated blocks
(see Fig. S5(b)). An averaged version of the STM calculated over a sequence of 5
presentations of I(1) and I(2) is shown in Fig. 6 (b) (for details of the calculation see
Methods). These results show not only the capability of the network to distinguish
between stimuli, but also the reproducible nature of the system response. In
particular, from Fig. 6 (b) it is evident how the patterns associated with the response
to the stimulus I(1) or I(2) are clearly different and easily identifiable. We also
repeated the numerical experiment for another different realization of the inputs,
noticing essentially the same features previously reported (as shown in Fig. S5(a-c)).
Furthermore, to test for the presence of memory effects influencing the network
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Figure 7. Pattern separation. Average dissimilarity as a function of the fraction f
of inputs differing from the control input, for the values of τα = 20ms (black circles)
and τα = 2ms (red squares) with two different observation windows TE = 2s (solid
line) and TE = 10s (dashed line). Other parameters used: ∆T = 50ms, ∆V = 5 mV.
Remaining parameters as in Fig. 1.

response, we performed a further test where the system dynamics was completely reset
after each stimulation and before the presentation of the next stimulus. This had no
apparent effect in the network response.

Next, we examined the influence of the PSP time scale on the observed results. In
particular, we considered the case τα = 2 ms, in this case the network (as shown in
Fig. S5(d)) responds in a quite uniform manner during the presentation of each
stimulus. Furthermore, the corresponding STM reported in Fig. S5(e) shows highly
correlated blocks alternating with low correlated ones, but these blocks do not reveal
any internal structure characteristic of cell assembly encoding.

We proceeded to check the ability of the network to discriminate among similar
inputs and how this ability depends on the temporal scale of the synaptic response. In
particular, we tried to answer to the following question: if we present two inputs that
differ only for a fraction f of the stimulation currents, which is the minimal difference
between the inputs that the network can discriminate ? In particular, we considered a
control stimulation I(c) = Ii ∈ [Vth, Vth + ∆V ] and a perturbed stimulation I(p), where
the stimulation currents differ only over a fraction f of currents Ii (which are
randomly chosen from the same distribution as the control stimuli). We measure the
differences of the responses to the control and to the perturbed stimulations by
measuring, over an observation window TE , the dissimilarity metric df (t), defined in
Methods. The time averaged dissimilarity metric d̄f is reported as a function of f in
Fig. 7 for two different values τα. It is clear that for any f -value the network with
longer synaptic response always discriminates better between the two different stimuli
than the one with shorter PSP decay. We have also verified that the metric is robust
to the modification of the observation times TE , because the dissimilarity df (t) rapidly
reaches a steady value (as shown in Fig. S6(a) and (b)).

To better characterize the computational capability of the network and the
contribution of the PSP duration, we measured the complexity of the output signals as
recently suggested in [33]. In particular, we have examined the response of the network
to a sequence of three stimuli, each being a constant vector of randomly chosen
currents. The three different stimuli are consecutively presented to the network for a
time period Tsw, and the stimulation sequence is repeated for the whole experiment
duration TE . The output of the network can be represented by the instantaneous
firing rates of the N neurons measured over a time window ∆T = 100 ms, this is a
high dimensional signal, where each dimension is represented by the activity of a
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b) c)

Figure 8. Computational capability of the network. Characterization of the
firing activity of the network, obtained as response to three consecutive inputs
presented in succession. a) Percentage of the variance of the neuronal firing activity
reproduced by each of the first 10 principal components. The inset displays the
corresponding cumulative percentage as a function of the considered component.
Filled black and shaded red (bar or symbols) correspond to τα = 20 ms and τα = 2
ms, respectively. Projection of the neuronal response along the first three principal
components for b) τα = 20 ms and c) τα = 2 ms. Each point in the graph correspond
to a different time of observation. The three colors denote the response to the three
different inputs, which are quenched stimulation currents randomly taken as
I(j) ∈ [Vth, Vth + ∆V ] for j = 1, 2, 3, the experiment is then performed as explained in
the text.

single neuron. The complexity of the output signals can be estimated by measuring
how many dimensions are explored in the phase space. With greater stationarity of
firing rates, fewer variables are required to reconstruct the whole output signal [33].

A principal component analysis (PCA) performed over TE/∆T observations of the
N firing rates reveals that for τα = 2 ms 80% of the variance is recovered already with
a projection over a two dimensional sub-space (red bars in Fig. 8 (a)). On the other
hand, for τα = 20 ms a higher number of principal components is required to
reconstruct the dynamical evolution (black bars in Fig. 8 (a)), thus suggesting higher
computational capability of the system with longer PSPs [33].

These results are confirmed by analyzing the projections of the firing rates in the
subspace spanned by the first three principal components (C1, C2, C3) shown in Fig. 8
(b) and (c) for τα = 20 ms and τα = 2 ms, respectively. The responses to the three
different stimuli can be effectively discriminated by both networks, since they lie in
different parts of the phase space. However, the response to the three stimuli
correspond essentially to three fixed points for τα = 2 ms, while trajectories evolving
in a higher dimension are associated to each constant stimulus for τα = 20 ms.

These analyses confirm that the network parameters selected by employing the
maximal Q0 criterion also result in a reproducible response to different stimuli, as well
as in an effective discrimination between different inputs.

In recent work Ponzi and Wickens [16] noticed that in their model the striatally
relevant regimes correspond to marginally stable dynamical evolution. In the
Supporting Information Text S1 we devote the sub-section Linear stability analysis to
the investigation of this specific point. Our conclusion is that for our model the
striatally relevant regimes are definitely chaotic, but located in proximity of a
transition to linearly stable dynamic (see also Fig. S3). However for inhibitory
networks it is known that even linearly stable networks can display erratic dynamics
(resembling chaos) due to finite amplitude perturbations [34, 35, 36, 37]. This suggests
that the usual linear stability analysis, corresponding to the estimation of the maximal
Lyapunov exponent [38], is unable to distinguish between regular and irregular
evolution, at least for the studied inhibitory networks [37].

