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Abstract

http://alan.cs.gsu.edu/NGS/?q=content/2snv

As a result of a high rate of mutations and recombination events, an RNA-virus exists as a heterogeneous
“swarm”. The ability of next-generation sequencing to produce massive quantities of genomic data
inexpensively has allowed virologists to study the structure of viral populations from an infected host at an
unprecedented resolution. However, high similarity and low frequency of the viral variants impose a huge
challenge to assembly of individual full-length genomes. The long read length offered by a single-molecule
sequencing technologies allows each mutant variant to be sequenced in a single pass. However, high error rate
limits the ability to reconstruct heterogeneous viral population composed of rare, related mutant variants. In
this paper, we present 2SNV, a method able to tolerate the high error-rate of the single-molecule protocol and
reconstruct mutant variants. The proposed protocol is able to eliminate sequencing errors and reconstruct
closely related viral mutant variants. 2SNV uses linkage between single nucleotide variations to efficiently
distinguish them from read errors. To benchmark the sensitivity of 2SNV, we performed a single-molecule
sequencing experiment on a sample containing a titrated level of known viral mutant variants.

Our method is able to accurately reconstruct clone with frequency of 0.2% and distinguish clones that
differed in only two nucleotides distantly located on the genome. 2SNV outperforms existing methods for
full-length viral mutant reconstruction. With a high sensitivity and accuracy, 2SNV is anticipated to facilitate
not only viral quasispecies reconstruction, but also other biological questions that require detection of rare
haplotypes such as genetic diversity in cancer cell population, and monitoring B-cell and T-cell receptor
repertoire. The open source implementation of 2SNV is freely available for download at
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Introduction

Majority of the emerging and re-emerging diseases (in-
fluenza, hantaviruses, Ebola virus, and Nipah virus),
which represent a global threat to the public health,
are caused by RNA viruses [1]. Human immune system
provides several layers of defense mechanisms against
viral infection [2], which may clear the virus from the
body. However, in some cases, such as HIV, HCV, and
HBYV infection, the virus is able to persist in the hu-
man body. RNA viruses can be featured by their ro-
bust adaptability and evolvability due to their high
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mutation rates and rapid replication cycles [3,4]. This
enables a within-host RNA virus population to orga-
nize as a complex and dynamic mutant swarm of many
highly similar viral genomes. This mutant spectrum,
also known as quasispecies [5], is continuously main-
tained and regenerated during viral infection, which
permits RNA viruses to readily hide from the host
immune surveillance, and to acquire vaccine escape
and drug resistance [6,7]. Deep sequencing has pro-
vided a new lens to monitor individual viral variants.
It accelerates the understanding of escape and resis-
tance mechanisms in both laboratory and clinical set-
tings [8,9], in addition to providing insights about the
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viral evolutionary landscape and the genomic interac-
tions [10-12].

Fragmentation-based protocols is a common practice
in high-throughput sequencing [13], which breaks the
genetic material into a small fragments and destroy
the linkage between genetic mutations. Short reads of-
fered by these protocols are well suited to detect dis-
crete genome components, such as the frequency of
each single-nucleotide polymorphism. However, high
similarity of the individual viral genomes imposes a
huge challenge to assemble discrete components into a
population of full-length viral genomes. In particular,
mutations are often located on the distances unreach-
able by the short reads. The read length offered by
a single-molecule sequencing protocol [14] is compara-
ble to the genome size of most RNA viruses. It allows
each genome variant to be sequenced in a single pass,
providing an accurate phasing of the distant muta-
tions. The main drawbacks of the long single-molecule
technologies are the high error rate and comparatively
low throughput, limiting ability of those technologies
to study the heterogeneous viral populations. Thus, a
complete profiling of all viral genomes within a mutant
spectrum is not yet possible.

Recently, this problem has been addressed using var-
ious computational and statistical approaches imple-
mented in Quasirecomb [15], PredictHaplo [16], VGA
[17], and kGEM [18]. These methods perform reason-
ably well on short reads with high coverage and low
error rate, but our experimental validation shows far
from satisfactory performance on the sequencing data
provided by single-molecule technologies. Also a work-
flow for reconstruction of closely related variants from
raw reads generated during SMRT sequencing was pro-
posed in [19]. Note that a recent method for haplotyp-
ing using Pacbio reads proposed in [20] is only appli-
cable for diploid organisms and is not suitable for viral
haplotyping with numerous variants.

