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Abstract	
Although the utility of short tandem repeats on the Y-chromosome (Y-STRs) has long 
been recognized and leveraged in forensics, genealogy and paternity testing, the bulk of 
these applications have relied on only a few dozen loci identified as having remarkably 
high mutation rates. Recent efforts have expanded the set of Y-STRs with known 
mutation rates to two hundred markers, but the limited throughput of the capillary 
method for estimating mutation rates has left the mutability of most Y-STRs 
uncharacterized, particularly those with dinucleotide repeat units. To address this 
limitation, we developed a novel method capable of concurrently estimating the mutation 
rates of all Y-STRs by leveraging population-scale whole-genome sequencing data. 
Extensive simulations confirmed that our method robustly accounts for PCR stutter 
artifacts and obtains unbiased mutation rate estimates. Application of the method to 
orthogonal datasets from the 1000 Genomes Project and Simons Genome Diversity 
Project utilized evolutionary data from over 250,000 meioses to estimate the mutation 
rates of more than 700 Y-STRs with 2-6 base pair repeat units, yielding the largest such 
set to date. Comparison of these estimates with those from father-son studies indicated 
a high degree of concordance for loci that have been previously characterized. In 
addition, we identified nearly 100 previously uncharacterized Y-STRs with per-
generation mutation rates greater than 1 in 3000. Altogether, our study provides a 
broadly applicable method for estimating Y-STR mutation rates from whole-genome 
sequencing cohorts, outlines a framework for imputing Y-STRs, vastly expands the 
number of identified loci with high discriminative power and provides the first 
chromosome-wide characterization of the mutation rates of dinucleotide short tandem 
repeats. 
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Introduction	
Over the past 20 years, a multitude of fields have increasingly leveraged Y-STRs due to 
their unique combination of high mutation rate and paternal inheritance pattern. Prior to 
the advent of genome-wide SNP genotype data, population genetics utilized these highly 
mutable markers to build phylogenies (Takezaki and Nei 1996; Forster et al. 2000) and 
to draw a host of demographic inferences (Pritchard et al. 1999). In forensics, Y-STRs 
are commonly used to resolve cases in which DNA samples contain multiple donors or 
are difficult to profile using traditional autosomal techniques (Kayser et al. 1997; Roewer 
2009). Y-STRs are also widely used in genealogy to ascertain the relatedness of families 
(Kayser et al. 2007) and in paternity cases, even resolving historical debates such as the 
contentious paternal relationship between Thomas Jefferson and Sally Hemings’ 
children (Foster et al. 1998). More recently, we employed these markers to demonstrate 
that one can infer the surname of an anonymous genome, a finding that stimulated 
important conversations related to genetic privacy (Gymrek et al. 2013).  
 
Despite the immense utility of Y-STRs, the vast majority of their applications rely on only 
a few dozen markers. The small size of this panel is largely the result of the 
cumbersome and expensive method used to estimate Y-STR mutation rates. This 
process typically involves genotyping large pedigrees or thousands of father-son pairs 
using capillary electrophoresis, from which the frequency of discordant genotypes 
provides an estimate of the mutation rate (Heyer et al. 1997; Kayser et al. 2000; Dupuy 
et al. 2004; Gusmao et al. 2005). Recently, several large-scale studies expanded the set 
of loci with available mutation rates to include several hundred markers and identified a 
handful of rapidly mutating Y-STRs with mutation rates in excess of 10-2 mpg (Ballantyne 
et al. 2010; Burgarella and Navascues 2011). However, these studies characterized long 
Y-STRs with 3-6bp motifs that were identified in prior scans for polymorphic loci (Kayser 
et al. 2004), ignoring loci with fewer repeats or dinucleotide repeats. Since genome-wide 
studies of human populations have identified dinucleotide repeats as among the most 
abundant and heterozygous of the STR classes (Willems et al. 2014), characterizing 
these markers may identify new promising candidates for male lineage differentiation. In 
addition, characterizing the mutation rates of the full spectrum of Y-STRs will be 
instrumental towards understanding their mutational mechanisms and developing 
accurate sequence-based predictors of mutability for use across the genome. 
 
Fortunately, the rapid advancement of next-generation sequencing technologies has 
provided a unique opportunity to address these issues. Coupled with vast improvements 
in the depth and quality of whole genome sequencing (WGS) datasets, the advent of 
STR genotyping tools has made it possible to genotype Y-STRs chromosome-wide 
(Gymrek et al. 2012; Highnam et al. 2013; Warshauer et al. 2013). As a result, mutation 
rate estimation procedures that leverage these datasets can perform unbiased scans for 
mutable loci instead of only considering previously ascertained sites. While it may seem 
appropriate to apply traditional STR mutation rate estimators based on microsatellite 
distance measures to these datasets (Goldstein et al. 1995; Slatkin 1995), these 
estimators assume simplistic STR mutation models and have been shown to be 
susceptible to haplogroup size fluctuations (Zhivotovsky et al. 2006). An alternative 
approach is to develop methods that also leverage the rich evolutionary information of 
recently generated high-resolution population-scale Y-chromosome (Francalacci et al. 
2013; Poznik et al. 2013; Wei et al. 2013a). A recent study developed one such method, 
but it also required a simple mutation model and only partially utilized the phylogenetic 
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information (Ravid-Amir and Rosset 2010). Furthermore, all of the above methods 
assume error-free genotypes and are therefore poorly equipped to deal with the sources 
of error prevalent in WGS-based STR call sets. 
	
In this study, we demonstrate how to effectively integrate Y-STR genotypes and Y-SNP 
phylogenies derived from whole-genome sequencing data to estimate Y-STR mutation 
rates. Using various simulations, we demonstrate that our approach results in unbiased 
mutation rate estimates for almost all considered mutation models, even in the presence 
of extensive PCR stutter. We then apply our approach to data from the Simons Genome 
Diversity Project (SGDP) and 1000 Genomes Project (1KGP) (Genomes Project et al. 
2015) to estimate the mutation rates of over 700 Y-STRs, most of which have never 
been characterized. The resulting sets of estimates were remarkably concordant, 
uncovered a large number of unknown highly polymorphic markers and shed light on the 
sequence factors that govern Y-STR mutability. 
 
 
Materials	and	Methods	
	
Mutation Rate Method Overview 
Our approach to estimating Y-STR mutation rates, which is outlined in Figure 1, is 
motivated by the notion that current Y-SNP phylogenies are sufficiently detailed and 
accurate to infer STR mutation models. Given a phylogeny and a set of STR genotypes, 
Felsenstein’s pruning algorithm (Felsenstein 1981) and numerical optimization can be 
used to evaluate and improve the likelihood of a mutation model until convergence, 
providing an estimate of the mutation rate. However, due to the error-prone and low-
coverage nature of WGS-based STR call sets, utilizing these genotypes will result in 
vastly inflated mutation rate estimates. To avoid these biases, we analyze the number of 
repeats observed in all individuals’ reads to learn a locus-specific error model and use 
this error model to compute genotype posteriors. As these posteriors account for 
genotype uncertainty, we utilize them during the mutation model optimization process 
instead of fixed genotypes to obtain robust estimates. More detailed descriptions of each 
of the steps involved in this approach are contained in the sections below. 
  
