
  

  

Abstract — We present a model that shows how 
intratumoral heterogeneity, in terms of tumor cell phenotypic 
traits, can evolve in a tumor mass as a result of selection when 
space is a limited resource. This model specifically looks at the 
traits of proliferation rate and migration speed. The 
competition for space amongst individuals in the tumor mass 
creates a selection pressure for the cells with the fittest traits. 
To allow for organic movement and capture the invasive 
behavior, we use an off-lattice individual-based model. 

I. TRAIT SELECTION IN A HETEROGENEOUS TUMOR 

Individual-based models are often used in cancer research 
to study how cells interact with each other and their 
environment. For a simple model of a tissue or mass of cells, 
one might create a square lattice with each lattice point 
representing a cell. This is a straightforward and 
computationally efficient way to represent many cells within 
spatially regular neighborhoods and works well for a solid 
growing tumor. However, some tumors may be rather diffuse 
and invasive, and confining cells to a fixed lattice can hinder 
a more accurate treatment of cell migration. To illustrate this, 
we consider an important problem in cancer: intratumoral 
heterogeneity, which has been shown to complicate cancer 
diagnosis [1, 2, 3, 4] and interfere with treatment strategies 
because of drug resistance and recurrence [5, 6, 7, 8]. Here 
we investigate intratumoral heterogeneity using two 
fundamental tumor cell traits: proliferation rate and migration 
speed, to understand how they might evolve when space is a 
limited resource.  

We grow a tumor using an off-lattice individual-based 
model starting with a small clump of cells with a 
heterogeneous mix of phenotypes (defined by differences in 
proliferation and migration traits). When the neighborhood 
around a cell is filled, it will enter a quiescent sate, in which 
it will stop both proliferating and moving, so it essentially 
cannot create any more progeny. We want to investigate 
which combinations of traits come to dominate given the 
competition for space amongst neighbors. Each cell moves 
through the cell cycle as time progresses, and when it 
completes its cycle (defined by the proliferation rate), it 
searches the immediate spatial neighborhood for space to 
divide (see Fig. 1A). If there is an angle in which there will 
be no overlap with another cell, the cell will divide into two 
and each daughter cell will keep the phenotype of the mother 
cell, otherwise, it will go quiescent. We assume that 
individual cells move with a persistent random walk [9, 10], 
such that they follow the same direction until reaching the 
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persistence limit, then turn and start again. If they collide 
with another cell before reaching the persistence limit, then 
they follow a new trajectory at an angle reflected along the 
normal to the plane of collision.  

II. BOUNDING THE TRAIT SPACE AFFECTS TUMOR GROWTH 

In the first case (Fig. 1C), we grow a heterogeneous 
population of cells with respect to proliferation rate. We start 
40 cells with proliferation rates normally distributed around a 
mean of 18 hours (h) with a standard deviation of 4 h and no 
migration and grow the mass to 10,000 cells. Unsurprisingly, 
we find that quickly the fast proliferators take over the 
proliferating rim, and the slower proliferators are caught in 
the quiescent core. It takes 26.5 days to grow to this 
population size. In the second case (Fig. 1D), we grow a 
population of cells, all with the same proliferation rate (18 h), 
now with heterogeneity across migration speed (distributed 
normally around 12 µm/h with a standard deviation of 5 
µm/h). The most dominant clones are not so obvious in this 
case.  There are regions with fast migrators and regions with 
more middle range migrators. The competition amongst cells 
of different migration speeds is more complex. Incorporating 
migration disperses the mass and decreases the selection 
pressure for all. This tumor grew to 10,000 cells in 9.75 days, 
less than half the time of the tumor with variation only in 
proliferation. Lastly, we vary both traits (Fig. 1E). We find 
that, while there is still some heterogeneity, the cells that are 
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Figure 1. A) Angle exclusion due to occupied space by cells. B) Allowed 
trait space for (C-E) showing colors of cells with combinations of 
proliferation and migration traits. The allowed trait ranges are shown. (C-
E) Final trait density distributions (in grayscale black is most dense) and 
spatial layout. C) With no migration and variation in proliferation we 
reach 10,000 cells at 26.5 days. D) When proliferation is constant (18 
hour intermitotic time) and migration speed varies we reach 10,000 cells 
at 9.75 days. E) When both vary we reach 10,000 cells at 8.75 days.  
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both fast proliferators and fast migrators dominate, and this 
tumor grows the fastest, reaching 10,000 cells in 8.75 days. 

Competition from lack of space creates a selective 
pressure on a diverse population to narrow toward clones 
with faster proliferation rates and migration speeds. 
However, these traits do not contribute equally to increasing 
fitness, especially in a population with a mix of phenotypes. 
Having diversity in the migration speed of cells benefits all 
by spreading everything out and allowing even slower 
proliferators and migrators to divide. It is worth noting that 
there may be an intrinsic trade-off that would restrict these 
traits from being maximized simultaneously. These ideas and 
more are fully developed in [11] along with the effects of 
spatial distribution and the mode of inheritance of traits. 

