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Type III secretion system is a key bacterial symbiosis and pathogenicity mechanism 22 

responsible for a variety of infectious diseases, ranging from food-borne illnesses to the 23 

bubonic plague. In many Gram-negative bacteria, the type III secretion system transports 24 

effector proteins into host cells, converting resources to bacterial advantage. Here we 25 

introduce a computational method that identifies type III effectors by combining homology-26 

based inference with de novo predictions, reaching up to 3-fold higher performance than 27 

existing tools. Our work reveals that signals for recognition and transport of effectors are 28 

distributed over the entire protein sequence instead of being confined to the N-terminus, as 29 

was previously thought. Our scan of hundreds of prokaryotic genomes identified previously 30 

unknown effectors, suggesting that type III secretion may have evolved prior to the 31 

archaea/bacteria split. Crucially, our method performs well for short sequence fragments, 32 

facilitating evaluation of microbial communities and rapid identification of bacterial 33 

pathogenicity – no genome assembly required. pEffect and its data sets are available at 34 

http://services.bromberglab.org/peffect. 35 

 36 
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Introduction 1 

Six secretion systems have been identified in pathogenic and endosymbiotic Gram-negative 2 

bacteria1-6. The type III secretion system (T3SS) mediates a wide range of bacterial 3 

infections in human, animals, and plants7. This system comprises a hollow needle-like 4 

structure localized on the surface of bacterial cells that injects specific bacterial proteins, 5 

effectors, directly into the cytoplasm of a host cell3. During infection, effectors act in concert 6 

to convert host resources to their advantage and promote pathogenicity8. While the elements 7 

of T3SS are conserved among different pathogens, effector proteins are not7,9,10. 8 

Although, next generation sequencing techniques yield an ever-growing number of bacterial 9 

genome sequences11, experimental verification needed to identify type III effectors remains 10 

very expensive and time-consuming. Considering the central role these proteins play in 11 

pathogenicity and symbiosis, there is a need for computational tools that predict and 12 

prioritize type III effector proteins. To address this need various machine-learning 13 

algorithms12-15 have been developed to identify type III effectors in silico. As input, these 14 

methods use similarities in gene GC content and protein amino acid composition, secondary 15 

structure, and solvent accessibility to experimentally known effectors. Most often only the 16 

protein N-terminus is considered, as it is assumed to be most informative for the 17 

translocation of effectors through the type III secretion process16. An independent 18 

benchmark revealed that state-of-art-methods predict type III effectors at similar levels of up 19 

to 80% accuracy at 80% coverage17; thus, there is still room for substantial improvement.  20 

We built pEffect, a method that combines two components - sequence similarity-based 21 

inference (PSI-BLAST18) and de novo prediction using Support Vector Machines (SVM19). 22 

Our method attains 87±7% accuracy at 95±5% coverage in predicting type III effectors, 23 

significantly outperforming each of its components. It also provides a score reflecting the 24 

strength of each prediction, allowing users to focus on most relevant results. When tested on 25 

sequence fragments similar in length to peptides translated from shotgun sequencing reads, 26 

pEffect’s performance was not significantly different. This result suggests that the 27 

information required for distinguishing effectors is not confined to any particular part of the 28 

amino acid sequence.  29 

We applied pEffect to complete proteomes of over 900 prokaryotic species. pEffect’s high 30 

prediction accuracy and ubiquitous applicability raises an interesting question about its 31 

predictions of effectors in Gram-positive bacteria and archaea, which are not known to utilize 32 

type III secretion. For bacteria, these findings may hint at shared ancestry between flagellar 33 

and type III secretion systems9. Gene genealogies20 and protein network analysis 34 

approaches21 suggest evolution of both systems from a common ancestor. For archaea 35 

common ancestry is less clear. However, predominance in the number of predicted effectors 36 

in Gram-negative bacteria, as opposed to the number of predicted effectors in Gram-positive 37 

bacteria and archaea suggests repurposing of effector-like proteins independent of organism 38 

secretory abilities.  In addition to pEffect’s application to evolutionary inference, we find that 39 

the time and T3SS completeness–driven results, which follow expectations for correlation 40 

with quantities of predicted effectors, are reassuring of our method’s performance. 41 