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2016. ; https://doi.org/10.1101/036608doi: bioRxiv preprint 

https://doi.org/10.1101/036608
http://creativecommons.org/licenses/by-nc-nd/4.0/


Physiological relevance for biological networks under different
experimental conditions

Carrillo et al. [11] considered a striatal network in vitro, which displays sporadic and
asynchronous activity under control conditions. To induce spatio-temporal patterned
activity they perfused the slice preparation with N-methyl-D-aspartate (NMDA)
providing tonic excitatory drive and generating bursting activity [39, 40]. The crucial
role of the synaptic inhibition in shaping the patterned activity in striatal dynamics
was demonstrated by applying the GABAa receptor antagonist bicuculline to
effectively decrease the inhibitory synaptic effect [11].

In our simple model, ionic channels and NMDA-receptors are not modeled;
nevertheless it is possible to partly simulate the effect of NMDA administration by
increasing the excitability of the cells in the network, and the effect of bicuculline by
an effective decrease in the synaptic strength. We examined whether these
assumptions lead to results similar to those reported in [11].

In our model the single cell excitability is controlled by the parameter Ii. The
computational experiment consists in setting the system in a low firing regime

corresponding to the control conditions with I(c) = {I(c)
i } ∈ [−53, −49.5] mV and in

enhancing, after 20 seconds, the system excitability to the range of values

I(e) = {I(e)
i } ∈ [−60, −45] mv, for another 20 seconds. This latter stage of the

numerical experiment corresponds to NMDA perfusion in the brain slice experiment.
The process is repeated several times and the resulting raster plot is coarse grained as
explained in Methods (sub-section Synchronized Event Transition Matrix).

From the coarse grained version of the raster plot, we calculate the Network
Bursting Rate (NBR) as the fraction of neurons participating in a burst event in a
certain time window. Whenever the instantaneous NBR is larger than the average
NBR plus two standard deviations, this is identified as a synchronized bursting event
(as shown in Fig. 9(a) and (f)). In Fig. 9(b) we plot all the neurons participating in a
series of Ss = 20 synchronized bursting events. Here the switching times between
control conditions and the regimes of increased excitability are marked by vertical
dashed lines. Due to the choice of the parameters, the synchronized events occur only
during the time intervals during which the network is in the enhanced excitability
regime. Each synchronized event is encoded in a binary N dimensional vector Ws(t)
with 1 (0) entries indicating that the corresponding neuron was active (inactive)
during such event. We then measure the similarity among all the events in terms of
the Synchronized Event Transition Matrix (SETM) shown in Fig. 9(c). The SETM is
the normalized scalar product of all pairs of vectors Ws registered in a given time
interval (for more details see Methods). Furthermore, using the SETM we divide the
synchronized events into clusters according to an optimal clustering algorithm [41] (see
Methods). In the present case we identified 3 distinct states (clusters): if we project
the vectors Ws, characterizing each single synchronized event on the two dimensional
space spanned by the first two principal components (C1, C2), we observe a clear
division among the 3 states (see Fig. 9(d)). It is now important to understand whether
the cells firing during the events classified as a state are the same or not. We observe
that the groups of neurons recruited for each synchronized event corresponding to a
certain state largely overlap, while the number of neurons participating to different
states is limited. As shown in Fig. 9(e), the number of neurons participating in a
certain state is of the order of 40-50, while the coactive neurons (those participating in
more than one state) ranges from 12 to 25. Furthermore, we have a core of 9 neurons
which are firing in all states. Thus we can safely identify a distinct assembly of
neurons active for each state.

As shown in Fig. 9(c), we observe that the system alternates its activity among the
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previously identified cell assemblies. In particular, we have estimated the transition
probabilities from one state to any of the three identified states. We observe that the
probability to remain in state 2 or to arrive to this state from state 1 or 3 is quite
high, ranging between 38 and 50 %, therefore this is the most visited state. The
probability that two successive events are states of type 1 or 2 is also reasonably high
ranging from ' 29− 38% as well as the probability that from state 1 one goes to 2 or
viceversa (' 38− 43%). Therefore the synchronized events are mostly of type 1 and 2,
while the state 3 is the less attractive, since the probability of arrving to this state
from the other ones or to remain on it once reached, are between 25 - 29 %. If we
repeat the same experiment after a long simulation interval t ' 200 s we find that the
dynamics can be always described in terms of small number of states (3-4), however
the cells contributing to these states are different from the ones previously identified.
This is due to the fact that the dynamics is in our case chaotic, as we have verified in
the Supporting Information Text S1 (Linear Stability Analysis). Therefore even small
differences in the initial state of the network, can have macroscopic effects on
sufficiently long time scales.

To check for the effect of bicuculline, the same experiment is performed again with
a much smaller synaptic coupling, namely g = 1, the results are shown in Fig. 9(f-j).
The first important difference can be identified in higher NBR values with respect to
the previous analyzed case (g = 8) Fig. 9(f). This is due to the decreased inhibitory
effect, which allows most of the neurons to fire almost tonically, and therefore a higher
number of neurons participate in the bursting events. In Fig. 9(g) a highly repetitive
pattern of synchronized activity (identified as state 2, blue symbols) emerges
immediately after the excitability is enhanced. After this event we observe a series of
bursting events, involving a large number of neurons (namely, 149), which have been
identified as an unique cluster (state 1, red symbols). The system, analogously to
what shown in [11], is now locked in an unique state which is recurrently visited until
the return to control conditions. Interestingly, synchronized events corresponding to
state 1 and state 2 are highly correlated when compared with the g = 8 case, as seen
by the SETM in Fig. 9(h). Despite this, it is still possible to identify both states when
projected on the two dimensional space spanned by the first two principal components
(see Fig. 9(i)). This high correlation can be easily explained by the fact that the
neurons participating in state 2 are a subset of the neurons participating in state 1, as
shown in Fig. 9(j). Furthermore, the analysis of the transition probabilities between
states 1 and 2 reveals that starting from state 2 the system never remains in state 2,
but always jumps to state 1. The probability of remaining in state 1 is high ' 64%.
Thus we can affirm that in this case the dynamics are dominated by the state 1.