In this paper, we present two Single Nucleotide
Variants (2SNV), a comprehensive method for the ac-
curate reconstruction of the heterogeneous viral popu-
lation from the long single-molecule reads. The 2SNV
method hierarchically clusters together reads contain-
ing pairs of correlated (i.e., linked) SNV’s until no clus-
ter has correlated SNV’s left and outputs consensus of
each cluster. It allows to reduce error rate and differ-
entiate true biological variants from sequencing arti-
facts, thus providing increased accuracy to study diver-
sity and composition of the viral spectrum. To bench-
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Figure 1 Overview of the long single-molecule sequencing
protocol. (a) Extract the viral genomic DNA from the whole
blood sample. (b) DNA material from the viral mutants is
cleaved into sequence fragments using any suitable restriction
enzyme. Amplified fragments are sequenced. (c) Long
single-molecule reads are mapped to the reference genome. (d)
SNVs are detected and assembled into the viral mutant
variants. The short read protocol produces equivalent
solutions.
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mark the sensitivity of 2SNV, we performed a single-
molecule sequencing experiment on a sample contain-
ing a titrated level of known viral mutant variants. We
were able to reconstruct a haplotype with a frequency
of 0.2% and distinguish clones that differed in only two
nucleotides. We also showed that 2SNV outperformed
existing haplotype reconstruction tools. With a high
sensitivity and accuracy, 2SNV is anticipated to fa-
cilitate not only viral quasispecies reconstruction, but
also other biological questions that require detection of
rare haplotypes such as genetic diversity in cancer cell
population, and monitoring B-cell and T-cell receptor
repertoire.

METHODS

Any method for reconstruction of viral variants from
single-molecule reads should overcome low volume and
high error rate of sequencing data combined with very
high similarity and very low frequency of viral variants.
This challenge is equivalent to extraction of an ex-
tremely weak signal from very noisy background with
signal-to-noise ratio approaching zero. However impos-
sible this task may seem, a satisfactory solution can be
based on distinguishing randomness of the noise from
systematic signal repetition.

Indeed, since all reads are from the same RNA region
of very similar sequences, they can be reliably aligned
to each other. In general, the errors in different posi-
tions are independent from each other and the further
these positions are from each other the less likely any
dependency can be caused by systematic errors. There-
fore, even slightly more than expected co-occurrence of
two rare alleles in non-adjacent positions may serve as
a trustful signature of one or more rare variants having
the both rare alleles. Such single nucleotide variations
(SNVs) are called linked.

The proposed 2SNV method recursively clusters
reads containing pairs of linked SNV’s until no pair
of SN'Vs exhibits statistically significant linkage in any
cluster. Then each cluster should contain just a single
viral variant which can be simply reconstructed as the
consensus of all reads in the cluster.

In the remainder of the section we derive statisti-
cal conditions of SNV linkage and then give detailed
description of the 2SNV method which identifies rare
variants based SNV pairs satisfying these conditions.

Linkage of SNV pairs

In this section we analyze statistical significance of the
linkage between a pair of SN'Vs which allows to distin-
guish reads emitted by a rare variant from background
errors.

We assume that errors are random and a rare vari-
ant has at least 2 mismatches with other variants. Let
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us consider an arbitrary pair of two distinct positions
I,Je{l,...,L},I+# J, where L be the length of the
amplicon (see Figure 2b). Let I; and J; be the alle-
les of the most frequent 2-haplotype (I;.J1). Note that
(I J1) should be a 2-haplotype from at least one true
viral variant assuming that the error rates in the I-th
and J-th positions are small and independent.

Let Is # I; and Jy # J; be the alleles of another
2-haplotype. Let Ey;, k,1 € {1,2}, be the expected
number of reads with 2-haplotypes (I J;). The follow-
ing theorem can be used to decided if the haplotype
I # I exists.

Theorem 1 Assume that the sequencing error is ran-
dom, independent and does not exceed 50%. If no viral
variant with the haplotype (I2J3) exists, then the ex-
pected value of Eao is at most

FEy - E
Ezzﬁ% (1)

The inequality (1) becomes an equality if at least one
of 2-haplotypes (I1J2) or (I2Jy) also does not exist.

