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Abstract. As a result of a high rate of mutations and recombination
events, an RNA-virus exists as a heterogeneous “swarm” of mutant vari-
ants. The long read length offered by single-molecule sequencing tech-
nologies allows each mutant variant to be sequenced in a single pass.
However, high error rate limits the ability to reconstruct heterogeneous
viral population composed of rare, related mutant variants. In this pa-
per, we present 2SNV, a method able to tolerate the high error-rate
of the single-molecule protocol and reconstruct mutant variants. 2SNV
uses linkage between single nucleotide variations to efficiently distinguish
them from read errors. To benchmark the sensitivity of 2SNV, we per-
formed a single-molecule sequencing experiment on a sample containing
a titrated level of known viral mutant variants. Our method is able to ac-
curately reconstruct clone with frequency of 0.2% and distinguish clones
that differed in only two nucleotides distantly located on the genome.
2SNV outperforms existing methods for full-length viral mutant recon-
struction. The open source implementation of 2SNV is freely available
for download at http://alan.cs.gsu.edu/NGS/?q=content/2snv
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Introduction

Majority of the emerging and re-emerging diseases (influenza, hantaviruses, Ebola
virus, and Nipah virus), which represent a global threat to the public health, are
caused by RNA viruses [28]. RNA viruses can be featured by their robust adapt-
ability and evolvability due to their high mutation rates and rapid replication
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cycles [6,15]. This enables a within-host RNA virus population to organize as a
complex and dynamic mutant swarm of many highly similar viral genomes. This
mutant spectrum, also known as quasispecies [9], is continuously maintained and
regenerated during viral infection [7,19]. Deep sequencing has provided a new
lens to monitor individual viral variants accelerating the understanding of es-
cape and resistance mechanisms [3,26], in addition to providing insights about
the viral evolutionary landscape and the genomic interactions [22,30,39].

Short reads offered by commonly used fragmentation-based protocols proto-
cols are well suited to detect discrete genome components, such as the frequency
of each single-nucleotide polymorphism. However, high similarity of the indi-
vidual viral genomes imposes a huge challenge to assemble discrete components
into a population of full-length viral genomes. In particular, mutations are often
located on the distances unreachable by the short reads. Therefore even hybrid
technologies based on error correction of PacBio reads with Illumina reads were
not applied to sequencing of viral variants. Indeed, short reads cannot tell the
allele — the same short read is equally well mapped to a variant with the major
allele and a variant with the minor allele.

Single Molecule Real Time (SMRT) sequencing is a parallelized single molecule
DNA sequencing method. PacBio SMRT sequencing reads are much longer than
sequencing reads provided by Illumina, however, its throughput is much lower
and the error rate is significantly higher. The read length offered by a single-
molecule sequencing protocol [8] is comparable to the genome size of most RNA
viruses. It allows each genome variant to be sequenced in a single pass, provid-
ing an accurate phasing of the distant mutations. The main drawbacks of the
long single-molecule technologies are the high error rate and comparatively low
throughput, limiting ability of those technologies to study the heterogeneous vi-
ral populations. Thus, a complete profiling of all viral genomes within a mutant
spectrum is not yet possible.

Recently, this problem has been addressed using various computational and
statistical approaches implemented in Quasirecomb [36], PredictHaplo [32], Hap-
loClique [35], VGA [24], and kGEM [33]. These methods perform reasonably
well on short reads with high coverage and low error rate, but our experimen-
tal validation shows far from satisfactory performance on the sequencing data
provided by single-molecule technologies. Also a workflow for reconstruction of
closely related variants from raw reads generated during SMRT sequencing was
proposed in [4]. Note that a recent method for haplotyping using Pacbio reads
proposed in [34] is only applicable for diploid organisms and is not suitable for
viral haplotyping with numerous variants.