To determine the statistical relevance of the results presented so far, we repeated
the same experiment for ten different random realizations of the network. The detailed
analysis of two of these realizations is reported in Figs. S7(a-h) (see also Text S1). We
found that, while the number of identified states may vary from one realization to
another, the consistent characteristics that distinguish the NMDA perfused scenario
and the decreased inhibition one, are the variability in the SETM and the fraction of
coactive cells. More precisely, on one hand the average value of the elements of the
SETM is smaller for g = 8 with respect to the g = 1 case, namely 0.54 versus 0.84, on
the other hand their standard deviation is larger, namely 0.15 versus 0.07. This
indicates that the states observed with g = 1 are much more correlated with respect to
the states observable for g = 8, which show a larger variability. The analysis of the
neurons participating to the different states revealed that the percentage of neurons
coactive in the different states passes from 51 % at g = 8 to 91 % at g = 1. Once more
the reduction of inhibition leads to the emergence of states which are composed by
almost the same group of active neurons, representing a dominant state. These results
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confirm that inhibition is fundamental to cell assembly dynamics.
Altered intrastriatal signaling has been implicated in several human disorders, and

in particular there is evidence for reduced GABAergic transmission following
dopamine depletion [42], as occurs in Parkinson’s disease. Our simulations thus
provide a possible explanation for observations of excessive entrainment into a
dominant network state in this disorder [43, 23].

Discussion

In summary, we have shown that lateral inhibition is fundamental for shifting the
network dynamics from a situation where a few neurons, tonically firing at a high rate,
depress a large part of the network, to a situation where all neurons are active and fire
with similar slow rates. In particular, if inhibition is too low, or too transient, a winner
takes all mechanism is at work and the activity of the network is mainly mean-driven.
By contrast, if inhibition has realistic strength and duration, almost all the neurons
are on average sub-threshold and the dynamical activity is fluctuation-driven [30].

Therefore we can reaffirm that the MSN network is likely capable of producing
slow, selective, and reproducible activity sequences as a result of lateral inhibition.
The mechanism at work is akin to the winerless competition reported to explain the
function of olfactory networks for the discrimination of different odors [44]. Winnerless
competition refers to a dynamical mechanism, initially revealed in asymmetrically
coupled inhibitory rate models [45], displaying a transient slow switching evolution
along a series of metastable saddles (for a recent review on the subject see [46]). In our
case, the sequence of metastable states can be represented by the firing activity of the
cell assembly, switching over time. In particular, slow synapses have been recognized as
a fundamental ingredient, along with asymmetric inhibitory connections, for observing
the emergence of winnerless competition in realistic neuronal models [47, 48].

We have introduced a new metric to encompass in a single indicator key aspects of
this patterned sequential firing, and with the help of this metric we have identified the
parameter ranges for best obtaining these dynamics. Furthermore, for these
parameters the network is able to respond in a reproducible manner to the same
stimulus, presented at different times, while presenting complex computational
capability by responding to constant stimuli with an evolution in a high dimensional
space [33].

Our analysis confirms that the IPSP/IPSC duration is crucial in order to observe
bursting dynamics at the single cell level as well as structured assembly dynamics at
the population level. A reduction of the synaptic time has been observed in
symptomatic HD mice [20]. In our model this reduction leads single neurons towards a
Poissonian behaviour and to a reduced level of correlation/anticorrelation among
neural assemblies, in agreement with experimental results reported for mouse models
of HD [21].

In summary, we have been able to reproduce general experimental features of MSN
networks in brain slices [11]. In particular, we observed a structured activity
alternating among a small number of distinct cell assemblies. Furthermore, we have
reproduced the dynamical effects induced by decreasing the inhibitory coupling: the
drastic reduction of the inhibition leads to the emergence of a dominant highly
correlated neuronal assembly. This may help account for the dynamics of
Parkinsonian striatal microcircuits, where dopamine deprivation impairs the inhibitory
feedback transmission among MSNs [42, 23]. Network models such as the one
presented here offer a path towards understanding just how pathologies that affect
single neurons lead to aberrant network activity patterns, as seen in Parkinson’s and
Huntington’s diseases, and this is an exciting direction for future research.
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f)

h)

d) i)

e) j)

Figure 9. Response of the network to an increase in the excitability. a,f)
Network Bursting Rate, and the threshold defined for considering a synchronized
event. b,g) Neurons involved in the synchronized events, vertical lines denoted the
switching times between the excited I(e) and control I(c) inputs. Colors in the raster
indicates the group assigned to the synchronous event using an optimal community
partition algorithm. c,h) Synchronized Event Transition Matrix, calculated with a
window TW = 50 ms and number of events Ss = 20. d,i) Projection of the
synchronized events in the 2D space spanned by the first two principal components
associated to the covariance matrix of the vectors Ws. e,j) Number of coactive cells in
each state. The diagonal elements of the bar graph represents the total number of
neurons contributing to one state. Panels (a-e) correspond to g = 8, while panels (f-j)
depict the case g = 1. In both cases the system is recorded during the time span
required to identify Ss = 20. Remaining parameters as in Fig. 1.
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Methods

The model

We considered a network of N LIF inhibitory neurons coupled via α pulses, which can
be represented via the following set of 3N equations.

v̇i(t) = ai − v(t)− gEi(t) (2a)

Ėi(t) = Pi(t)− αEi(t) i = 1, . . . , N (2b)

Ṗi(t) = −αPi(t) +
α2

K

∑
n|tn<t

Ci,jδ(t− tn) . (2c)

In this model vi is the membrane potential of neuron i, K denotes the number of
pre-synaptic connections, g > 0 is the strength of the synapses, the variable Ei
accounts for the past history of previous recurrent post-synaptic potentials (PSP) that
arrived to the neuron i at times tn, and Pi is an auxiliary variable. ai is the external
excitation and α is inversely proportional to the decaying time of the PSP. The
inhibition is introduced via the minus sign in front of the synaptic strength in
Eq. (2a). The matrix Ci,j is the connectivity matrix where entry i, j is equal to 1 if
there exists a synaptic connection from neuron j to neuron i. When the membrane
potential of the q-th neuron arrives to the threshold vth = 1, it is reset to the value
vr = 0 and the cell emits an α-pulse pα(t) = α2t exp (−αt) which is instantaneously
transmitted to all its post-synaptic neurons. The α-pulses are normalized to one,
therefore the area of the transmitted PSPs is conserved by varying the parameter α.