Our method provides a basis for rapid identification of T3SS-utitlizing bacteria and their 42 

exported effector proteins as targets for future therapeutic treatments. The method also 43 

proposes interesting directions in which the evolution of bacterial pathogenicity can further 44 
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be explored. Finally, we suggest using pEffect as a starting point for studies of interactions 1 

within microbial communities, detected directly from metagenomic reads and without the 2 

need for individual genome assembly.  3 

Results 4 

pEffect succeeded linking homology-based and de novo predictions. Most functional 5 

annotations of new proteins originate from homology-based transfer, i.e. on the basis of 6 

shared ancestry with experimentally characterized proteins22. For type III effector prediction, 7 

homology-based inference implies finding a sequence-similar experimentally annotated type 8 

III effector (‘Methods’ section), e.g. via PSI-BLAST. 9 

The accuracy of homology-based inference by PSI-BLAST was comparable to that of our de 10 

novo prediction method on the cross-validation Development set (Table 1: 91% vs. 92%). 11 

However, at this level of accuracy, its coverage was significantly higher (Table 1: 84% vs. 12 

60%). This result encouraged combining these two approaches as introduced in our recent 13 

work, LocTree323: use PSI-BLAST when sequence similarity suffices (e-value≤10-3; Table 1: 14 

F1 = 0.87 complete set) and the SVM otherwise (Table 1: F1 = 0.67 on subset of proteins 15 

without PSI-BLAST hit). The combined method, pEffect, outperformed both its components, 16 

reaching an F1 measure of 0.91 (Table 1).  17 

>>> Table 1 <<< 18 

pEffect outperformed other methods. We compared pEffect to publicly available methods: 19 

BPBAac13, EffectiveT312, T3_MM24, Modlab15 and BEAN 2.014. BPBAac, EffectiveT3, T3_MM 20 

and Modlab focus exclusively on N-terminal features, while BEAN 2.0 and pEffect are not 21 

confined to those regions only (Methods, Supplementary S2 Text). BPBAac, T3_MM and 22 

Modlab rely solely on amino acid composition; EffectiveT3 combines amino acid composition 23 

and secondary structure information; BEAN 2.0 uses BLAST18 and PFAM25 domain 24 

searches, evolutionary information encoded in N- and C-termini, as well as information from 25 

an intermediate sequence region. We compared performance for UniProt26 proteins that had 26 

NOT been used to develop any method, and for T3DB11 proteins, some of which all methods 27 

(incl. pEffect) had used for development. In our hands, pEffect significantly outperformed its 28 

competitors on UniProt sets containing eukaryotic proteins (Fig. 1, Supplementary Table S1). 29 

The F1 performance of pEffect exceeded the other methods by more than 0.35 (∆F1 = 30 

(pEffect, BEAN 2.0) = 0.35 for both UniProt sets, Supplementary Table S1). On the bacterial 31 

T3DB data sets, pEffect performed within one standard error of the prediction performance 32 

achieved by its best performing competitor BEAN 2.0. Thus, pEffect performed as well or 33 

better when benchmarked with existing tools in distinguishing type III effectors from bacteria 34 

(F1>0.64) and from eukaryotes (F1>0.88). This improvement is particularly important to, e.g. 35 

annotate results from contaminated metagenomic studies27. 36 
 37 
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 1 
Figure 1: Method performance comparison on independent test sets and protein fragments.  Performance 2 
(Supplementary S1 Text: F1 measure, Eqn. 3; ‘±’ standard error, Eqn. 4) was measured for BPBAac, EffectiveT3, 3 
T3_MM, Modlab and BEAN 2.0 methods (Supplementary S2 Text). We also computed F1 for de novo (SVM-4 
based) predictions alone, PSI-BLAST homology-based look up alone, and pEffect: a combination of PSI-BLAST 5 
(if a hit is available) and de novo (otherwise).  Panel (a) shows performance on evaluation data sets (Methods) 6 
including 

(1)
UniProt’15HVAL0 (51 effectors and 691 non-effector bacterial and eukaryotic proteins, added to UniProt 7 

after 2014_02 release, sequence homology reduced at HVAL<0), 
(2)

UniProt’15Full (498 effectors and 1,509 non-8 
effector bacterial and eukaryotic proteins added to UniProt after 2014_08 release, NOT homology reduced), 9 
(3)

T3DBHVAL0 (66 effectors and 128 non-effector bacterial proteins from T3DB database, sequence homology 10 
reduced at HVAL<0), and 

(4)
T3DBFull (218 effectors and 831 non-effector bacterial proteins from T3DB database, 11 