In this paper, we present two Single Nucleotide Variants (2SNV), a com-
prehensive method for the accurate reconstruction of the heterogeneous viral
population from the long single-molecule reads. The 2SNV method hierarchi-
cally clusters together reads containing pairs of correlated (i.e., linked) SNVs
until no cluster has correlated SNVs left and outputs consensus of each clus-
ter. It allows to reduce error rate and differentiate true biological variants from
sequencing artifacts, thus providing increased accuracy to study diversity and
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composition of the viral spectrum. To benchmark the sensitivity of 2SNV, we
performed a single-molecule sequencing experiment on a sample containing a
titrated level of known viral mutant variants. We were able to reconstruct a
haplotype with a frequency of 0.2% and distinguish clones that differed in only
two nucleotides. We also showed that 2SNV outperformed existing haplotype
reconstruction tools. With a high sensitivity and accuracy, 2SNV is anticipated
to facilitate not only viral quasispecies reconstruction, but also other biological
questions that require detection of rare haplotypes such as genetic diversity in
cancer cell population, and monitoring B-cell and T-cell receptor repertoire.

Methods

Any method for reconstruction of viral variants from single-molecule reads should
overcome low volume and high error rate of sequencing data combined with very
high similarity and very low frequency of viral variants. This challenge is equiva-
lent to extraction of an extremely weak signal from very noisy background with
signal-to-noise ratio approaching zero. However impossible this task may seem,
a satisfactory solution can be based on distinguishing randomness of the noise
from systematic signal repetition. Previously, linkage between SNVs was used
for distinguishing sequencing errors from SNVs [23], however, to the best of our
knowledge, it was never applied for haplotyping.

Since all reads are from the same RNA region of very similar sequences,
they can be reliably aligned to each other. In general, the errors in different
positions are independent from each other and the further these positions are
from each other the less likely any dependency can be caused by systematic
errors. Therefore, even slightly more than expected co-occurrence of two rare
alleles in non-adjacent positions may serve as a trustful signature of one or
more rare variants having the both rare alleles. Such single nucleotide variations
(SNVs) are called linked.

The proposed 2SNV method recursively clusters reads containing pairs of
linked SN'Vs until no pair of SN'Vs exhibits statistically significant linkage in any
cluster. Then each cluster should contain just a single viral variant which can
be simply reconstructed as the consensus of all reads in the cluster.

In the remainder of the section we derive statistical conditions of SNV linkage
and then give detailed description of the 2SNV method which identifies rare
variants based SNV pairs satisfying these conditions.

Linkage of SNV pairs

In this section we analyze statistical significance of the linkage between a pair
of SNVs which allows to distinguish reads emitted by a rare variant from back-
ground errors.

We assume that errors are random and a rare variant has at least 2 mis-
matches with other variants. Let us consider an arbitrary pair of two distinct
positions I,J € {1,...,L},I # J, where L be the length of the amplicon (see
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Figure 1b). Let I; and J; be the alleles of the most frequent 2-haplotype (I7J7).
Note that (I;.J1) should be a 2-haplotype from at least one true viral variant
assuming that the error rates in the /-th and J-th positions are small and inde-
pendent.

Let I # I, and Jo # J; be the alleles of another 2-haplotype. Let Ej;,
k,l € {1,2}, be the expected number of reads with 2-haplotypes (I;J;). The
following theorem can be used to decide if the haplotype Iy # I exists.

Theorem 1. Assume that the sequencing error is random, independent and does
not exceed 50%. If no wviral variant with the haplotype (I2Js) exists, then the
expected value of Eao is at most
Es; - Eqo
FEyp < ——++ 1

oM (1)
The inequality (1) becomes an equality if at least one of 2-haplotypes (I1J2) or
(I J1) also does not exist.

Proof. Let s’}l and sljvl, k,l € {1,2}, be the probabilities to observe the allele [
instead of the true allele k in the positions I and J, respectively. We are not going
to estimate the parameters €¥'. The model only assumes that these parameters
are random, independent, and do not exceed 50%.

Let Ty, k,1 € {1,2}, be the true count of 2-haplotypes (IxJ;). Then error
randomness and independence imply that

Ekl = Z E’}nkE?len
m,n=1,2
In order to prove (1), it is sufficient to show that Eqy - Fay < FEig - Eo
assuming that 755 = 0. Indeed,
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Note that only coefficients for T157T5; are different for these products. There-
fore, if either T = 0 or To; = 0, then Eiq - Foo = Ei5 - Fa1. Otherwise, let all
three 2-haplotypes (I1J1), (I1J2), and (I2Jp) exist. Then
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E12E21 - E11E22 =
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The last inequality holds since observing the true allele is more probable than
observing the erroneous allele and, therefore, g% < %% and i < e** k1 €
{1,2}. QED