Y-SNP Phylogeny Construction 
We downloaded Y-chromosome SNP calls for male SGDP samples from the project 
website and utilized VCFtools (Danecek et al. 2011) to remove loci where more than 
10% of the calls were heterozygous. For the remaining polymorphic sites, we removed 
individual calls that were heterozygous, had fewer than 7 supporting reads or had more 
than 10% of reads supporting an uncalled allele. Lastly, we removed loci if fewer than 
150 samples met these criteria or more than 10% of reads had zero mapping quality. 
These filters resulted in nearly 39,000 high quality polymorphic SNPs which were used 
to generate a maximum likelihood phylogeny using RAxML (Stamatakis 2014) and the 
options –m ASC_GTRGAMMA –f d -asc-corr lewis. We used Dendroscope (Huson and 
Scornavacca 2012) to root the resulting phylogeny along the branch marked by the M42 
and M94 mutations, well-annotated markers associated with the split of the A 
haplogroup from all other haplogroups (Jobling and Tyler-Smith 2003). For the 1000 
Genomes dataset, we utilized a RAxML-generated phylogeny generated by the 1000 
Genomes Y-chromosome working group. 
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Figure 1: Y-STR mutation rate estimation method. Schematic of the steps required to 
estimate Y-STR mutation rates. The method first genotypes Y-SNPs (step 1) and utilizes 
these calls to build a single Y-SNP phylogeny for all Y-STRs (step 2). This phylogeny 
provides the evolutionary context required to infer the Y-STR mutational dynamics, with 
samples in the cohort lying on the leaves of the tree and all other nodes representing 
unobserved ancestors. Steps 3-6 are then run on each Y-STR individually. After utilizing 
an STR genotyping tool to determine each sample’s maximum likelihood genotype and 
the number of repeats in each read (step 3), an EM-algorithm analyzes all of these 
repeat counts to learn a stutter model (step 4). In combination with the read repeat 
counts, this model is used to compute each sample’s genotype posteriors (step 5). After 
randomly initializing a mutation model, Felsenstein’s pruning algorithm and numerical 
optimization are used to repeatedly evaluate and improve the likelihood of the model 
until convergence. The mutation rate in the resulting model provides the maximum 
likelihood estimate. 
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Modeling STR Genotyping Errors 
PCR stutter artifacts are one of the primary causes of STR genotyping errors and 
typically involve the insertion or deletion of copies of the STR repeat unit in a subset of 
the reads at a locus. To mitigate the effects of these errors, we developed a method to 
learn locus-specific stutter models. Our stutter model 𝛩 is parameterized by the allele 
frequencies for each STR allele (𝑓!), the probability that stutter adds (𝑢) or removes (𝑑) 
repeats from the true allele in an observed read, and a geometric distribution with 
parameter 𝜌! that controls the size of the stutter-induced changes. Given a stutter model 
and a set of observed reads (R), the posterior probability of each individual’s haploid 
genotype is: 
 

𝑃 𝑔! = 𝑗 𝑅,𝛩 ∝ 𝑓!

1 − 𝑢 − 𝑑,                      𝑟!,! = 𝑗
𝑢𝜌! 1 − 𝜌! !!,!!!!!,    𝑟!,! > 𝑗
𝑑𝜌! 1 − 𝜌! !!!!,!!!,     𝑟!,! < 𝑗

!!"#$%,!

!!!

	

where 𝑔! and 𝑟!,! denote the number of repeats in the locus and kth read for the ith 
individual, respectively. To learn these parameters, we employed an expectation-
maximization framework in which the E-step computes the genotype posteriors for every 
sample under the observed read repeat counts and the current stutter model. The M-
step then utilizes these posterior probabilities to update the stutter model parameters for 
N samples, A alleles and Q reads as follows: 

𝑢!!! =
1
𝑄

𝑃 𝑔! = 𝑗 𝑅,𝛩! 𝐼(𝑟!,! > 𝑗)

!!"#$%,!

!!!

!

!!!

!

!!!

               𝑑!!! =
1
𝑄

𝑃 𝑔! = 𝑗 𝑅,𝛩! 𝐼(𝑟!,! < 𝑗)

!!"#$%,!

!!!

!

!!!

!

!!!

	

	

𝜌!!!! =
𝑃 𝑔! = 𝑗 𝑅,𝛩! 𝐼(𝑟!,! ≠ 𝑗)

!!"#$%,!
!!!

!
!!!

!
!!!

𝑃 𝑔! = 𝑗 𝑅,𝛩! |𝑟!,! − 𝑗|
!!"#$%,!
!!!

!
!!!

!
!!!

                 𝑓!!!! =
1
𝑁

𝑃(𝑔! = 𝑗|𝑅,𝛩!)
!

!!!
	

In addition to PCR stutter, alignment errors may also cause reads to have a detected 
number of repeats that differ from their underlying genotype. As these errors are also 
incorporated when learning the stutter model, the stutter model accounts for the 
combined frequency of these errors and thereby generates robust posteriors. 
 
STR Mutation Model 
We modeled STR mutations using a length-dependent variant of a generalized stepwise 
mutation model. The model is characterized by a per-generation mutation rate 𝜇, a 
geometric step size distribution with parameter 𝜌! and a spring-like length constraint β 
that causes alleles to mutate back towards a central allele denoted as having zero 
length. Alleles in this model can have negative values as an allele’s value merely 
indicates the deviation, in repeats, from the central allele. Given a starting allele 𝑎!, the 
probability of observing allele 𝑎!!! the following generation is: 

𝑝 𝑎!!! = 𝑘 𝑎! =
!!!,                                                    !!!!
! !! !! !!!! !!!!!!,             !!!!
! !! !! !!!! !!!!!!,            !!!!

 

  
where the fraction of mutations increasing or decreasing the size of the STR are 
𝑓! = min (1,max 0, !!!!!!!

!
) and 𝑓! = 1 − 𝑓!. To avoid biologically implausible models, we 

constrained 𝛽  to have non-negative values, where 𝛽 = 0  reduces to a traditional 
generalized stepwise mutation model and increasingly positive values of 𝛽 represent 
STRs with stronger tendencies to mutate back towards the central allele.  
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Mutation Model Likelihood 
We utilized Felsenstein’s pruning algorithm (Felsenstein 1981) to evaluate the likelihood 
of an STR mutation model. Given a model 𝑀, dataset 𝐷 comprised of observed STR 
genotypes and a SNP-based phylogeny 𝑇 with root node 𝑅, the likelihood is 

𝑃 𝐷 𝑀,𝑇 = 𝑃 𝑅 = 𝑟,𝐷 𝑀,𝑇 =
!

𝑃 𝑅 = 𝑟)𝑃(𝐷 𝑅 = 𝑟,𝑀,𝑇
!

 

Due to the structure of the phylogeny, the conditional probability of the data 𝐷!! below 
each interior node 𝑁! given the node’s genotype can be expressed in terms of transition 
probabilities to each child node 𝐶! and the conditional probability of the data 𝐷!! in its 
subtree:  

𝑃 𝐷!!  𝑁! = 𝑝,𝑀,𝑇 = 𝑃(𝐶! = 𝑏,𝐷!!| 𝑁!
! ∈ !""#"#$!! ∈ !!!"# !!      

= 𝑝,𝑀,𝑇) 

 = 𝑃(𝐶! = 𝑏|𝑁!
! ∈ !""#"#$!! ∈ !!!"# !!      

= 𝑝,𝑀,𝑇) 𝑃(𝐷!!|𝐶! = 𝑏,𝑀,𝑇) 

 
While descending the phylogeny, this recursive relation applies until a node with no 
children is encountered. These nodes represent an observed sample and the conditional 
probability of the data in its subtree is merely given by its genotype likelihoods. 
Therefore, the likelihood of a mutation model can be calculated using a post-order tree 
traversal in which one computes the genotype likelihoods of each observed genotype 
and the conditional probability of the data in each interior node’s subtree given the 
node’s genotype. The total data likelihood is then readily computed using the root node’s 
conditional probabilities and a uniform prior. Because normalizing the genotype 
likelihoods of each sample does not affect the relative model likelihoods, one can use 
genotype posteriors calculated using a uniform prior interchangeably. In addition, to 
avoid numerical underflow issues, we compute the total log-likelihood of the data instead 
of the raw likelihood.  
 
STR Transition Probabilities 
To accelerate the computation of parent-to-child transition probabilities along each 
branch in the phylogeny, we devised a means of rapidly computing the STR transition 
probabilities across hundreds of generations. Given a mutation model 𝑀 and a vector of 
allele probabilities 𝑝 (𝑎!) for generation t, the probability of observing allele 𝑣 in the next 
generation is 

𝑝 𝑎!!! = 𝑣 | 𝑀 = 𝑝 𝑎!!! = 𝑣 𝑎! = 𝑎,𝑀  𝑝 𝑎! = 𝑎 = 𝛾!,!!  𝑝(𝑎!)
!∈[!!"#,   !!"#]

 

To calculate the probability of observing each allele in the next generation, we construct 
an N-by-N transition matrix 𝛤, where N is the number of STR alleles, rows 1, 2…N 
correspond to 𝛾!!"#,!

! , 𝛾!!"#!!,!
! … 𝛾!!"#,!

!  and each column represents the transition 
probabilities from one allele to all other alleles. We modify this matrix such that the first 
and last columns have one non-zero entry along the diagonal to prevent the boundary 
states from mutating and provide an assessment of how frequently they are 
encountered. We also modify the first and last rows of the matrix so that they represent 
transition inequalities that result in normalized transition probabilities. Recursive 
application of the transition matrix then readily results in the allele probabilities after M 
generations:        

𝑝 𝑎!!! = 𝛤p 𝑎!!!!! = 𝛤𝛤p 𝑎!!!!! = 𝛤!p 𝑎!   
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We balance the tradeoff between computation time and boundary state collisions by 
utilizing the smallest allele range such that the minimum and maximum observed STR 
alleles have less than a 10-5 probability of drifting into the boundary states when 
progressing from the root node to the deepest leaf node. 
 