The equations (2a) to (2c) can be exactly integrated from the time t = tn, just
after the delivery of the n-th pulse, to time t = tn+1 corresponding to the emission of
the (n+ 1)-th spike, thus obtaining an event driven map [27, 49] which reads as

Ei(n+ 1) = Ei(n)e−ατ(n) + Pi(n)τ(n)e−ατ(n) (3a)

Pi(n+ 1) = Pi(n)e−ατ(n) + Ciq
α2

K
(3b)

vi(n+ 1) = vi(n)e−τ(n) + a(1− e−τ(n))− gHi(n) , (3c)

where τ(n) = tn+1 − tn is the inter-spike interval associated with two successive
neuronal firing in the network, which can be determined by solving the transcendental
equation

τ(n) = ln

[
a− vq(n)

a− gHq(n)− 1

]
, (4)

here q identifies the neuron which will fire at time tn+1 by reaching the threshold value
vq(n+ 1) = 1.

The explicit expression for Hi(n) appearing in equations (3c) and (4) is

Hi(n) =
e−τ(n) − e−ατ(n)

α− 1

(
Ei(n) +

Pi(n)

α− 1

)
−τ(n)e−ατ(n)

α− 1
Pi(n) . (5)

The model is now rewritten as a discrete-time map with 3N − 1 degrees of freedom,
since one degree of freedom vq(n+ 1) = 1, is lost due to the event driven procedure,
which corresponds to performing a Poincaré section at any time a neuron fires [49].

The model so far introduced contains only adimensional units, however, the
evolution equation for the membrane potential (2) can be easily re-expressed in terms
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of dimensional variables as follows

τmV̇i(t̃) = Ii − Vj(t̃)− τmGẼi(t̃) i = 1, · · · , N ; (6)

where we have chosen τm = 10 ms as the membrane time constant in agreement with
the values reported in literature for MSNs in the up state in rodents [50, 51, 52], Ii
represents the neural excitability and the external stimulations, which takes in account
the cortical and thalamic inputs received by the striatal network. Furthermore,
t̃ = t · τm, the field Ẽi = Ei/τm has the dimensionality of frequency and G of voltage.
The currents {Ii} have also the dimensionality of a voltage, since they include the
membrane resistance.

For the other parameters/variables the transformation to physical units is simply
given by

Vi = Vr + (Vth − Vr)vi (7)

Ii = Vr + (Vth − Vr)ai (8)

G = (Vth − Vr)g (9)

where Vr = −60 mV, Vth = −50 mV. The isolated i-th LIF neuron is supra-threshold
whenever Ii > Vth, however due to the inhibitory coupling the effective input is
Wi = Ii − τmGẼi. Therefore, the neuron is able to deliver a spike if W i > Vth, in this
case the firing of the neuron can be considered as mean-driven. However, even if
W i < Vth, the neuron can be lead to fire from fluctuations in the effective input and
the firing is in this case fluctuation-driven. It is clear that the fluctuations σ(Wi) are
directly proportional to the strength of the inhibitory coupling for constant external
currents Ii. The dynamics of two neurons will be equivalent whenever they have equal
time averaged effective inputs W i. In order to measure the similarity of their
dynamics we introduce the following metrics

eij = 1− |W i −W j |
maxij |W i −W j |

; (10)

this quantity will be bounded between one and zero: the one (zero) denoting maximal
(minimal) similarity.

For the PSPs the associated time constant is τα = τm/α, and the peak amplitude is
given by

APSP =
α

K
Ge−1 = g × 92 µV ; (11)

where the last equality allows for a direct transformation from adimensional units to
dimensional ones, for the connectivity considered in this paper, namely K = 20, and
for α = 0.5, which is the value mainly employed in our analysis. The experimentally
measured peak amplitudes of the inhibitory PSPs for spiny projection neurons ranges
from ' 0.16− 0.32 mV [7] to ' 1− 2 mV [28]. These values depend strongly on the
measurement conditions a renormalization of all the reported measurements nearby
the firing threshold gives for the PSP peak ' 0.17− 0.34 mV [9]. Therefore from
Eq. (11) one can see that realistic values for APSP can be obtained in the range
g ∈ [2 : 10]. For α = 0.5 one gets τα = 20 ms, which is consistent with the PSP
duration and decay values reported in the literature for inhibitory transmission among
spiny neurons [7, 31]

Our model does not take in account the depolarizing effects of inhibitory PSPs for
V ≤ Ecl [28]. The GABA neurotransmitter has a depolarizing effect in mature
projection spiny neurons, however this depolarization does not lead to a direct
excitation of the spiny neurons. Therefore our model can be considered as
encompassing only the polarizing effects of the PSPs for V > Ecl. This is the reason
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we have assumed that the membrane potential varies in the range [−60 : −50] mV,
since Ecl ' −60 mV and the threshold is ' −50 mV [28].

In the paper we have always employed dimensional variables (for simplicity we
neglect the tilde on the time variable), apart from the amplitude of the synaptic
coupling, for which we have found more convenient to use the adimensional quantity g.

Characterization of the network activity

We define active neurons, as opposed to silent neurons, as cells that deliver a number
of spikes larger than a certain threshold SΘ = 3 during the considered numerical
experiments. In particular, we show in Fig. S1 of the Supporting Information that the
value of the chosen threshold does not affect the reported results for 0 ≤ SΘ ≤ 100.

Characterization of the dynamics of the active neurons is performed via the
coefficient of variation CV , the local coefficient of variation CV2 and the zero lag
cross-correlation matrix of the firing rates C(νi, νj). The coefficient of variation
associated to the i-th neuron is then defined as the ratio:

CV (i) =
σ(ISI(i))

ISI(i)
;

where σ(A) and A denotes the standard deviation and mean value of the quantity A.
The distribution of the coefficient of variation P (CV ) reported in the article refers to
the values of the CV associated with all the active cells in the network.