Note that Theorem 1 does not require linkage disequilibrium of haplotypes -
the lack of linkage is explained by errors. The 2SNV method uses Theorem 1 to
decide if the alleles I and J; are linked as follows. Let Oy, k,1 € {1,2}, be the
observed number of reads with 2-haplotypes (IxJ;). Let n be the total number
of reads covering the both positions I and .J, then

O21 - O12

— 22t M2 2

P="5 2)

is the largest probability of observing the 2-haplotype (I2J3) among these n

reads. The probability to observe at least Ogo reads in the (n,p) binomial dis-
tribution equals

Pr(X > Og)=1- Oifl <’Z>p"(1 -p)" 3)

i=1

Since we are looking for a pair of SNVs among (g) possible pairs, we also
adjust to multiple testing using Bonferroni correction requiring

O22—1 n . . P
1-— (1l —p)" Tt < — 4
> (J“ s ()

where p is defined in (2) and P is the user-defined P-value, by default P = 0.01.
Finally, when the cluster is too small, the statistical test (4) may be not
stringent enough to weed out spurious linkages. Therefore, we require the number
of reads Oa2 to be at least an empirically defined value (by default equal 30), in
order to decide whether there is an additional haplotype producing these reads.
Note that the binomial model used in (4) may not be stringent enough to
compensate for reducing PPV caused by overdispersion especially for higher cov-
erage. In future releases of our tool we plan to take in account additional variance
modeling unknown experimental data processes contributing to variance, e.g.,
replacing the binomial distribution with the beta-binomial distribution.
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Fig. 1. Overview of the 2SNV method: (a) Multiple sequence alignment of reads from
the same amplicon; (b) Identification of a linked SNV pair in positions I and J; (c)
Recursive cluster splitting: (i) finding consensus of reads with the linked SNV pair,
(ii) finding Voronoi region of this consensus, (iii) update the original cluster and the
consensuses for the two new clusters.

2SNV method for viral variant reconstruction

The input to 2SNV consists of a set of aligned PacBio reads (see Figure 1(a)).
Alignment required to be in a form of multiple sequence alignment (MSA). The
MSA algorithms are too slow to handle PacBio datasets, so instead, we use
pairwise alignment by BWA [20] and b2w from Shorah [41] to transform pairwise
alignment to MSA format.

The main novel step of the 2SNV algorithm identifies a pair of linked SNVs
(see Figure 1(b)). with higher than expected portion of reads containing the
2-haplotype with the both minor alleles according to (2-4).

The 2SNV method maintains a partition of all reads into clusters. Each
cluster is assumed to consist of the reads emitted by the single variant coinciding
with the cluster consensus (see Figure 1(c)). Until no pair of SN'Vs in the cluster
C is linked, we recursively partition C into two clusters C; and C5. C consists
of reads with the linked pair of SNVs Cy consists of the remaining reads of C.
We further modify C; and Cs by replacing them with the Voronoi regions of
their consensuses, where the Voronoi region of the consensus ¢; of Cj consists
of reads that are closer to c¢; than to the consensus of Cs. Finally, kK GEM finds
maximum likelihood estimates of frequencies of haplotypes represented by cluster
consensuses using expectation-maximization algorithm [33].

Algorithm 1 describes the formal pseudocode of the 2SNV algorithm.
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Algorithm 1 2SNV Algorithm
procedure 1: constructing the consensus haplotype for all reads:
Initialize the set of all clusters with a single cluster with all reads C < {R}
For each position ¢ find allele of highest frequency a;
Consensus(C) + (a1,...,ar)

procedure 2: partitioning reads into simple clusters
while not all clusters are simple do
for each non-simple cluster C € C do
if no pair SNVs is linked according to (2-4) then
Regard C' as a simple cluster
else
Find a pair of linked SNVs I and Jo minimizing (3)
Find the set Cy of all reads with the 2-haplotype (I3J3)
Find the consensus ¢; < Consensus(Ch)
Cy < Voronoi(cy)
Cy + C\ C1, c2 < Consensus(Ca)
C+ CUu{Ci}u{C}\{C}
procedure 3: estimating frequencies of the consensuses of simple

clusters
Run £GEM algorithm for the set of haplotypes {Consensus(C),C € C}.

Results

We were using 3 datasets: PacBio reads from a single TAV clone and 10 TAV
clones, and simulated PacBio reads from 20 HCV clones.