Numerical Optimization of the Mutation Model 
Given STR genotypes for a locus of interest, we developed a maximum likelihood 
approach to estimate the underlying mutation model. Our approach first estimates the 
central allele of the mutation model by computing the median observed STR length and 
then normalizes all genotypes relative to this reference point. It then randomly selects 
mutation model parameters 𝜇, 𝛽, and 𝜌! subject to the constraint that they lie within the 
ranges of 10-5 - 0.05, 0 - 0.75 and 0.5 - 1.0, respectively. Using these bounds, the 
Nelder-Mead optimization algorithm (Nelder and Mead 1965) and the outlined method 
for computing each model’s likelihood, the numerical optimization method iteratively 
updates the mutation model’s parameters until the likelihood converges. After repeating 
this procedure using three different random initializations to increase the probability of 
discovering a global optimum, it selects the optimized set of parameters with the highest 
total likelihood. 
 
Simulating Exact STR Genotypes 
Values of 𝜇, 𝛽, and 𝜌! ranging from 10-5-10-2, 0–0.75, and 0.6–1.0 were used to simulate 
genotypes under a host of different mutation models. Using either the 1KGP phylogeny 
or the SGDP phylogeny, each simulation was performed as follows: 
1. Randomly assign the root node an STR allele between -4 and 4 and mark it as active 
2. Remove an active node and mark it as inactive. For each of this node’s children: 

i. Calculate the child’s allele probabilities using the branch length, the true 
mutation model and the parent node’s genotype 

ii. Randomly select an STR allele based on these probabilities 
iii. Mark the descendant node as active 

3. While active nodes remain, go to step 2 
4. Report the exact STR alleles for a random subset of the samples (leaf nodes) based 

on the required sample size 
 
Simulating STR Sizes in Reads with PCR Stutter 
We first used the procedure above to simulate STR genotypes down the phylogeny. The 
true genotype for a particular sample 𝑔!, in concert with a given stutter model, was then 
utilized to simulate the STR sizes observed in each read as follows: 

1. Sample the number of observed reads 𝑛!"#$%,! for each sample with genotype 𝑔! 
from the read count distribution.  

2. For each read from 1 through 𝑛!"#$%,! sample a number n ~ U (0,1)  
I. If 𝑛 < 𝑑, randomly sample an artifact size 𝑎! from a geometric distribution 

with parameter 𝜌!. Report the read’s STR size as 𝑔! − 𝑎! 
II. If 𝑑 ≤ 𝑛 < 1 − 𝑢, report the read’s STR size as 𝑔! 

III. Otherwise, randomly sample an artifact size 𝑎! from a geometric 
distribution with parameter 𝜌!. Report the read’s STR size as 𝑔! + 𝑎! 

To assess whether estimates would be accurate for even the most sparsely sequenced 
loci, we used read count distributions obtained from both Y-STR call sets (see below) 
corresponding to loci in the 10th percentile by coverage. We also used a read count 
distribution representative of the median coverage in the SGDP dataset to assess 
performance at higher coverage.  
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Collection of previously published mutation rate estimates 
We collated STR mutation rates from two previous large studies to enable comparison 
with our mutation rate estimates (Ballantyne et al. 2010; Burgarella and Navascues 
2011). Utilizing only the estimates obtained from analyzing thousands of father-son 
pairs, we collected at least one mutation rate estimate for nearly 190 Y-STRs. To 
associate each marker with a locus in the reference genome, we utilized the published 
set of primer sequences and the isPCR tool (Hinrichs et al. 2006) to map the primers to 
hg19 coordinates. We then ran Tandem Repeats Finder (Benson 1999) (TRF) on each 
region and pinpointed the coordinates using the published repeat structure (Ballantyne 
et al. 2010) to generate a list of annotated STR regions. We also ran TRF on additional 
regions previously published as part of comprehensive Y-STR maps to obtain 
coordinates for a total of 261 annotated Y-STRs (Hanson and Ballantyne 2006).	
 
STR Region Selection 
We ran TRF on the hg19 assembly of the human reference genome and utilized 
previously described score thresholds to select only those regions significantly more 
repetitive than random genomic DNA (Willems et al. 2014). As this tool occasionally 
reports multiple overlapping repeats for a single genomic region, we merged overlapping 
entries in which the highest scoring entry contained 85% of the bases in the entries’ 
union. Overlapping entries that failed this criterion but had the same period were further 
merged as they frequently represent loci comprised of two neighboring motifs (e.g. 
[GATA]10 [TACA]8), while the remaining regions were omitted. We further removed 
regions that overlapped the annotated markers, failed to liftOver (Hinrichs et al. 2006) to 
the GrCh38 assembly or were lifted to the X chromosome. We then generated the 
complete STR reference using these regions and the annotated STRs described above. 
 
Y-STR Call Set Generation 
We downloaded BWA-MEM (Li 2013) alignments for 179 male and 108 female SGDP 
samples from the project website and extracted and merged the Y-chromosome 
alignments into a single BAM file using SAMtools (Li 2013). STR genotypes were then 
generated using HipSTR, a multi-sample haplotype-based STR caller that specifically 
accounts for the PCR stutter artifacts that drive most STR genotyping errors. HipSTR 
was run using the merged BAM, the hg19 STR regions described above, and the options 
--min-reads 25 --haploid-chrs chrY --hide-allreads. Similarly, we downloaded BWA-MEM 
alignments for 1320 male and 1371 female samples in the 1KGP phase 3 data release. 
As these alignments were relative to the GrCh38 assembly, we ran HipSTR using the 
corresponding GrCh38 STR regions and the options --min-reads 100 --haploid-chrs chrY 
--hide-allreads. 
 
Y-STR Call Set Filtration 
To mitigate potential mutation estimate errors caused by pseudoautosomal and 
duplicated regions, we applied a series of stringent quality controls. We began by 
filtering the SGDP genotypes, as the 30X sequencing data and PCR-free protocol 
provided the highest quality dataset. To remove Y-STRs with putative homologous sites 
on the X chromosome, loci with more than 2 genotyped females were discarded. We 
further removed sites where more than 7.5% of reads had an indel in the STR flanks or 
15% of reads had a stutter artifact, statistics that HipSTR reports based on the maximum 
likelihood alignment of each read relative to its sample’s most probable haplotype. 
These loci likely represent instances in which duplicated copies of a polymorphic locus 
are mapping to a single reference genome locus, HipSTR failed to generate sufficient 
candidate alleles or the STR is flanked by an indel. For the remaining loci, we discarded 
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unreliable calls on a per-sample basis if more than 10% of an individual’s reads had an 
indel in the flanks. Because the mutation model outlined above assumes that all alleles 
are integral copies of the repeat unit, we discarded loci where more than 5% of samples’ 
genotypes violated this assumption. To avoid errors introduced by neighboring repeats, 
we omitted genotyped loci that overlapped one another or multiple STR regions, an 
issue that can arise when HipSTR expands an STR region to include proximal indels. 
Finally, we removed loci in which fewer than 100 samples had genotype posteriors 
above 66%, as these loci had too few samples for accurate inference.  
 
To filter the 1000 Genomes call set, we first removed loci that did not pass the SGDP 
dataset filters. We then applied a set of filters identical to those described above except 
that we only removed loci with more than 15 genotyped females and did not apply a 
stutter frequency cutoff. These alterations account for the 1000 Genomes dataset’s 
larger sample size and lack of a PCR-free protocol. 
 
Estimating Y-STR Mutation Rates 
For each locus in the SGDP and 1KGP call sets that passed the requisite quality control 
filters, we first used the EM algorithm to learn a PCR stutter model. The read STR sizes 
required to run this algorithm were obtained from the MALLREADS VCF field in which 
HipSTR reports the maximum likelihood STR size observed in each read that spans its 
sample’s most probable haplotype. In conjunction with a uniform prior, this stutter model 
was then used to compute the genotype posteriors for each sample with a HipSTR 
quality score greater than 0.66. Samples with quality scores below this threshold were 
omitted because the genotype uncertainty can result in erroneous reported read sizes. 
Finally, in conjunction with the optimization procedure and the appropriate scaled Y-SNP 
phylogeny, these genotype posteriors were used to obtain a point estimate of the 
mutation rate. 
	