Proof. Let ek and ¥, k,1 € {1,2}, be the proba-
bilities to observe the allele [ instead of the true al-
lele k in the positions I and J, respectively. Let Ty,
k,l € {1,2}, be the true count of 2-haplotypes (IxJ;).
Then error randomness and independence imply that

Ekl = E €}nk€?len
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Note that only coefficients for 775757 are different for
these products. Therefore, if either T = 0 or T = 0,
then E11 . E22 = Elg . EQl. Otherwise, let all three 2-
haplotypes (I1J1), (I1J2), and (I2J7) exist. Then

Ei9FEy — E11E

11_22_22_11 21.12_12_21
= (e;ejere; +ejejerey
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The last inequality holds since observing the true allele
is more probable than observing the erroneous allele
and, therefore, ek < eh* and ek < kb k1 € {1,2}.
QED

The 2SNV method uses Theorem 1 to decide if
the alleles I and J, are linked as follows. Let Oy,
k,l € {1,2}, be the observed number of reads with 2-
haplotypes (IJ;). Let n be the total number of reads
covering the both positions I and J, then

O - O1
= —— 2
P="0n n @)

is the largest probability of observing the 2-haplotype
(I2J2) among these n reads. The probability to observe
at least Ogo reads in the (n,p) binomial distribution
equals

' (n i n—i

PrX=0m) =1- 3 ()p A—pi @)

Since we are looking for a pair of SNV’s among (é)
possible pairs, we also adjust to multiple testing using
Bonferroni correction. Finally, the 2SNV method de-
cides that there exists a true 2-haplotype (I2Jz2), i.e.,
I is linked with Js, if Ogg is larger than empirically
defined value (by default equal 30) and

Ogz3—1
-y (’;)pi(lp)“g(f) (1)
2

i=1

where p is defined in (2) and P is the user-defined
P-value, by default P = 0.01.

Page 4 of 9

2SNV method for viral variant reconstruction

Algorithm 1 2SNV Algorithm
procedure 1: constructing the consensus hap-
lotype for all reads:
Initialize the set of all clusters with a single cluster
with all reads C < {R}
For each position ¢ find allele of highest frequency

a;
Consensus(C) < (a1,...,ar)
procedure 2: partitioning reads into simple
clusters
while not all clusters are simple do
for each non-simple cluster C' € C do
if no pair SNVs is linked according to (2-4)

then

Regard C' as a simple cluster

else
Find a pair of linked SNV's I, and Js
minimizing (3)
Find the set C; of all reads with the
2-haplotype (I3J3)

Find the consensus ¢ —
Consensus(Ch)

Cy < Voronoi(cy)

Cy + C\ C1, ¢ < Consensus(Cs)

C+ cu{Ci}u{C}\{C}
procedure 3: estimating frequencies of the con-
sensuses of simple clusters

Run EGEM algorithm for the set of haplotypes
{Consensus(C),C € C}.

The input to 2SNV consists of a set of aligned PacBio
reads (see Figure 2(a)). Alignment required to be in a
form of multiple sequence alignment (MSA). The MSA
algorithms are too slow to handle PacBio datasets, so
instead, we use pairwise alignment by BWA [21] and
b2w from Shorah [22] to transform pairwise alignment
to MSA format.

The main novel step of the 2SNV algorithm iden-
tifies a pair of linked SNV’s (see Figure 2(b)). with
higher than expected portion of reads containing the
2-haplotype with the both minor alleles according to
(2-4).

The 2SNV method maintains a partition of all reads
into clusters each containing at least one variant (see
Figure 2(c)). Until no pair of SN'Vs is linked, we recur-
sively

(i) find reads with the linked pair of SNVs and make
a new cluster C,
) find consensus ¢ of C, ¢ + Consensus(C),
ii) replace C with the Voronoi(c), and
) update all other clusters and their consensuses
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Figure 2 Overview of the 2SNV method: (a) Multiple sequence alignment of reads from the same amplicon; (b) Identification of a
linked SNV pair in positions I and J; (c) Recursive cluster splitting: (i) finding consensus of reads with the linked SNV pair, (ii)
finding Voronoi region of this consensus, (iii) update the original cluster and the consensuses for the two new clusters.
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Here Voronoi(c) is the Voronoi region of ¢ which con-
sists of reads that are closer to ¢ than to any other
cluster consensus.