Error-prone PCR was performed on the influenza A virus (A/WSN/33) PB2
segment using GeneMorph II Random Mutagenesis Kits (Agilent Technologies,
Westlake Village, CA) according to manufacturer’s instruction. The 2kb region
was amplified from the IAV viral population and subjected to PacBio RS II
sequencing using 2 SMRT cells with P4-C2. The average read length was 1973bp
and ranges from 200bp to bkb. Some reads are much longer than the amplified
region due to long insertions which are sequencing errors. Raw sequencing data
have been submitted to the NIH Short Read Archive (SRA) under accession
number: BioProject PRJNA284802. The nucleotide sequences of the 10 clones
are freely available at http://alan.cs.gsu.edu/NGS/?q=content/2snv.

The dataset with a single IAV clone. There total number of reads were
11,907 and the average Hamming distance between the true haplotype and reads
is 14.4%.

The dataset with 10 IAV clones. 10 independent clones, ranging from 1 to 13
mutations from the original single were selected. These 10 clones were mixed at a
geometric ratio with two-fold difference in occurrence frequency for consecutive
clones starting with the maximum frequency of 50% and the minimum frequency
of 0.1%. The pairwise edit distance between clones are given in the heat-map
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on Figure 2 in Supplement. In total, there were 33,558 reads generated from 10
clones.

The simulated dataset with 20 HCV clones. 21K simulated PacBio reads
were generated from 1739-bp long fragment from the E1E2 region of 20 HCV
sequences [38] using simulator pbsim [29]. The reads were simulated with mean
accuracy 98% and minimum accuracy 95% reflecting advancements in PacBio
technology. We have generated reads 10 times for two distributions of the clone
frequencies — uniform (all frequencies are 5%) and skewed (a single clone has
90.5% and every other clone has frequency 0.5% ).

Reconstruction of viral variants

2SNV was compared with 2 tools originally tuned to handle HIV variants (Pre-
dictHaplo [32] and Quasirecomb [36]) and kGEM [33] tuned for a short HCV
amplicon. We could not compare with HaploClique [35] since it is no longer
maintained by the authors. A workflow [4] is not currently available and we
were not able to run it on our data. Also the experimental data in [4] are also
not fully available and we were not able to run 2SNV on these data.

For the dataset with a single IAV clone 2SNV, kGEM, and PredictHaplo
were able to reconstruct no more a single variant which perfectly matches the
original clone. Quasirecomb reported multiple variants none fully matching the
original clone.

For the dataset with 10 TAV clones, 2SNV reported 10 haplotypes: the 9
most frequent haplotypes exactly matching 9 most frequent clones and the least
frequent haplotype (1%) not matching any clone. The correlation between the
estimated and true frequencies of the 9 correctly reconstructed haplotypes is
99.4%. PredictHaplo was able to reconstruct only 6 true variants missing 4 vari-
ants with total frequency of 8% while not having any false positives. In order to
reliably compare the reconstruction rate of two methods, we have applied them
to 40 sub-samples of the original data (each subsample consists of 33558 reads
randomly selected with repetition from the original data). The results are pre-
sented on Figure 4 and Table 1 in Supplement. kK GEM was able to reconstruct
only 2 most frequent clones and Quasirecomb failed to reconstruct even a single
clone.

In order to estimate how accuracy of reconstruction methods depends on the
coverage, we have randomly sub-sampled N reads (N = 500, 1000, 2000, 4000,
8000, 16000) from the original 33558 reads and run 2SNV and PredictHaplo. The
results are shown on Figure 2 in Supplement. For each coverage and each clone
(except Cloneb), 2SNV more accurately estimates the frequency. Clone6 and
Clone8 for all sub-samples, Clone4 for N < 8000 and Clone 3 for N < 1000 are
missed by PredictHaplo but reconstructed by 2SNV. Clone6 which is only two
mutations away from the more frequent Clone5 was successfully reconstructed
for N > 4000 while PredictHaplo was never able to reconstruct Clone6. Note
that since these 2 SNVs between Clone5 and Clone6 are far apart, only long
reads can reconstruct this rare variant. From the last plot one can see that the
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false positive rate for PredictHaplo is also higher than for 2SNV, e.g. 2SNV does
not report false positives for N < 8000. The averages of all runs are given in
Table 2 in Supplement.