NOT homology reduced).  Note: T3_MM was not able to produce results for the UniProt’15HVAL0 set during 12 
manuscript preparation. Panel (b) shows performance on fragments produced from 

(3)
T3DBHVAL0 (Methods) 13 

including 
(5)

approach i: 30 N-terminal amino acids cleaved off, 
(6)

ii: 30 C-terminal amino acids cleaved off, 
(7)

iii: 14 
Randomly selected two thirds of the protein sequence, and 

(8)
iv: Randomly selected sequence fragments of 15 

typical translated read length (average 110 amino acids, Supplementary Fig. S1).  16 

 17 

pEffect excelled even for protein fragments. To evaluate pEffect’s ability to annotate 18 

effectors from incomplete genomic assemblies and mistakes, we fragmented the proteins 19 

from the homology reduced T3DBHVAL0 set containing bacterial proteins only. We started with 20 

protein rather than gene sequence fragments, because we did not expect incorrect gene 21 

translations of DNA reads, even if sufficiently long, to trigger incorrect effector predictions 22 

from any method. Four different approaches were used to generate protein fragments: (i) 23 

remove the first 30 residues (N-terminus) from the full protein sequence, (ii) remove the last 24 

30 residues (C-terminus), (iii) randomly remove one third of residues, and (iv) randomly 25 

choose from each protein a single fragment of a typical translated read length 26 

(Supplementary Fig. S1).  27 

pEffect compared favourably to all other methods for all fragment sets (i-iv). Most methods 28 

performed best on fragments with C-terminal cleavage (set ii, Fig. 1, Supplementary Table 29 

S2). Performance was lowest for random fragments of typical read lengths (set iv). For 30 

pEffect it dipped least (F1 = 0.59±0.14 on set iv vs.  F1 = 0.64±0.14 on full length, 31 

Supplementary Table S1). For all fragment sets, performances of homology-based 32 

approaches, i.e. of PSI-BLAST, pEffect and BEAN 2.0 were within the standard error of the 33 

performance obtained when using full-length sequences (T3DBHVAL0 set; Fig. 1, 34 

Supplementary Table S1). These results suggest that the features distinguishing type III 35 

effectors are spread over the entire protein sequence and can be picked up by local 36 

alignment. 37 

Reliability index identified confident predictions. pEffect provides a reliability index (RI) 38 

to measure the confidence of a prediction; the value of RI ranges from 0 (uncertain) to 100 39 

(most reliable). For PSI-BLAST searches, RIs are normalized values of percentage pairwise 40 
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sequence identities read of the alignments. For de novo predictions, RIs are values 1 

corresponding to SVM scores (Methods). Including predictions with low RIs gives many 2 

trusted results at reduced accuracy. Higher accuracy predictions are obtained by sampling at 3 

higher RIs, thus reducing the total number of trusted samples. For example, at the threshold 4 

of RI≥50, over 87% of all predictions of type III effectors are correct and 95% of all effectors 5 

in our set are identified (Supplementary Fig. S2: black arrow). On the other hand, at RI>80 6 

effector predictions are correct 96% of the time, but only 78% of all effectors in the set are 7 

identified (Supplementary Fig. S2: gray arrow).  Thus, users can choose the most 8 

appropriate threshold for a given study. Users can also focus on previously unidentified 9 

effectors (de novo predictions) or, vice versa, on validated homologs of known effectors 10 

(PSI-BLAST matches; Supplementary Fig. S3).  11 

Application of pEffect: scanning proteomes for type III effectors. We used pEffect to 12 

annotate type III effectors in 862 bacterial (274 Gram-positive, 588 Gram-negative bacteria) 13 

and 90 archaeal proteomes from the European Bioinformatics Institute (EBI: 14 

http://www.ebi.ac.uk/genomes/; predictions available on the pEffect website). Each 15 

bacterium was predicted to have some type III effectors, with a minimum of 0.8% of the 16 

proteome - 2 out of all 240 proteins – identified as effectors (Fig. 2, Supplementary Table 17 

S3). For some Gram-negative bacteria, over 750 type III effectors were predicted 18 