The consensus of each resulted cluster defines a sin-
gle variant. Finally, kGEM estimates variant frequen-
cies based on the maximum likelihood, filters out un-
likely variants and fixes incorrect alleles in likely vari-
ants.

Formally, the 2SNV algorithm consists of three ma-
jor procedures (see Algorithm 1):

1 Constructing the consensus haplotype for a set
of reads, i.e., a haplotype with the most frequent
alleles.

2 Recursive clustering of reads containing a pair of
linked SNV’s until all clusters are simple, i.e., do
not contain linked SNV’s.

3 Estimating frequencies of consensuses of simple
clusters.

RESULTS

Datasets

Error-prone PCR was performed on the influenza A
virus (A/WSN/33) PB2 segment using GeneMorph
IT Random Mutagenesis Kits (Agilent Technologies,
Westlake Village, CA) according to manufacturer’s in-
struction. In the first experiment, a single independent

clone has been selected. In the second experiment, 10
independent clones, ranging from 1 to 13 mutations,
were selected. These 10 clones were mixed at a geo-
metric ratio with two-fold difference in occurrence fre-
quency for consecutive clones starting with the maxi-
mum frequency of 50% of and the minimum frequency
of 0.1%. The pairwise edit distance between clones are
given in the heatmap on Figure 3.

The 2kb region was amplified from the viral pop-
ulation and subjected to PacBio RS II sequencing
using 2 SMRT cells with P4-C2. The average read
length was 1973bp and ranges from 200bp to 5kb.
In the first experiment there were 11907 reads and
in the second experiment there were 33558 reads.
Raw sequencing data have been submitted to the
NIH Short Read Archive (SRA) under accession
number: BioProject PRJNA284802. The nucleotide
sequences of the 10 clones are freely available at
http://alan.cs.gsu.edu/NGS/?q=content /2snv.

The dataset with a single clone. The average Ham-
ming distance between the recovered haplotype and
reads is 14.4%. The 2SNV has been applied for reads.
The result of this run perfectly matches the original
clone.

The dataset with 10 clones. We ran 2SNV on reads
obtained from 10 TAV clones. Our method reported
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Figure 3 The heatmap representing pairwise edit distance
between the 10 IAV clones.

10 haplotypes: the 9 most frequent haplotypes exactly
match 9 most frequent clones and the least frequent
haplotype does not exactly match any clone. The cor-
relation between the estimated and true frequencies of
the 9 correctly reconstructed haplotypes is 99.4% .

Reconstruction of viral variants

Viral variants were reconstructed from the original
and sub-sampled datasets. 2SNV was compared with
PredictHaplo [16], Quasirecomb [15], and kGEM [18].
Quasirecomb and kGEM were able to reconstruct no
more than two most frequent true variants. A work-
flow [19] reports reduction of error rate to 0.007%. It
can distinguish variants with at least 5 mutations away
from each other but cannot reconstruct a variant with
frequency 0.78%.

For the original data containing all 33.5K reads,
2SNV reconstructed 9 true variants and was not able to
reconstruct the least frequent variant represented just
by 17 reads (<0.1%). It also reported a single false
positive variant with estimated frequency less than
1%. PredictHaplo was able to reconstruct only 6 true
variants missing 4 variants with total frequency of 8%
while not having any false positives. In order to reli-
ably compare the reconstruction rate of two methods,
we have applied them to 40 sub-samples of the original
data (each subsample consists of 33558 reads randomly
selected with repetition from the original data). The
results are presented on Figure 4 and Table 1 in Sup-
plementary materials.

In order to estimate how accuracy of reconstruc-
tion methods depends on the coverage, we have ran-
domly sub-sampled N reads (N = 500, 1000, 2000,
4000, 8000, 16000) from the original 33558 reads and
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run 2SNV and PredictHaplo. The results are shown
on Figure (2) in Supplementary Materials . For each
coverage and each clone (except Clone5), 2SNV more
accurately estimates the frequency. Clone6 and Clone8
for all sub-samples, Clone4 for N < 8000 and Clone 3
for N < 1000 are missed by PredictHaplo but recon-
structed by 2SNV. Clone6 which is only two mutations
away from the more frequent Cloneb was successfully
reconstructed for N > 4000 while PredictHaplo was
never able to reconstruct Clone6. Note that since these
2 SN'Vs between Cloneb and Clone6 are far apart, only
long reads can reconstruct this rare variant. From the
last plot one can see that the false positive rate for
PredictHaplo is also higher than for 2SNV, e.g. 2SNV
does not report false positives for N < 8000. The aver-
ages of all runs are given in Table 2 in Supplementary
Data.