Confidence Interval Estimation 
We utilized a delete-d jackknife approach to estimate mutation rate confidence intervals 
(Shao and Wu 1989). For each Y-STR, we sampled without replacement half of the STR 
genotypes above the genotype posterior threshold a total of 250 times and recalculated 
the log mutation rate using each of these subsets. Given these subsample estimates 
and the log estimate obtained using all samples, the standard error (SE) and confidence 
interval (CI) for the log mutation rate were calculated according to: 

𝑆𝐸 =
1
250

𝑙𝑜𝑔 𝜇! −
1
250

𝑙𝑜𝑔 𝜇!

!"#

!!!

!!"#

!!!

,         𝐶𝐼 = 𝑙𝑜𝑔 𝜇!"! ± 1.96 ∗ 𝑆𝐸 

 
Effective Number of Meioses 
For each phylogeny, we computed the sum of the branch lengths in generations after 
scaling (see results section). This resulted in estimates of ~177,600 and ~72,600 
meioses in the 1KGP and SGDP phylogenies, respectively.   
	
Estimating the Number of De Novo Mutations 
To predict the number of de novo mutations on paternally inherited chromosomes: 

1. We constructed a genome-wide reference of STRs using an approach identical 
to that for Y-STRs 

2. We bootstrapped Y-STR loci for each repeat unit 2-4 base pairs in length 1000 
times. For each bootstrapped dataset and each repeat unit length, we  
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i. Built a sequence-based mutation rate model using the sampled Y-STRs  
ii. Utilized the fitted models to predict the mutation rate of each locus in the 

genome-wide reference with the same repeat unit based on its sequence 
properties  

iii. Summed the resulting values to obtain an aggregate mutation estimate  
3. We selected the 5th and 95th percentiles of aggregated estimates to obtain a 95% 

confidence interval for each repeat unit length 
 
To build a sequence-based mutation rate model for each motif length, we assigned all 
fixed Y-STRs a log mutation rate of -5 (the minimum bound during optimization), all 
polymorphic Y-STRs the mean log estimated mutation rate between the two WGS 
datasets and utilized numerical optimization to fit a model of the form 

log 𝜇 = −5,                              𝑙 < 𝑇
−5 + 𝑠 𝑙 − 𝑇 , 𝑙 ≥ 𝑇  

where 𝑇 is a threshold, 𝑠 is the slope of the line and 𝑙 is the length of the longest 
uninterrupted tract for each locus. These fitted models provide an estimate of the mean 
rate for a given tract length, but to account for uncertainty and to omit estimates for loci 
below the mutation rate optimization threshold, we predicted mutation rates as follows: 

log µ =

−∞,                                                                                          𝑙 < 𝑇

−5 + 𝑠 𝑙 − 𝑇 + 𝑡!!! ∗ 𝑠!
1
𝑁
+

𝑁 𝑙 − 𝐿 !

𝑁 𝐿!! − 𝐿! !  , 𝑙 ≥ 𝑇
 

where 𝑡!!! is sampled from a t-distribution with 𝑁 − 2 degrees of freedom and 𝑁, 𝐿! and 
𝐿 are the number, length and mean length of Y-STRs used to fit each model, 
respectively. To avoid potential biases, we did not generate predictions for loci whose 
tract lengths were above the maximum length used to train each model.  
	
Y-STR Imputation Method 
Given a set of samples with Y-SNP genotypes and a reference panel with Y-SNP and Y-
STR genotypes, we extended the mutation rate estimation method to impute missing 
STR genotypes. Using the approach outlined in Figure 1, we first construct a phylogeny 
relating all samples and learn a mutation model. We then use this learned mutation 
model to pass two sets of messages along the tree and compute exact posteriors for 
each node. Samples with observed genotypes correspond to leaves in the tree and their 
posteriors represent imputation probabilities. In particular, for a node 𝑁! in a binary 
phylogeny with parent 𝑃!, sibling 𝑆! and children 𝐶!! and 𝐶!!, its probability conditioned on 
the observed genotypes is given by 

𝑃 𝑁!  𝐷) =  𝑃 𝑁!  𝐷!!! ,𝐷!!! ,𝐷!!!) = 𝑃 𝑁! ,𝐷!!! ,𝐷!!!  𝐷!!!)/𝑃 𝐷!!! ,𝐷!!!  | 𝐷!!!  
                  = 𝑃 𝑁!  𝐷!!!) 𝑃 𝐷!!! ,𝐷!!!  𝑁! ,𝐷!!!)/𝑃 𝐷!!! ,𝐷!!!  | 𝐷!!!  
                  = 𝑃 𝑁!  𝐷!!!) 𝑃 𝐷!!!  𝑁!) 𝑃 𝐷!!!  𝑁!)/𝑃 𝐷!!! ,𝐷!!!  | 𝐷!!!  
                  ∝  𝑃 𝐷!!!  𝑁!) 𝑃 𝐷!!!  𝑁!)𝑃 𝑁!  𝐷!!!) 

where 𝐷!!  and 𝐷!!! denote the data in and not in node 𝑁! ’s subtree, respectively.  
The first term in this expression is computed using a bottom-up traversal of the tree from 
the leaves to the root node. Each node in the tree combines the probabilities of its two 
children using the recurrence 

𝑃 𝐷!!!  𝑁! = 𝑃 𝐷!!! ,𝐶!! = 𝑎  𝑁!)
! ∈ !""#"#$

= 𝑃 𝐷!!!! ,𝐷!!!! ,𝐶!! = 𝑎  𝑁!)
! 
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                                      = 𝑃 𝐶!! = 𝑎  𝑁!) 𝑃 𝐷!!!! 𝐶!! = 𝑎  𝑃(𝐷!!!!
! 

| 𝐶!! = 𝑎) 

where 𝐺𝐶!! and 𝐺𝐶!! denote the two children of node 𝐶!!. This recurrence applies to all 
nodes except the leaves, where genotype posteriors or a uniform prior are used for 
samples with and without genotype information, respectively. Similarly, the second term 
in the node posterior expression is computed using a top-down traversal of the tree from 
the root to the leaves. After assigning the root node a uniform probability, each node 
combines information from its parent and sibling:  
𝑃 𝑁!  𝐷!!!) = 𝑃 𝑁! ,𝑃! = 𝑎  𝐷!! ,𝐷!!!)

! ∈ !""#"#$

= 𝑃 𝑁! ,𝑃! = 𝑎,𝐷!!  𝐷!!!)/𝑃 𝐷!!   𝐷!!!)
! 

 

                        = 𝑃 𝑃! = 𝑎  𝐷!!!) 𝑃 𝐷!! 𝑃! = 𝑎,𝐷!!!) 𝑃 𝑁! 𝑃! = 𝑎,𝐷!!  𝐷!!!)/𝑃 𝐷!!   𝐷!!!)
! 

 

                         ∝ 𝑃 𝑃! = 𝑎  𝐷!!!) 𝑃 𝐷!! 𝑃! = 𝑎) 𝑃 𝑁! 𝑃! = 𝑎)
! 

 

	
Results	
 
Mutation Rates Estimates with Perfect Genotypes 
We validated our mutation rate estimation algorithm by simulating STR genotypes under 
various mutation models and assessing how accurately we could recover the true 
mutation rate when given error-free observations. For the majority of models, we 
obtained an unbiased estimate of the log mutation rate using both phylogenies (Figure 
S1). Slight upward biases were observed for the smallest simulated mutation rate (10-5 
mpg), but these stem from the lower bound imposed during numerical optimization. As 
previous studies have developed estimators involving simplified mutation models, we 
sought to assess how these simplifications might affect estimates. Restricting the 
optimized models to single step mutations resulted in stronger upward biases for low 
mutation rate scenarios, strong downward biases for high mutation rate scenarios and 
higher variance in the estimates (Figure S2). The effect of disabling the length constraint 
for optimized models was much less pronounced, but also resulted in large downward 
biases for many rapidly mutating scenarios. Altogether, these results illustrate that if 
given error-free genotypes, our method is well powered to obtain accurate estimates 
across a host of mutation scenarios but that making overly simplistic assumptions about 
STR mutation models can result in marked biases.  
 