III. QUICK GUIDE TO THE METHODS 

When it comes to diffusive tumors, the ability for a cell to 
move off grid affects cell dispersion and therefore local 
space limitation. The methods presented here show a very 
simple way to prevent overlapping of cells that are 
proliferating and migrating. More details on the cellular 
processes and how they are implemented are given below.  
 
A. Division: At each time point for each cell, we check the 
surrounding space for immediate neighbors, which would lie 
within a distance of 4 cell radii (r), the farthest possible 
position in which overlap can occur. We record each 
neighbor’s angular position with respect to the cell, and 
exclude the block of angles from a bank of 360 degrees in 
which the cell cannot divide into due to overlap. The 
excluded angles (θ) are  

Δθ=arccos(d/4r) (1) 

to each side of the line joining the two cells, where d is the 
distance between cells (as shown in Fig. 1A).  
 
B.  Migration: The cells follow a persistent random walk. In 
this case, the persistence times are drawn from a normal 
distribution of centered around 80 min with a 10 min 
standard deviation. At each time frame, we identify whether 
a collision has occurred with another cell, so the time step 
must be small enough that the fastest moving cells will 
detect the overlap. At up to 25 µm/h with 1 min time 
frames, we detect any overlap over ~0.42 µm. For the 
collision response, we rewind within the time frame to the 
moment of contact, then move during the remaining time 
within the frame with a new persistence and a new angle.  
 
C.  Back to the lattice: Even when using an off-lattice 
model, it is occasionally necessary to create a lattice. If, for 
instance, we want to use a concentration field external to the 
cell, it will need to be defined within a lattice. As a cell 
secretes a substance, it can deposit the substance in the 
lattice point closest to its center, in a few points around the 
edges, or with a distribution around its center, depending on 
the lattice size and how detailed one wishes to be. For the 
cells to respond to the substance, we must define a sampling 
neighborhood, similar to the deposition neighborhood, as 
this will regulate the amount of substance the cell senses.  

IV. ALTERNATIVE OFF-LATTICE MODELS 

Lattice-based models have many advantages. They are 
easy to formulate, easy to explain, can be very 
computationally efficient, and can capture many 
phenomenological details for most solid tumors. However, 
these models represent cells as lattice sites, restrict the tissue 
geometry, and simply look unrealistic. Moreover, velocities 
are hard to represent, as are more mechanical forces that can 
occur between cells, which makes the anisotropy associated 
with invasion and migration harder to achieve. 

There are alternative types of off-lattice models that 
might be better suited for other scenarios [12]. Examples 
include studies of migration and invasion [13, 14, 15, 16, 17], 
growing in vitro monolayers and spheroids [18, 19], cell 
adhesion [14], intravasation [20], morphology and patterning 
[16, 21, 22, 23, 24, 25, 26, 27], and cell/tissue mechanics [23, 
24, 26, 27, 28, 29]. These methods can also be used in 
models outside of cancer, such as embryonic development 
[30, 31], tissue morphological rearrangement and 
regeneration [32, 33], and wound healing [34]. 

When there are no space restrictions, cells can grow 
exponentially. But in some tumors, when the tissue gets too 
dense, there may be restrictions from nutrients, growth 
factors, and space, which can prevent further proliferation 
and lead to quiescence or necrosis. Considering this, the 
fraction of proliferating cells will decrease, so the growth 
curve starts to look more like a power law than an 
exponential [11]. Some cells can also lose adhesion and pile 
up more on top of each other. In a tissue, loss of adhesion and 
piling up could mean more cells will fit in a space and cause 
less of a space restriction (increasing packing density). 
Increasing migration or the degree of overlap (decreasing the 
effective radius) can reduce the effects of this phenomenon 
and increase the proliferating fraction as shown in Fig. 2.  

The method described here is used to study the evolution 
of a population of cells with regards to how two traits are 
passed on over generations. However, one must choose the 
most appropriate model for the scenario in question. Cell 
migration and spatial restriction are significant concerns in 
modeling of cancer progression, so working on an off-lattice 
system can greatly enhance the understanding of invasion, 
cell interactions, and diverse tumor morphologies. As single 
cell data becomes more prominent, we can easily incorporate 
measured cell velocities, persistence times, and turning 
angles as well as many other cell traits to study heterogeneity 
through space and time.   

 
Figure 2. Varying migration speed and effective radius (defines the 
amount of allowed overlap) affects the population’s proliferating 
fraction. A) A look at the extreme values for effective radius and 
migration speed. Green cells are in a proliferating state and yellow cells 
are in a quiescent state. B) The proliferating fraction increases as the 
migration speed increases and as the effective radius of a cell reduces. 
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