Another useful measure of spike statistics is the local coefficient of variation. For

each neuron i and each spike emitted at time t
(i)
n from the considered cell the local

coefficient of variation is measured as

CV
(i)
2 (n) =

|ISI(i)
n − ISI(i)

n−1|
ISI

(i)
n + ISI

(i)
n−1

where the n-th inter-spike interval is defined as ISI
(i)
n = t

(i)
n − t(i)n−1. The above

quantity ranges between zero and one: a zero value corresponds to a perfectly periodic

firing, while the value one is attained in the limit ISI
(i)
n /ISI

(i)
n−1 → 0 (or

ISI
(i)
n /ISI

(i)
n−1 →∞). The probability distribution function P (CV2) is then computed

by employing the values of the CV
(i)
2 (n) for all the active cells of the network

estimated at each firing event.
The level of correlated activity between firing rates is measured via the

cross-correlation matrix C(νi, νj). The firing rate νi(t) of each neuron i is calculated
at regular intervals ∆T = 50 ms by counting the number of spikes emitted in a time
window of 10∆T = 500 ms, starting from the considered time t. For each pair of
neuron i and j the corresponding element of the N ×N symmetric cross-correlation
matrix C(i, j) is simply the Pearson correlation coefficient measured as follows

C(i, j) =
cov(νi, νj)

σ(νi)σ(νj)
,

where cov(νi, νj) is the covariance between signals νi(t) and νj(t). For statistical
consistency this is always calculated for spike trains containing 107 events. This
corresponds to time intervals TE ranging from 50 s to 350 s (from 90 s to 390 s) for
∆V = 5 mV (∆V = 1 mV) and g ∈ [0.1, 12]. We have also verified that the indicators
entering in the definition of the metrics Q0, namely n∗, the average coefficient of
variation 〈CV 〉N and σ(C), do not depend on the duration of the considered time
windows, provided these are sufficiently long. Namely, we observe that asymptotic
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values are already obtained for spike trains containing more than 50,000 events. This
amounts to TE ranging between 250 ms and 2 s for the considered parameter values.

State Transition Matrix (STM) and measure of dissimilarity

The STM is constructed by calculating the firing rates νi(t) of the N neurons at
regular time intervals ∆T = 50 ms. At each time t the rates are measured by counting
the number of spikes emitted in a window 2∆T , starting at the considered time. Note
that the time resolution here used is higher than the one employed for the
cross-correlation matrix, since we are interested in the response of the network to a
stimulus presentation evaluated on a limited time window. The firing rates can be
represented as a state vector R(t) = {νi(t)} with i = 1, . . . , N . For an experiment of
duration TE , we have S = bTE/∆T c state vectors R(t) representing the network
evolution (b·c denotes the integer part). In order to measure the similarity of two
states at different times tm = m×∆T and tn = n×∆T , we have calculated the
normalized scalar product

D(m,n) =
R(tm) ·R(tn)

|R(tm)||R(tn)| (12)

for all possible pairs m,n = 1, . . . , S during the time experiment TE . This gives rise to
a S × S matrix called the state transition matrix [53].

In the case of the numerical experiment with two inputs reported in the section
Results, the obtained STM has a periodic structure of period Tsw with high correlated
blocks followed by low correlated ones (see Figs. S5(b) and (e) for the complete STM).
In Fig 6 (b) we report a coarse grained version of the entire STM obtained by taking a
4Tsw × 4Tsw block from the STM, where the time origin corresponds to the onset of
one of the two stimuli. The block is then averaged over r subsequent windows of
duration 4Tw, whose origin is shifted each time by 2Tsw. More precisely the averaged
STM D(m,n) is obtained as follows:

D(m,n) =
1

r2

r∑
i,j=1

D(4i+m, 4j + n) (13a)

∀m,n ≤ bTsw/∆T c .

In a similar manner, we can define a dissimilarity metric to distinguish between the
response of the network to two different inputs. We define a control input

I(c) = {I(c)
i } ∈ [Vth, Vth + ∆V ], and we register the network state vectors Rc(t) at S

regular time intervals for a time span TE . We repeat the numerical experiment by
considering the same network realization and the same initial conditions, but with a

new input I(f) = {I(f)
i }. The external inputs I

(f)
i coincide with the control ones, apart

from a fraction f which is randomly taken from the interval [Vth, Vth + ∆V ]. For the
modified input we register another sequence Rf (t) of state vectors on the same time
interval, with the same resolution. The instantaneous dissimilarity df (t) between the
response to the control and perturbed stimuli is defined as:

df (tm) = 1− Rc(tm) ·Rf (tm)

|Rc(tm)||Rf (tm)| (14)

its average in time is simply given by d̄f = 1
S

∑S
i=1 d

f (ti). We have verified that the
average d̄f is essentially not modified if the instantaneous dissimilarities df (t) are
evaluated by considering the state vectors Rc(ti) and Rf (tk) taken at different times
within the interval [0, tS ] and not at the same time as done in (14).
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Distinguishability metric Qd:

Following [16] a metric of the ability of the network to distinguish between two
different inputs ∆Md can be defined in terms of the STM. In particular, let us
consider the STM obtained for two inputs I(1) to I(2), each presented for a time
duration Tsw. In order to define ∆Md the authors in [16] considered the correlations
of the state vector R taken at a generic time tm0

with all the other configurations,
with reference to Eq. (12) this amounts to examine the elements D(m0, n) of the STM
∀tn. By defining M1 (M2) as the average of D(m0, n) over all the times tn associated
to the presentation of the stimulus I(1) (I(2)), a distinguishablity metric between the
two inputs can be finally defined as

∆Md = |M1 −M2| . (15)

In order to take in account the single neuron variability and the number of active
neurons involved in the network dynamics we have modified ∆Md by multiplying this
quantity by the fraction of active neurons and the average coefficient of variation, as
follows

Qd = ∆Md × n∗ × 〈CV 〉N . (16)

Synchronized Event Transition Matrix (SETM)