Mutation Rates Estimates with PCR Stutter	
We extended the above simulations to introduce the effects of PCR stutter, a primary 
driver of STR genotyping errors. After simulating STR genotypes under various mutation 
models, we generated observed reads using various stutter models and distributions of 
reads per sample. Application of the EM algorithm to this data resulted in relatively 
unbiased estimates of each stutter model parameter for nearly all scenarios (Figure S3). 
Slight downward biases were observed for the geometric step size parameter when both 
stutter frequencies were 1%, but this is likely caused by the scarcity of informative 
instances of stutter in this setting. The variance of the stutter parameter estimates 
decreased substantially with increases in sample size and mean number of reads per 
sample, as these led to more stutter-informative reads.  
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We next sought to assess whether the stutter parameter estimates were sufficiently 
precise for mutation rate inference. To this end, we estimated mutation rates after 
computing genotype posteriors using the learned stutter models. For comparison, we 
also generated estimates when posteriors were computed with exact knowledge of the 
stutter model or using a naive approach based on the fraction of reads supporting each 
allele. In scenarios with low average coverage, the fraction-based posteriors resulted in 
marked biases, particularly for low mutation rates, demonstrating the importance of 
correctly accounting for stutter artifacts in these settings (Figure 2, Figures S4-S5). In 
contrast, posteriors generated using the estimated and exact stutter models obtained 
relatively unbiased mutation rate estimates across all scenarios and yielded estimates 
with similar variance. The primary exception to these trends was the slight upward bias 
observed for rates of 10-5 mpg, but this bias was also observed in the simulations with 
exact genotypes. Collectively, these results indicate that the combination of the EM and 
mutation rate algorithms obtain robust estimates suitable for downstream analyses. 
 

 
 
Figure 2: Accuracy of mutation rate estimates in the presence of PCR stutter. 
STR genotypes were simulated for a variety of sample sizes and mutation models 
(bottom four panels). Reads for each sample’s genotype were then simulated using a 
PCR stutter model with 𝑑 = 0.15, 𝑢 = 0.01 and 𝜌! = 0.8 and using 1, 2 and 3 reads for 
65%, 25% and 10% of samples, respectively. Across 25 iterations for each simulation 
scenario, genotyper posteriors computed using the fraction of supporting reads (blue) 
resulted in markedly biased mutation rate estimates (top two panels), while posteriors 
computing using the exact stutter model (red) and EM stutter model (orange) resulted in 
relatively unbiased estimates with similar standard deviations (third panel). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 15, 2016. ; https://doi.org/10.1101/036590doi: bioRxiv preprint 

https://doi.org/10.1101/036590


Call Set Validation 
To assess the level of genotyping errors present in each call set, we stringently filtered 
each call set and compared them to capillary electrophoresis datasets involving a subset 
of the same male samples. For 565 samples in the 1000 Genomes Project, the 
concordance for 3500 calls at 13 loci in the PowerPlex Y23 panel was 97.5%, indicating 
that the low coverage data was not prohibitive for obtaining accurate Y-STR genotypes. 
An analogous comparison of 3300 calls at 48 loci for 76 SGDP samples resulted in an 
even higher concordance of 99.7%. These comparisons were restricted to loci with 3-5 
base pair motifs and therefore may not reflect the quality for loci with shorter motifs due 
to their increased propensity for stutter. Nonetheless, they are indicative of the high 
quality of the data for larger repeat motifs. 
 
Scaling Phylogeny Branch Lengths 
Although the maximum-likelihood phylogeny generated for each dataset has numerical 
branch lengths, these lengths are not scaled in units of generations as required by our 
method. We therefore sought to determine an appropriate scaling factor using mutation 
rate estimates for 15 loci in the Y-chromosome Haplotype Reference Database (YHRD) 
(Willuweit et al. 2007). We chose these loci as a calibration point because their 
estimates are based on more than 7000 father-son pairs per locus and should therefore 
be relatively precise. For the 1000 Genomes data, we used the PowerPlex capillary data 
for each locus, assumed error-free genotypes, scaled the phylogeny using a range of 
factors and estimated the set of mutation rates using each scaling factor. The choice of 
scaling factor had essentially no affect on the correlation with the YHRD estimates, 
resulting in an R2 of 0.89 (Figure S6). However, the total squared error between the 
estimates was minimized for a factor of 2800, which we therefore selected as the optimal 
scaling. For the SGDP data, we performed an analogous analysis using HipSTR 
genotypes for 9 of these 15 loci, again resulting in a uniform R2 of 0.91 and an optimal 
factor of roughly 3200 (Figure S6).  
 
An alternative approach to scaling each phylogeny is to select the factor that best 
matches the total number of generations in the tree to the value based on published Y-
SNP mutation rates. To explore how this approach might impact the scaling, we 
calculated factors using a recently published Y-SNP mutation rate of 3E-8 mutations per 
generation (Xue et al. 2009; Helgason et al. 2015) and the total numbers of called SNPs 
and called sites in each SNP dataset. The resulting estimates for the 1KGP data and 
SGDP data were remarkably concordant with those above, as they were only 14% and 
34% greater. However, to maximize our concordance with pedigree estimates, we chose 
to utilize the first set of scaling factors outlined above. 
 
Y-STR Stutter Models 
We applied the EM algorithm to each of the filtered call sets to learn per-locus stutter 
models. Across both datasets, the learned parameters demonstrated a strong bias in 
favor of stutter-induced contractions versus expansion for nearly all loci (Figure S7). The 
stutter parameter estimates were highly correlated between the two datasets, reflecting 
the algorithm’s ability to capture each locus’ distinctive error profile, but as expected the 
PCR-free protocol resulted in significantly lower stutter rates for the SGDP dataset 
relative to the 1KGP dataset (Figure S7). Within each dataset, the rates of stutter 
exhibited an inverse correlation with repeat unit size for a given allele length and a 
positive correlation with allele length for a given repeat unit size (Figure S8).  
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Y-STR Mutation Rate Estimates 
After utilizing the learned stutter models to compute genotype posteriors, we applied the 
mutation rate estimation algorithm to each polymorphic locus, resulting in estimates for 
702 loci with 2-6 base pair motifs. Stratifying these estimates by motif length indicated a 
wide degree of variability both within and between classes (Figure 3). Within each class, 
mutation rates varied by two or more orders of magnitude, indicating that Y-STR 
mutation rates are highly dependent on the loci under consideration. Relative to other Y-
STR classes, loci with previously characterized rates had substantially higher estimates, 
illustrating that they’ve been selected for their high mutability (Figure 3, Tables 1-2). 
While the bulk of uncharacterized loci with tri- and tetranucleotide motifs were 
substantially less polymorphic, we identified 29 of these loci with mutation rates greater 
than 10-3.5 mpg, of which the five most mutable loci had rates ranging from 10-2.29 - 10-2.44 
mpg (Table 2). Dinucleotide repeats were also highly polymorphic and 70 of these loci 
had mutation rates above 10-3.5 mpg. 
 

 
Figure 3: Distribution of Y-STR mutation rates. Loci with previously characterized 
mutation rates (purple) are substantially more mutable than uncharacterized loci with 
dinucleotide (green), trinucleotide (blue) and tetranucleotide (yellow) motifs. 
Nonetheless, a substantial number of these uncharacterized loci are highly polymorphic 
with mutation rates greater than 10-3.5 mutations per generation. 
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Mutation Rate Concordance 
In order to assess the reliability of our mutation rate estimates, we measured the 
concordance between the two sets of WGS-based estimates obtained in this study. 
Despite substantial differences in the quality of the sequencing data, the analyzed 
populations and the study sizes, we obtained an R2 of 0.92 between the 1KGP and 
SGDP log mutation rate estimates (Figure 4). This high concordance extended to slowly 
mutating markers, as estimates for loci with a mean estimated mutation rate below 10-3.5 
mpg had an R2 of 0.80. To assess the potential impact of genotyping errors on these 
estimates, we regenerated them using the 1000 Genomes capillary genotypes for 23 
loci, resulting in R2 of 0.98 and 0.94 with the SGDP and 1KGP estimates for the same 
loci. These comparisons illustrate that our method obtains robust locus-specific values 
while accounting for varying degrees of PCR stutter artifacts and genotyping errors. 
Furthermore, the inter-dataset concordance suggests that there are either very few 
errors in the phylogenies or that these errors have little impact on the resulting mutation 
rate estimates.  
 