Runtime

The runtime of 2SNV as well as PredictHaplo is linear
with respect to number of reads (see Figure (1) in Sup-
plementary Materials ) and quadratic with respect to
number of positions. For all experiments we used the
same PC (Intel(R) Xeon(R) CPU X5550 2.67GHz x2
8 cores per CPU, DIMM DDR3 1333 MHz RAM 4Gb
x12) with operating system CentOS 6.4.

DISCUSSION

Haplotype phasing represents one of the biggest chal-
lenges in next-generation sequencing due to the short
read length. The recent development of single-molecule
sequencing platform produces reads that are suffi-
ciently long to span the entire gene or small vi-
ral genome. It not only benefits the assembly of ge-
nomic regions with tendem repeat [23-25], but also
offers the opportunity to examine the genetic link-
age between mutations. In fact, it is shown that the
long read in single-molecule sequencing aids haplo-
type phasing in diploid genome [26], and in polyploid
genome [27]. Nonetheless, the sequencing error rate of
single-molecule sequencing platform is extremely high
(= 14% as estimated by this study), which hampers its
ability to reconstruct rare haplotypes. This drawback
prohibits single-molecule sequencing platform from ap-
plications in which a high sensitivity of haplotypes are
needed, such as quasispecies reconstruction. In this
study, we have developed 2SNV, which allows quasis-
pecies reconstruction using single-molecule sequencing
despite the high sequencing error rate. The high sen-
sitivity of 2SNV permits the detection of extremely
rare haplotypes and distinguish between closely re-
lated haplotypes. Based on titrated levels of known
haplotypes, we demonstrates that 2SNV is able to
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Figure 4 The results of running 2SNV and PredictHaplo (PH) on the original sample with all 33558 reads and on 40 bootstrapped
samples (only 35 runs of PH were successful). Clones 6 and 9 were never reconstructed by PH and clone 8 was reconstructed only on
full data.

detect a haplotype that has a frequency as low as
0.2%. This sensitivity is comparable to many deep
sequencing-based point mutation detection methods
[28-31]. In addition, 2SNV successfully distinguishes
between Cloneb and Clone6 in this study, which are
only two nucleotides away from each other. It high-
lights the sensitivity of 2SNV to distinguish closely
related haplotypes. Our results also show that the sen-
sitivity is coverage-dependent, implying that the sen-
sitivity of 2SNV may further improve when sequenc-
ing depth increases. Therefore, the constant increase of
sequencing throughput offered by single-molecule se-
quencing technology provides the unprecedented reso-
lution promising to increase number of discovered rare
haplotypes.

The ability to accurately determine the genomic
composition of the viral populations and identify
closely related viral genomes makes our tool applicable
for dissecting evolutionary trajectories and examin-
ing mutation interactions in RNA viruses. Evolution-
ary trajectories and mutation interactions have been
shown to play an important role in viral evolution,
such as drug resistance [8-10,32], immune escape [33],
and cross-species adaptation [34,35]. An unbiased and
accurate understanding of the genomic composition
of the RNA viruses opens a new avenue to study the
underlying mechanism of adaptation, persistence and
virulence factors of the pathogen, which are yet to be
comprehended.

While viral quasispecies reconstruction is used as a
proof-of-concept in this study, the application of 2SNV

can be extended to detect haplotype variants in any
sample with high genetic heterogeneity and diversity,
such as B-cell and T-cell receptor repertoire, cancer
cell populations, and metagenomes. It is shown that
monitoring B-cell and T-cell receptor repertoire helps
investigate virus-host interaction dynamics [36-40].
Furthermore, examining the genetic composition of the
cancer cell populations in high sensitivity can facili-
tate diagnosis and treatment [41]. Therefore, we an-
ticipate that 2SNV will benefit different subfields of
biomedical research in the genomic era. We also pro-
pose that 2SNV can be applied to increase the reso-
lution of metagenomics profiling from species level to
strain level. In summary, 2SNV is a widely applica-
ble tool as single-molecule sequencing technology be-
ing popularized.

Software availability
2SNV software is freely available at
http://alan.cs.gsu.edu/NGS/?q=content/2snv.
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