In order to obtain a Synchronized Event Transition Matrix (SETM), we first coarse
grain the raster plot of the network. This is done by considering a series of windows of
duration TW = 50 ms covering the entire raster plot. A bursting event is identified
whenever a neuron i fires 3 or more spikes within the considered window. To signal
the burst occurrence a dot is drawn at the beginning of the window. From this coarse
grained raster plot we obtain the Network Bursting Rate (NBR) by measuring the
fraction of neurons that are bursting within the considered window. When this fraction
is larger or equal to the average NBR plus two standard deviations, a synchronized
event is identified. Each synchronized event is encoded in the synchronous event
vector Ws(t), a N dimensional binary vector where the i-th entry is 1 if the i-th
neuron participated in the synchronized event and zero otherwise. To measure the
similarity between two synchronous events, we make use of the normalized scalar
product between all the pairs of vectors Ws obtained at the different times ti and tj in
which a synchronized event occurred. This represents the element i, j of the SETM.

Principal Components Analysis (PCA):

In the sub-section Discriminative and computational capability, a Principal
Component Analysis (PCA) is performed by collecting S state vectors R(t), measured
at regular intervals ∆T for a time interval TE , then by estimating the covariance
matrix cov(νi, νj) associated to these state vectors. Similarly, in the sub-section
Physiological relevance for biological networks under different experimental conditions
the PCA is computed by collecting the Ss synchronous event vectors Ws, and the
covariance matrix calculated from this set of vectors.

The principal components are the eigenvectors of theses matrices, ordered from the
largest to the smallest eigenvalue. Each eigenvalue represents the variance of the
original data along the corresponding eigendirection. A reconstruction of the original
data set can be obtained by projecting the state vectors along a limited number of
principal eigenvectors.

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2016. ; https://doi.org/10.1101/036608doi: bioRxiv preprint 

https://doi.org/10.1101/036608
http://creativecommons.org/licenses/by-nc-nd/4.0/


Clustering algorithms.

The k-means algorithm is a commonly-used clustering technique in which N data
points of dimension M are organized in clusters as follows. As a first step a number k
of clusters is defined a-priori, then from a sub-set of the data k samples are chosen
randomly. From each sub-set a centroid is defined in the M -dimensional space. at a
second step, the remaining data are assigned to the closest centroid according to a
distance measure. After the process is completed, a new set of k centroids can be
defined by employing the data assigned to each cluster. The procedure is repeated
until the position of the centroids converge to their asymptotic value.

An unbiased way to define a partition of the data can be obtained by finding the
optimal cluster division [41]. The optimal number of clusters can be found by
maximizing the following cost function, termed modularity:

M =
1

Atot

∑
ij

(Aij −Nij) δ(ci, cj), (17)

where, A ≡ {Ai,j} is the matrix to be clusterized, the normalization factor is
Atot =

∑
ij Aij ; Nij accounts for the matrix element associated to the null model; ci

denotes the cluster to which the i-th element of the matrix belongs to, and δ(i, j) is
the Kronecker delta. In other terms, the sum appearing in Eq. (17) is restricted to
elements belonging to the same cluster. In our specific study, A is the similarity
matrix corresponding to the SETM previously introduced. Furthermore, the elements
of the matrix N are given by Nij = ηiηj/Atot, where ηi =

∑
j Aij , these correspond to

the expected value of the similarity for two randomly chosen elements [54, 55]. If two
elements are similar than expected by chance, this implies that Aij > Nij , and more
similar they are larger is their contribution to the modularity M. Hence they are
likely to belong to the same cluster. The problem of modularity optimization is
NP-hard [56], nevertheless some heuristic algorithms have been developed for finding
local solutions based on greedy algorithms [57, 58, 59, 60]. In particular, we make use
of the algorithm introduced for connectivity matrices in [61, 54], which can be
straightforwardly extended to similarity matrices by considering the similarity between
two elements, as the weight of the link between them [62]. The optimal partition
technique is used in the sub-section Physiological relevance for biological networks
under different experimental conditions, where it is applied to the similarity matrix

Sij = 1− Eij where the distance matrix Eij =
‖xp

i−x
p
j ‖2

max(E) . Here xpi is the vector defining

the ith synchronized event projected in the first p principal components, which
accounts for the 80% of the variance.
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TEXT S1

Silent Neurons

We define a neuron as silent, if it does not emit more than SΘ spikes within the system evolution, which we typically
take as the time taken for the network to evolve through to 107 spikes. In particular, in Fig. S 1 (a) and (b) we
report the fraction of active neurons n∗ versus the synaptic strength for two parameter settings and for several values
of the considered threshold, namely 0 ≤ SΘ ≤ 100. In practice, we observe that neither the minimal value of n∗ nor
the value for which the minimum is reached, appears to strongly depend on the chosen threshold, thus demonstrating
the robustness of the results that we present through the article.

Mechanisms for the resurgence of silent neurons

In what follows we report the neuronal distributions of the average inter-spike intervals ISI, of the corresponding
CV , of the associated average effective synaptic input W i ≡ Ii − gEi and standard deviation σ(Wi). In particular,
we consider these distributions for two different stimuli dispersion (namely, ∆V = 5 mV and 1mV) as well as for two
synaptic strengths (namely, g ' gmin and g >> gmin).

For ∆V = 5 mV (∆V = 1 mV) we examine two synaptic strengths, one in proximity of the minimum gmin of n∗,
where almost 50 % of neurons are active, and one for which almost all the neurons are active again, namely g = 4
and 10 (g = 1 and 4). Let us first consider the distribution of the average ISI of the single cell reported in Fig
S 2(a) and (d). At small g the distributions reveal a clear peak at some low ISI plus a long tail. In correspondence
of this coupling the distribution of CV is clearly bimodal as shown in Fig S 2(b) and (e) with peaks around zero
and one, thus indicating that the neurons associated to the peak in P (ISI) are firing in a regular fashion, while the
neurons in the tail of P (ISI) contributes to the second peak in P (CV ) around CV ' 1. Furthermore, by examining
the distributions of the average effective input W i perceived by each single cell, the PDF for g ' gmin has a peak in
proximity the threshold value Vth.