Next, we assessed the accuracy of our mutation rate estimates by comparing them to 
results from prior studies based on roughly 1500 and 500 father-son transmissions per 
Y-STR (Figure 4) (Ballantyne et al. 2010; Burgarella and Navascues 2011). The R2 
between these two studies was only 0.34, a low concordance that likely stems from the 
small sample size and large uncertainty in the Burgarella et al. estimates. By 
comparison, the SGDP and Ballantyne et al. estimates had an R2 of 0.66. Although 
markedly higher, this concordance was substantially reduced by the plateau in the 
Ballantyne et al. estimates at 10-3.5 mpg, a threshold that stems from loci without any 
detected mutations. While accurately characterizing these loci using the father-son 
approach would require tens of thousands of additional pairs, our method easily obtains 
replicable estimates below this threshold by leveraging over 222,000 meioses in the 
phylogenies. An analogous comparison of the SGDP and Burgarella et al. estimates 
resulted in an R2 of 0.32. However, restricting this comparison to a subset of loci 
characterized using more than 5000 father-son pairs resulted in a substantially higher R2

 
of 0.87 (Figure S9). Collectively, these comparisons demonstrate that our method 
accurately replicates father-son based estimates based on sufficient pairs, but that the 
father-son approach is poorly suited to quantifying the point estimates for mutation rates 
of slowly mutating markers. 
 
Discriminative Power 
Given the large number of markers with novel mutation rates, we sought to assess the 
potential gains in discriminative power they might provide. We therefore computed the 
probability of observing at least one mutation over one generation for various groups of 
loci. Utilizing the full panel of 190 Y-STRs characterized by Ballantyne et al. resulted in a 
discrimination probability of 42%. Extending this set of markers to incorporate those with 
novel rates in this study increased this probability to 50%. However, because of the 
constraints imposed by the Illumina sequencing reads, we were unable to genotype 
many of the long markers in the Ballantyne et al. study, particularly most of the 13 
rapidly mutating markers with mutation rates greater than 0.01 mpg. The subset of their 
markers we were able to genotype resulted in a discrimination probability of 12% and 
incorporating our novel marker estimates improved this probability to 24%.  
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Figure 4: Concordance of mutation rate estimates. A comparison of the log mutation 
rates obtained from two father-son based studies (Ballantyne and Burgarella) with those 
obtained in this study using the 1000 Genomes WGS data (1KGP), the Simons Genome 
WGS data (SGDP) and the 1000 Genomes capillary data (Powerplex). Each square of 
the heatmap indicates the number of markers involved in the comparison and the 
resulting R2. Representative scatterplots for three of these comparisons depict the pair of 
estimates for each marker (cyan) and the diagonal (red line).  
 
 
Sequence Determinants of Y-STR Mutability 
To assess the extent to which sequence characteristics drive STR mutation rates, we 
analyzed how allele length, repeat-motif length, and interruptions to the repeat structure 
affect mutability. For STRs with and without interruptions, major allele length only 
explained a modest amount of the variance in log mutation rate for loci with di-, tri-, and 
tetra-nucleotide motifs (R2 = 0.16, R2 = 0.25, and R2 = 0.42) (Figure 5). Restricting this 
analysis to STRs without interruptions substantially improved the variance explained (R2 
= 0.83, R2 = 0.67, and R2 = 0.82), suggesting that interruptions to the repeat structure 
disrupt the correlation between allele length and mutability. A subsequent analysis of the 
relationship between the log mutation rate and the length of the longest uninterrupted 
repeat tract indicated that this was a more general predictor of mutability (Figure 5), as it 
explained over 75% of the variance for each of the three motif lengths regardless of the 
number of interruptions. Stratifying loci with dinucleotide repeat units by motif indicated 
that these trends also apply at a much finer scale (Figure S10). Major allele length was 
once again a relatively poor predictor of the log mutation rate for loci with AC, AG and 
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AT repeat motifs, but uninterrupted tract length explained over 80% of the variance for 
each motif. 
	

 
Figure 5: Sequence determinants of Y-STR mutability. Stratified by repeat motif 
length (rows) and major allele length, YSTRs with no interruptions to the repeat structure 
(blue) are generally more mutable than those with one interruption (green) or more than 
one interruption (red). While major allele length is a poor predictor of mutability, the 
length of the longest interrupted tract is a very strong predictor of the log mutation rate 
for each motif length (cyan). 
 
 
De novo mutations 
We sought to use the mutation rates and sequence properties of each Y-STR to predict 
the expected number of genome-wide de novo mutations. Because the Y-STR mutation 
rates are only applicable to the male germ line due to differing numbers of meioses, we 
restricted this analysis to the number of de novo mutations on paternally inherited 
chromosomes. To generate a prediction, we built sequence-based models of Y-STR 
mutability, obtained per-locus estimates by applying these models to each locus in a 
genome-wide reference of STRs and aggregated the results (Methods). After utilizing 
bootstrapping and sampling techniques to account for uncertainty in both the fitted 
models and the predicted values, we obtained 95% confidence intervals of 27-34, 2-11 
and 37-102 mutations for loci with di-, tri- and tetranucleotide motifs. The 95% 
confidence interval for the total number of expected de novo mutations on paternally 
inherited chromosomes was 72-140 mutations. These estimates are likely conservative 
as we omitted loci with 5-6 base pair motifs due to a relatively small numbers of Y-STRs 
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and omitted genome-wide loci that were longer than the Y-STRs used to train each 
model. 
 
Imputing Y-STRs 
We extended the mutation rate estimation procedure to develop a Y-STR imputation 
approach. Briefly, after building a SNP phylogeny relating all samples and learning a 
mutation model as outlined in Figure 1, this approach passes two sets of messages 
along the phylogeny to compute the exact marginal posteriors for each node, resulting in 
imputation probabilities for samples without observed Y-STR genotypes. To assess the 
accuracy of this technique, we once again turned to the capillary PowerPlex Y23 
genotypes for the 1KGP dataset, as this panel is one of the most commonly used in 
forensic and genealogical settings. Over 100 iterations, we randomly constructed 
reference and imputation panels of 500 and 70 samples, utilized the reference panel’s Y-
STR genotypes to infer a mutation model and compute node posteriors, and compared 
the imputed genotypes for the imputation panel to their true underlying values. The 
resulting imputed probabilities roughly matched their true accuracy, indicating that the 
posteriors computed using this technique are well calibrated (Figure S11). When using 
all imputed genotypes, even those with probabilities below 50%, this approach resulted 
in an overall accuracy of 66% across markers  (Table 3). However, discarding imputed 
genotypes with probabilities less than 70% resulted in an overall accuracy of 88% and 
retained more than 40% of the calls. On a marker-by-marker basis, accuracy was 
generally inversely proportional to the estimated mutation rates, with the most slowly 
mutating markers having accuracies on the order of 95%. This trend stems from the fact 
that as the mutation rate increases, shorter branch lengths are required to obtain an 
estimate with similar confidence. 	
	
Discussion	
Over the past two decades, tremendous advances in sequencing technology have 
fundamentally transformed the applications of Y-STRs. The initial scarcity of available 
SNP genotypes resulted in the development of methods capable of inferring coalescent 
models from Y-STR genotypes alone. Methods designed to also learn STR mutational 
dynamics either marginalized over these coalescent models (Nielsen 1997) or aimed to 
simultaneously infer the coalescent and mutational models (Wilson and Balding 1998; 
Wilson et al. 2003). With the advent of population-scale WGS datasets, many of these 
STR-centric approaches have instead utilized SNPs, resulting in substantially more 
detailed phylogenies. On the Y-chromosome, these detailed phylogenies now provide 
the evolutionary context required to interpret Y-STR mutations, obviating the need for 
expensive tree enumeration or marginalization approaches. However, the errors 
prevalent in WGS-based Y-STR genotypes require methods capable of accounting for 
genotype uncertainty, preventing the application of many traditional microsatellite 
distance measures designed for capillary data (Goldstein et al. 1995; Slatkin 1995).  
 
In this study, we developed a novel method to leverage these datasets. One inherent 
advantage of our approach is its ability to model and learn many of the salient features 
of microsatellite mutations. Through the incorporation of a geometric step size 
distribution, we allow both single step mutations that predominate at tetranucleotide loci 
(Kayser et al. 2000; Sun et al. 2012) as well as multistep mutations that frequently occur 
at dinucleotide loci (Huang et al. 2002; Sun et al. 2012). In addition, the model’s length 
constraint parameter replicates the intra-locus phenomenon of shorter STR alleles 
preferentially expanding and longer alleles preferentially contracting (Xu et al. 2000; 
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Huang et al. 2002). As these parameters are learned from the observed STR genotypes, 
our method avoids many biases that stem from imposing single-step mutations or 
assuming parameters a priori. Nonetheless, our mutation model does not capture the 
fully complexity of STR mutational dynamics as it ignore intra-locus mutation rate 
variation (Ellegren 2000). Incorporating these and other mutational characteristics may 
be of interest in future studies.  
 