For the simulated dataset with 20 HCV variants, we have compared 2SNV
only with PredictHaplo. For the uniform frequency distribution the average sen-
sitivity and PPV for 2SNV are 85% and 100%, respectively, while for Predic-
tHaplo the corresponding values are 72% and 53%, respectively. For the skewed
frequency distribution, the average sensitivity and PPV for 2SNV are 99% and
69%, respectively, while for PredictHaplo the corresponding values are 36% and
46%, respectively.

Runtime. The runtime of 2SNV is linear with respect to the number of reads,
however implementation is O(nlogn) due to parallelization (see Figure 5 in Sup-
plement) and quadratic with respect to the length of the amplicon region. For
all experiments we used the same PC (Intel(R) Xeon(R) CPU X5550 2.67GHz
x2 8 cores per CPU, DIMM DDR3 1333 MHz RAM 4Gb x12) with operating
system CentOS 6.4.

Discussion

Haplotype phasing represents one of the biggest challenges in next-generation se-
quencing due to the short read length. The recent development of single-molecule
sequencing platform produces reads that are sufficiently long to span the entire
gene or small viral genome. It not only benefits the assembly of genomic re-
gions with tandem repeat [5,18,37], but also offers the opportunity to examine
the genetic linkage between mutations. In fact, it is shown that the long read
in single-molecule sequencing aids haplotype phasing in diploid genome [31],
and in polyploid genome [1]. Nonetheless, the sequencing error rate of single-
molecule sequencing platform is extremely high (=~ 14% as estimated by this
study), which hampers its ability to reconstruct rare haplotypes. This draw-
back prohibits single-molecule sequencing platform from applications in which
a high sensitivity of haplotypes are needed, such as quasispecies reconstruction.
In this study, we have developed 2SNV, which allows quasispecies reconstruc-
tion using single-molecule sequencing despite the high sequencing error rate.
The high sensitivity of 2SNV permits the detection of extremely rare haplotypes
and distinguish between closely related haplotypes. Based on titrated levels of
known haplotypes, we demonstrates that 2SNV is able to detect a haplotype
that has a frequency as low as 0.2%. This sensitivity is comparable to many
deep sequencing-based point mutation detection methods [10,11,13,21]. In addi-
tion, 2SNV successfully distinguishes between Clone5 and Clone6 in this study,
which are only two nucleotides away from each other. It highlights the sensi-
tivity of 2SNV to distinguish closely related haplotypes. Our results also show
that the sensitivity is coverage-dependent, implying that the sensitivity of 2SNV
may further improve when sequencing depth increases. Therefore, the constant
increase of sequencing throughput offered by single-molecule sequencing tech-
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nology provides the unprecedented resolution promising to increase number of
discovered rare haplotypes.

The ability to accurately determine the genomic composition of the viral
populations and identify closely related viral genomes makes our tool applicable
for dissecting evolutionary trajectories and examining mutation interactions in
RNA viruses. Evolutionary trajectories and mutation interactions have been
shown to play an important role in viral evolution, such as drug resistance [2,3,26,
39], immune escape [12], and cross-species adaptation [14,16]. An unbiased and
accurate understanding of the genomic composition of the RNA viruses opens a
new avenue to study the underlying mechanism of adaptation, persistence and
virulence factors of the pathogen, which are yet to be comprehended.

While viral quasispecies reconstruction is used as a proof-of-concept in this
study, the application of 2SNV can be extended to detect haplotype variants
in any sample with high genetic heterogeneity and diversity, such as B-cell and
T-cell receptor repertoire, cancer cell populations, and metagenomes. It is shown
that monitoring B-cell and T-cell receptor repertoire helps investigate virus-host
interaction dynamics [17,27,40,42,43]. Furthermore, examining the genetic com-
position of the cancer cell populations in high sensitivity can facilitate diagnosis
and treatment [25]. Therefore, we anticipate that 2SNV will benefit different sub-
fields of biomedical research in the genomic era. We also propose that 2SNV can
be applied to increase the resolution of metagenomics profiling from species level
to strain level. In summary, 2SNV is a widely applicable tool as single-molecule
sequencing technology being popularized.

Supplement. The Supplement to this paper containing Figures 1-6 and Ta-
bles 1-2 is available here: http://alan.cs.gsu.edu/NGS/?q=content/2snv_
supplement
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