We can conclude that the neurons contributing to the main peaks in P (ISI) and P (CV ) for g ' gmin are the
winners, which fire faster than the others and almost periodically, thus suggesting that they are not particularly
influenced by the other neurons in the network. Moreover, they correspond to the neurons which are on average
above threshold, as shown in Fig. S 2(c) and (f). The neurons contributing to the second maximum in P (CV ) and to
the tail of P (ISI) are instead slow neurons whose activity is strongly depressed by the winners and they are neurons
around, or just below threshold, in Fig. S 2(c) and (f).

As one can appreciate from Fig. S 2(a) and (d) the P (ISI) is completely modified at large g. In such a case, a
broad peak is present extending over two orders of magnitude. In this regime the majority of the cells are on average
below-threshold, as it can be appreciated by the corresponding P (W i), reported in Fig. S 2(c) and (f) as red empty
squares, which reveal an almost Gaussian shape centered well below threshold. Therefore we are now in a situation
where all neurons are active, but the majority are activated due to the fluctuations in the input and they are no more
tonically firing. The fact that now the activity is mostly fluctuation driven, is reflected also in the CV distributions,
which are now centered well above one.

The reported results clearly show that for wider dispersion of the Ii, as measured by ∆V , a greater lateral inhibition
is required to observe similar effects.

Linear stability analysis

One of the questions that we would like to address is whether the existence of a bursting correlated activity is
related to linear stability properties of the network or not. To characterize these properties, we calculate the maximal
Lyapunov exponent (LE) λ for the parameters examined in the text. In order to compute the LE we derive from Eq.
(3) (main text) its linearization, which describes the evolution of infinitesimal perturbations in the reference orbits,
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this reads as:

δEi(n+ 1) = e−ατ(n) [δEi(n) + τ(n)δPi(n)]

− e−ατ(n) [αEi(n) + (ατ(n)− 1)Pi(n)] δτ(n) , (S1a)

δPi(n+ 1) = e−ατ(n) [δPi(n)− αPi(n)δτ(n)] , (S1b)

δvi(n+ 1) = e−τ(n) [δvi(n) + (a− vi(n))δτ(n)] + gδHi(n)

i = 1, . . . , N ; δvm(n+ 1) ≡ 0 . (S1c)

The boundary condition δvm(n+ 1) ≡ 0 is a consequence of the event driven evolution. The expression of δτ(n) can
be computed by differentiating Eqs. (4) and (5) (in main text), namely

δτ(n) = τvδvm(n) + τEδEm(n) + τP δPm(n) , (S2)

where

τv :=
∂τ

∂vm
, τE :=

∂τ

∂Em
, τP :=

∂τ

∂Pm
. (S3)

The maximal LE λ is defined as the the average exponential growth rate of the infinitesimal perturbation

δ = (δv1 . . . δvN , δE1 . . . δEN , δP1 . . . δPN )

measured through the equation

λ = lim
t→∞

1

t
log
| δ(t) |
| δ0 |

, (S4)

where δ0 is the initial perturbation. The evolution of the perturbation δ(t) at the following times can be obtained by
integrating Eqs. (S1) in the tangent space in parallel with the evolution in the real space and by performing at regular
time intervals the rescaling of its amplitude to avoid numerical artifacts, as detailed in [2]. A positive λ denotes a
chaotic dynamics, a zero maximal LE is associated to a periodic (or quasiperiodic) orbit, and a negative one to a
stable fixed point. It is important to stress that, since we are dealing with an event driven map formulation of the
dynamics, the zero Lyapunov exponent which is always present for continuous time evolution and associated to the
growth rate of a perturbation along the orbit, is automatically discarded. This implies that, if the evolution is stable,
either a fixed point or a periodic solution, we measure in both cases a maximal LE λ < 0.

For a fixed pulse duration τα = 20 ms, the behaviour of the maximal LE λ as a function of the coupling g, for
different excitability spreading ∆V , is definitely different. As shown in Fig S3 (a), for ∆V = 1 mV the LE (as
expected) is zero for very weakly coupled systems, then it first increases with g and reaches a maximum around g = 2
and then it decreases monotonically becoming negative for g > 5. For ∆V = 5 mV, the LE is always positive and
increases with g saturating at an almost constant value λ ' 3.4 Hz for g ≥ 6. We are specifically interested in the
conditions for which the measure Q0 is maximized, these points are indicated in Fig S3 (a), as one can notice they
correspond for both considered ∆V to positive λ.

Additionally we have analyzed the behaviour of λ as a function of τα by fixing g to the value that maximizes Q0 in
the previous analysis. In this case it appears that λ increases with τα and becomes definitely negative for sufficiently
small τα (as shown in Fig. S3 (b)), in agreement with the results reported in [1, 3]. The cell assembly dynamics of our
network resembles that of MSNs for large τα, as explained in the text, the point where Q0 is maximal are indicated
also in Fig. S3 (b). These evidences seem to suggest that the striatally relevant dynamics correspond to a chaotic
regime, but located in proximity of the transition between chaotic and non-chaotic evolution. The same conclusion
was already reported for a rate model of the striatum in [6].

However, all this analysis and the one reported in [6] consider only infinitesimal perturbations, while it has been
clearly demonstrated that for inhibitory networks finite perturbations play a fundamental role as shown in [1, 3, 4, 7].
In particular our model, even for λ < 0, can display erratic evolution almost indistinguishable from chaos due to the
so-called Stable Chaos mechanism [1, 5]. This leads us to conclude that the usual Lyapunov exponent is unable to
capture the degree of erratic motion present in these systems, due to the possible amplification of finite amplitude
perturbations.
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State Transition Matrices for different regimes

In the main text we have just reported the averaged State Transition Matrix (STM) corresponding to the consecutive
presentation of two stimuli for parameters obtained by maximizing Q0. Here we want to show how the STM is modified
by considering τα = 20 ms, for which Q0 is maximal, and for a smaller pulse duration, namely τα = 2 ms, for which
the evolution of the network is seemingly Poissonian. The upper panel of Fig S5 show another realization of the
network obtained for the same parameters of Fig. 5 (in main text). The lower panels correspond to τα = 2ms. The
raster plots clearly show that for τα = 20 ms the network exhibits a clear patterned activity with frequent switch from
an activated assembly to another, furthermore there is a low correlation between the network activities in presence of
the two different stimuli. As shown in Fig S 5 (b,c). For τα = 2 ms the system presents much less variability. While
it is still capable of discriminating between two different stimuli, now the system fails in revealing a clear assembly
switching during the presentation of a single stimulus (see lower panels of Fig. S 5).