In addition to its mutational model flexibility, our approach is advantageous because of 
its ability to leverage evolutionary data. From the large number of meioses in each 
phylogeny, it can obtain extremely replicable and accurate estimates, as demonstrated 
by the strong concordance between our WGS-based estimates and their strong 
concordance with father-son estimates based on sufficient pairs. In contrast, the 
estimates of Ballantyne et al. and Burgarella et al. showed poor concordance, likely due 
to the small number of pairs used in one of these studies. This underscores the fact that 
without vast numbers of samples, pedigree-based approaches cannot obtain precise 
point estimates for more slowly mutating markers. We believe that this limitation, 
coupled with our method’s ability to analyze any WGS dataset and hundreds of STRs in 
parallel, make it a simple and scalable alternative to pedigree-based estimation 
approaches.  
 
One longstanding concern regarding Y-STR mutation rates has been the apparent 
discrepancy between evolutionary and pedigree-based mutation rates. A host of studies 
have suggested that evolutionary rates are 3-4 times lower, resulting in substantial 
inconsistencies in Y-STR based lineage dating and large discrepancies from Y-SNP 
based TMRCA estimates. (Zhivotovsky et al. 2004; Zhivotovsky et al. 2006; Wei et al. 
2013b). Because this study harnessed evolutionary data, we sought to avoid any 
potential issues by scaling each phylogeny such that our estimates best matched those 
from pedigree-based studies. Nonetheless, our investigations into an alternative scaling 
based on a SNP molecular clock resulted in similar scaling factors that only differed by 
15-30%. Coupled with the strong concordance we observed with pedigree estimates, our 
study provides little evidence for a substantial difference between mutation rates 
estimated from these two types of data. 
 
Empowered by the accuracy and parallelizability of our method, we were able to obtain 
Y-STR mutation rates on an unprecedented scale. The set of estimates for over 700 
polymorphic STRs is, to our knowledge, the largest Y-STR set to date, substantially 
expanding upon those previously obtained for 190 loci (Ballantyne et al. 2010; Burgarella 
and Navascues 2011). Two of the largest prior studies of autosomal STR mutability 
characterized 350 and 2500 markers using traditional family-based approaches (Huang 
et al. 2002; Sun et al. 2012), but these studies only observed mutations for 50 and 800 
of these loci. As a result, the scope of our study also parallels those of the largest 
autosomal studies. 
 
Despite the large-scale nature of our study, it has several inherent limitations. Because 
we analyzed sequencing datasets comprised of 80-100bp Illumina reads, we were 
unable to genotype and characterize the mutation rates of many long Y-STRs. Given the 
strong positive correlation between tract length and mutation rate observed here and in 
previous studies, we anticipate that many long dinucleotide loci will be extremely 
mutable and will add significant discriminative power to Y-STR panels. We were also 
unable to include homopolymers in this study despite their shorter lengths due to a rapid 
degradation in base quality scores, but we anticipate that many of these markers are 
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also highly polymorphic. As a result, future studies may benefit from reapplying our 
analysis to both of these sets of markers as sequencing technologies, especially those 
enabling long reads, continue to mature. 
 
Nonetheless, given the extent of our set of estimates, we were able to shed new light on 
the sequence factors governing STR mutability. While prior Y-STR studies have 
primarily focused on loci with longer alleles and 3-6 base pair motifs, the results here 
extend these analyses to shorter loci and repeats with dinucleotide motifs. In particular, 
we found that for all examined repeat unit lengths, the longest uninterrupted tract length 
is an extremely strong predictor of the log mutation rate, replicating the exponential trend 
between mutation rate and tract length previously observed in a host of pedigree-based 
studies (Brinkmann et al. 1998; Kayser et al. 2000; Xu et al. 2000; Ballantyne et al. 
2010). In contrast, allele length alone was a poor predictor. Coupled with the fact that Y-
STRs without interruptions were much more mutable than interrupted ones with the 
same major allele length, our study provides strong evidence that interruptions to the 
repeat structure decrease mutation rates. This finding supports what has long been 
posited in STR evolutionary models (Kruglyak et al. 1998; Sainudiin et al. 2004) and has 
been shown in a handful of small-scale experimental studies of STR mutability (Petes et 
al. 1997; Bacon et al. 2000) but contradicts the recent findings of Ballantyne et al in 
which no effect was observed. This discrepancy may stem from the fact that they 
primarily considered longer repeats with uninterrupted tract lengths at least 8 repeat 
units long. 
 
In addition to estimating Y mutation rates, we’ve outlined a Y-STR imputation method 
that is, to the best of our knowledge, the first of its kind. A preliminary assessment of this 
method’s accuracy indicated that imputation accuracies of up to 95% can be achieved 
for some of the most slowly mutating markers in the PowerPlex Y23 but that the 
performance is much poorer for more rapidly mutating markers. However, the accuracy 
of our approach is essentially linear in the shortest time to the most recent common 
ancestor. As a result, as population-scale sequencing datasets for the Y-chromosome 
continue to expand in scope to tens of thousands of individuals, we expect its accuracy 
to increase substantially. We also anticipate that our Y-STR mutation rate method and 
its relevant extensions may be applied to autosomal STRs. Although recombination 
complicates the generation of sufficiently detailed phylogenies, tools capable of inferring 
ancestral recombination graphs and the associated phylogenies continue to improve 
(Minichiello and Durbin 2006; Rasmussen et al. 2014). As a result, it may be possible to 
apply these approaches to ensembles of trees and aggregate the results. 
 
The large corpus of mutation rate estimates has also enabled novel predictions about 
genome-wide STR variation. Prior studies have estimated a rate of approximately 75 de 
novo SNP mutations per generation (Conrad et al. 2011; Francioli et al. 2015) but have 
largely ignored STRs despite their elevated mutation rates. Based on our projections for 
de novo mutations on paternally inherited chromosomes, the number of de novo STR 
mutations is likely to exceed that of SNPs. An increasingly large number of candidate 
gene studies and genome-wide analyses have highlighted instances in which STR 
variations modulate gene expression (Gebhardt et al. 1999; Shimajiri et al. 1999; 
Contente et al. 2002; Gymrek et al. 2015). We therefore hope that as others aim to 
dissect the genetic basis of complex diseases and traits, this study will motivate them to 
consider STRs as the causal genetic elements.  
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Tables	
	
Table	1.	Most	mutable	markers	with	previously	characterized	mutation	rates	
	
Chrom	 Hg19	start	 Hg19	end	 Motif	 Mean	log	μ	 Homogeneous	

tract	(bp)	
Annotated	
Name	

Y	 7053359	 7053426	 AAAG	 -1.86	 68	 DYS576	
Y	 7867880	 7867943	 AAAG	 -2.04	 64	 DYS458	
Y	 6861231	 6861298	 AAAG	 -2.11	 72	 DYS570	
Y	 14515312	 14515363	 AGAT	 -2.29	 48	 DYS439	
Y	 8426378	 8426443	 AAG	 -2.33	 69	 DYS481	
Y	 21520224	 21520275	 AGAT	 -2.34	 48	 DYS549	
Y	 18718889	 18718940	 AGAT	 -2.38	 52	 Y-GATA-A10	
Y	 4270960	 4271019	 AGAT	 -2.42	 60	 DYS456	
Y	 19372273	 19372328	 AGAT	 -2.54	 48	 DYS543	
Y	 14761101	 14761160	 AGAT	 -2.58	 46	 DYS442	

	
Table	2.	Five	most	mutable	tetranucleotide	and	dinucleotide	markers	with	previously	
uncharacterized	mutation	rates	
	
Chrom	 Hg19	start	 Hg19	end	 Motif	 Mean	log	μ	 Homogeneous	

tract	(bp)	
Annotated	
Name	

Y	 14612456	 14612520	 AGAT	 -2.29	 59	 DYS467	
Y	 5409729	 5409801	 AAAG	 -2.29	 61	 N/A	
Y	 19500594	 19500656	 AAAG	 -2.31	 63	 N/A	
Y	 14200743	 14200802	 AGAT	 -2.34	 56	 N/A	
Y	 21665702	 21665764	 AAAT	 -2.44	 50	 DYS548	
Y	 2807025	 2807064	 AT	 -2.44	 44	 N/A	
Y	 2708412	 2708457	 AG	 -2.76	 46	 N/A	
Y	 3832234	 3832278	 AC	 -2.78	 45	 N/A	
Y	 6398638	 6398684	 AC	 -2.79	 49	 N/A	
Y	 17109092	 17109141	 AC	 -2.80	 48	 N/A	
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Table	3.	Imputation	accuracy	for	each	locus	in	the	PowerPlex	Y23	Panel	
	
	 	 Posterior	>	0%	 Posterior	>	70%	
Marker	 𝝁	(mpg)	 %	Calls	 %	Correct	 %	Calls	 %	Correct	
DYS392	 0.0006	 100	 92.7	 96.1	 94.1	
DYS438	 0.0007	 100	 93.4	 95.1	 95.5	
DYS437	 0.0008	 100	 92.3	 94.8	 94.1	
DYS393	 0.0015	 100	 83.1	 75.7	 88.7	
DYS448	 0.0018	 100	 81.4	 80.3	 89.0	
DYS533	 0.0018	 100	 78.6	 74.4	 86.2	
DYS643	 0.0020	 100	 80.2	 77.4	 86.3	
DYS391	 0.0023	 100	 73.8	 53.3	 79.9	
Y-GATA-H4	 0.0024	 100	 72.1	 46.2	 86.8	
DYS390	 0.0026	 100	 76.6	 50.9	 84.3	
DYS385a	 0.0027	 100	 74.4	 63.9	 87.5	
DYS389I	 0.0029	 100	 71.7	 28.7	 88.0	
DYS19	 0.0029	 100	 70.2	 34.2	 88.7	
DYS635	 0.0034	 100	 67.6	 54.8	 81.4	
DYS456	 0.0039	 100	 61.9	 20.5	 90.2	
DYS549	 0.0046	 100	 56.2	 5.0	 86.1	
DYS439	 0.0054	 100	 52.2	 3.0	 88.3	
DYS481	 0.0054	 100	 56.2	 24.2	 82.4	
DYS385b	 0.0055	 100	 55.2	 16.8	 87.3	
DYS389II	 0.0060	 100	 49.4	 6.3	 87.1	
DYS458	 0.0084	 100	 38.5	 0.6	 46.7	
DYS570	 0.0101	 100	 41.6	 0.6	 100.0	
DYS576	 0.0102	 100	 34.5	 0.5	 59.0	
All	 	 100	 67.6	 43.7	 88.6	
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Supplemental	Figures	
	

	
	
Figure S1: Accuracy of mutation rate estimates based on exact genotypes 
STR genotypes were simulated for a variety of sample sizes and mutation models 
(bottom four panels) for both the Simons Genomes phylogeny (A) and 1000 Genomes 
phylogeny (B). Across 25 iterations for each simulation scenario, mutation rates 
computed after assigning each sample’s genotype unity posterior probability are 
unbiased (top two panels) and have reasonably low standard deviations (third panel). 
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Figure S2: Simplifying mutation models results in biased mutation rate estimates 
STR genotypes were simulated for a variety of sample sizes and mutation models 
(bottom four rows) for both the Simons Genomes phylogeny (A) and 1000 Genomes 
phylogeny (B). Across 25 iterations for each simulation scenario, mutation rates 
computed after assigning each sample’s genotype unity posterior probability are biased 
(top two rows) if the estimated model is restricted to singe-step mutations (orange) or no 
length constraint (blue) but not if the estimated model is unconstrained (red) 
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Figure S3: The EM-based stutter estimation method accurately recovers the 
underlying stutter model 
 STR genotypes were simulated for a variety of sample sizes and mutation models 
(green lines in bottom four rows). Using various PCR stutter model parameters (dashed 
black lines in top three rows), observed reads were generated for each of the samples. 
In conjunction with the EM stutter estimation algorithm, we utilized these reads to 
estimate the simulated stutter model. The concordance between the median parameter 
estimates (red lines) across 25 iterations of each scenario and the true parameters 
reflects the algorithm’s ability to obtain robust estimates. Blue lines indicate the lower 
and upper quartiles of the estimates for each scenario. A, 1, 2, 3, 4, 5 or 6 observed 
reads were generated for 19%, 27%, 21%, 15%, 8% and 10% of the samples using the 
Simons Genome phylogeny, respectively. B, 1,2 or 3 observed reads were generated for 
65%, 25% and 10% of the samples using the 1000 Genomes phylogeny, respectively. 
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Figure S4: Estimating mutation rates from stutter-affected reads using the Simons 
Genomes phylogeny 
STR genotypes were simulated for a variety of sample sizes and mutation models 
(bottom four rows) using the Simons Genome phylogeny. Each sample’s genotype and 
four different stutter models (𝑑 and 𝑢 in top four rows) were then used to generate 1, 2, 
3, 4, 5 or 6 observed reads for 19%, 27%, 21%, 15%, 8% and 10% of samples. Across 
25 iterations for each simulation scenario, genotyper posteriors computed using the 
fraction of supporting reads (blue) resulted in markedly biased mutation rate estimates 
(first two columns), while posteriors computing using the exact stutter model (red) and 
EM stutter model (orange) resulted in relatively unbiased estimates with similar standard 
deviations (third column). 
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Figure S5: Estimating mutation rates from stutter-affected reads using the 1000 
Genomes phylogeny 
STR genotypes were simulated for a variety of sample sizes and mutation models 
(bottom four rows) using the 1000 Genomes phylogeny. Each sample’s genotype and 
four different stutter models (𝑑 and 𝑢 in top four rows) were then used to generate 1, 2, 
or 3 observed reads for 65%, 25% and 10% of samples. Across 25 iterations for each 
simulation scenario, genotyper posteriors computed using the fraction of supporting 
reads (blue) resulted in markedly biased mutation rate estimates (first two columns), 
while posteriors computing using the exact stutter model (red) and EM stutter model 
(orange) resulted in relatively unbiased estimates with similar standard deviations (third 
column). 
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Figure S6: Scaling the Y-SNP phylogenies  
Mutation rate estimates for loci in the Y-Chromosome Haplotype Reference Database 
were compared to estimates for the same loci obtained using the Simons Genome 
Project (blue), the 1000 Genomes Project (red) and a range of scaling factors. While the 
scaling factor had little effect on the R2, it substantially impacted the total squared error 
in the log estimates. The values minimizing this squared error were chosen as the 
optimal factor for each phylogeny. 
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Figure S7: Relationship between stutter probabilities within and across datasets 
For a given Y-STR locus, the probabilities of stutter increasing (u) or decreasing (d) the 
size of the STR in each read were highly correlated (first column). However, the 1000 
Genomes stutter rates largely fell above the diagonal (red line), indicating the higher 
rates of stutter in this dataset. Within each dataset, nearly all loci had a higher rate of 
downward stutter than upward stutter (second column).  
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Figure S8: Sequence-based determinants of stutter probabilities 
The learned stutter models for the 1000 Genomes (A) and Simons Genomes (B) 
datasets suggest that the probability of stutter increasing (𝑢) or decreasing (𝑑) the size 
of the STR rose with allele length for loci with di- (green), tri- (blue) and tetranucleotide 
(yellow) motifs. Each point denotes the estimate and reference allele length for a single 
Y-STR in each dataset, while the solid lines indicate lines fit using a second-degree 
kernel. 
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Figure S9: Concordance between SGDP estimates and Burgarella estimates based 
on large numbers of father-son pairs 
Ten mutation rate estimates generated by Burgarella et al. using more than 5000 father-
son pairs are highly concordant with estimates from the SGDP data and largely fall along 
the diagonal (red line). 
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Figure S10: Sequence determinants of Y-STR mutability for loci with dinucleotide 
repeat units 
Stratified by repeat motif (rows) and major allele length, loci with no interruptions to the 
repeat structure (blue) are generally more mutable than those with one interruption 
(green) or more than one interruption (red). While major allele length is a poor predictor 
of mutability, the length of the longest interrupted tract is a very strong predictor of the 
log mutation rate for each motif length (cyan). 
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Figure S11: Y-STR imputation results in well-calibrated posteriors  
Y-STR genotypes for each locus in the PowerPlex Y23 panel were imputed across 1000 
iterations using a reference panel of 500 samples and 70 imputed samples. The 
accuracy for each posterior probability bin (top panel) largely followed the diagonal (red 
line), reflecting that the imputation probabilities reflect the true probability of correct 
imputation.  
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