Synchronized Event Transition Matrices and number of coactive cells for different network realizations

We present two different realizations of the numerical experiment performed in the sub-section Physiological rele-
vance for biological networks under different experimental conditions. The difference between the realizations lies on
the random connectivity matrix Cij , which is generated at each realization with the same connection probability. The
results are presented in Fig. S 7. More precisely, in Figs. S 7 (a) and S 7 (e) are reported the SETMs for maximal
Q0 (g = 8 for the chosen parameters). These are characterized by a large variability in their elements when compared
with the corresponding SETMs obtained for decreased inhibition (namely, g = 1), shown in Figs. S 7 (c) and S 7 (g),
is always smaller. The difference between the two regimes is also evidenced in the number of coactive cells: at maximal
Q0 each state is well defined, as illustrated in Figs. S 7 (b) and S 7 (f). Since diagonal elements (representing the
number of neurons active in a given state) present larger bars compared with the off-diagonal ones (representing the
overlap between two different states) Instead, in the set-up with g = 1 the states are hardly distinguishable, diagonal
and off-diagonal bars have similar heights (as shown in Figs. S 7d) and S 7h))
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Fig S 1. Dependence of the value n∗ on the chosen threshold SΘ Fraction of active neurons n∗ vs the synaptic
strength, for several threshold definitions. A neuron is considered silent whenever it does not spike at least SΘ-times during
the observation time. Panel a) for ∆V = 1 mV and b) for ∆V = 5 mV. The system is left to evolve during 107 spikes, after
discarding 105 spike events of transient. Other parameters used in the simulation: K = 20, N = 400 and τα = 20ms.
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Fig S 2. Neuronal statistics. Neuronal distributions of the average ISI (a,d), of the coefficient of variation CV (b,e) and of
the average effective synaptic input W i (c,f). The data in the first row are for ∆V = 1 mV and in the second one for ∆V = 5
mV. For ∆V = 1 mV (∆V = 5 mV) black solid line with filled circles correspond to g = 1 (g = 4) and red dashed lines with
open squares to g = 4 (g = 10). Insets of (a,d) and (c,f), same as the main figure in a lower g regime: g = 0.4 (g = 1) for
∆V = 1 mV (∆V = 5 mV). The system is left to evolve during 107 spikes, after discarding 105 spike events. Other parameters
used in the simulation: K = 20, N = 400 and τα = 20 ms.
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Fig S 3. Linear stability analysis. a) Maximal Lyapunov exponent λ at a fixed τα = 20, as a function of the synaptic strength
for ∆V = 1 mV (continuous line, filled circles) and ∆V = 5 mV (dashed line, empty squares). b) Maximal Lyapunov exponent λ
as a function of the pulse duration τα for the parameters {∆V, g} = {1 mV, 4} (continuous line with filled circles) and {5 mV, 8}
(dashed line with empty squares). In both panels, the blue filled square indicates the triad {∆V, g, τα} = {5 mV, 8, 20 ms},
and the red filled circle to {∆V, g, τα} = {1 mV, 4, 20 ms}; these values are associated to the maximum values of Q0 obtained
for excitability distributions with fixed width ∆V . The tangent space Eq. (S1) is evolved during a period corresponding to 106

spikes, after discarding a transient of 105 spikes. Other parameters used in the simulation: K = 20, N = 400.
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Fig S 4. Metrics of the structured activity vs synaptic time decay. a) Metrics entering in the definition of Q0 and their
dependence from τα. From top to bottom: Averaged coefficient of variation 〈CV 〉N , standard deviation of the cross-correlation
matrix σ(C), and the fraction of active neurons n∗. b) ∆Md as a function of τα. The system is left to evolve during 107 spikes,
after discarding 105 transient spike events. Parameters here used ∆V = 5 mV, g = 8, K = 20, N = 400.
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��

Fig S 5. Two stimuli presentation. Upper panel, another realization of the network with the same parameters as chosen in
the main text and τα = 20ms. Lower panel, network with τα = 2ms. From left to right it is depicted the raster plot colored
according to the k-means algorithm with k=25, vertical lines indicates the change of the presented stimulus. In the middle
column is reported the state transition matrix calculated over a time span of 20 seconds (the stimulation protocol is repeated 5
times). Rightmost column reports the state transition matrix for a block 4 s × 4 s averaged over r = 5 successive presentations
of the inputs.
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Fig S 6. Pattern Separation. Dissimilarity measure in time for an observation window of length a) TE = 2 s and b) TE = 10
s, for two values of τα=20 ms (black circles) and τα=2 ms (red squares) at a fixed value of f = 0.2. It is clearly observed
that τα = 20 ms more effectively differentiates the similar inputs in both observation windows, as seen by the larger values of
dissimilarity respect to the τα = 2ms. The initial increase of df (t) observable for τα = 20 ms in panel (a) is probably due to the
fact that the dynamics for this choice of parameters is chaotic as shown in the Linear stability analysis sub-section. Therefore
the increase can be associated to a transient evolution towards the final attractor. Other parameters used: ∆T = 50 ms, g = 8,
N = 400, K = 20.
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Fig S 7. Response of the network to an increase in the excitability. Two different realizations of the numerical
experiment reported in the subsection Physiological relevance for biological networks under different experimental conditions of
the main text. First (third) column reports two realizations of the SETM estimated for g = 8 (g = 1). Second (fourth) column
displays the number of coactive cells in the corresponding cases for g = 8 (g = 1). The other parameters for the reported
simulations are ∆V = 5 mV, K = 20, N = 400.
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