(Supplementary Table S3), e.g. 870 effectors in S. aurantiaca DW4/3-1, which is indeed 19 

known to have a T3SS and effectors28.  20 

 21 

 22 
Figure 2: Percentage of predicted effectors in full proteomes. The figure shows the box-plot-and-instance 23 
representation of percentages of pEffect-predicted type III effectors (Y-axis) in 90 archaeal, 274 Gram-positive 24 
and 588 Gram-negative bacterial organisms (X-axis), which are shown as dots. At least 50% of effector 25 
predictions in all, except 11 organisms in our set were predicted de novo. In the figure, the colour represents the 26 
percentage of de novo predictions for each organism: from green (50% de novo, 50% PSI-BLAST) to blue (100% 27 
de novo, 0% PSI-BLAST). While effectors predicted in archaea and Gram-positive bacteria are often picked up 28 
by PSI-BLAST, effectors in Gram-negative bacteria are mostly de novo predictions (mostly blue dots). 29 

 30 
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Overall, the number of predicted type III effectors was 1-10% of the whole proteome in 1 

Gram-positive bacteria and 1-15% in Gram-negative bacteria (Fig. 2, Supplementary Table 2 

S3). To further understand our predictions, we retrieved UniProt keywords of predicted 3 

effectors. Their annotations varied widely, with the most common for both types of bacteria 4 

being transferase, depicting a large class of enzymes that are responsible for the transfer of 5 

specific functional groups from one molecule to another, nucleotide-binding – a common 6 

functionality of effector proteins, ATP-binding – an essential component of T3SS, and kinase 7 

– necessary for the expression of T3SS genes. About one fourth (26-29% per proteomes) of 8 

predicted type III effectors are functionally ‘unknown’ (Supplementary Table S4).  9 

We also predicted type III effectors in all archaeal proteomes, with over 100 effectors 10 

identified in the proteomes of H. turkmenica DSM 5511 and M. acetivorans C2A (126 and 11 

105 effectors, respectively; Supplementary Table S3). On average, there were fewer 12 

effectors predicted in archaea than in bacteria: 1.9% is the overall per-organism number for 13 

archaea vs. 3.4% for Gram-positive and 4.6% Gram-negative bacteria (Fig. 2). The most 14 

frequent annotations of predicted archaeal effectors were similar to those for predicted 15 

bacterial effectors, namely ‘unknown’, nucleotide-binding, ATP-binding and transferase 16 

(Supplementary Table S4).  17 

Evaluation of predictions for proteomes. We BLASTed proteins representative of five 18 

T3DB Ortholog clusters (e-value≤10-3; Supplementary Table S5) against the full proteomes 19 

of our 862 bacteria and 90 archaea set. We thus aimed to identify those proteomes likely 20 

equipped with the T3SS machinery (Fig. 3).  21 

 22 

 23 
Figure 3: Proteomes encoding some of the five components of T3SS machinery. (a) 90 archaea proteomes, 24 
(b) 274 Gram-positive bacteria and (c) 588 Gram-negative bacteria were scanned for the presence of T3SS and 25 
are shown as dots in the figure. The percentage of type III effectors predicted by pEffect (Y-axis) is compared to 26 
the number of type III secretion machinery components (max. five T3 Ortholog clusters; Methods) identified in 27 
these proteomes (X-axis). Note that effector predictions are computationally completely independent of 28 
machinery component identifications. While type III effectors compose up to 3.7% of an archaeal proteome 29 
(mean 1.9%, blue horizontal line), this number is much larger for bacteria, reaching up to 10.1% of an entire 30 
proteome for Gram-positive bacteria (mean 3.4%), and 14.9% for Gram-negative bacteria (mean 4.6%; for those 31 
with five T3SS components, mean 4.8%). Note that six Gram-negative bacterial species did not contain 32 
detectable homologs of any of the required machinery components (not even ATPases), indicating that their 33 
genomes are further diverged than those of other species.  34 
 35 
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We found that, as expected, archaea never contain a full T3SS (maximum three out of five 1 

components). In Gram-negative bacteria, the number of predicted effectors correlated much 2 

better with the number of type III machinery components (Pearson correlation r = 0.37) than 3 

in Gram-positive bacteria (r = 0.13). The combination of a high percentage of predicted type 4 

III effectors and a high number of conserved type III machinery components provides strong 5 

evidence for the presence of the type III secretion abilities (Fig. 3). As a rule of thumb, based 6 

on our observations in archaea and Gram-positive bacteria, we suggest that these abilities 7 

can be reliably identified by the presence of the complete T3SS and ≥5% of the genome 8 

dedicated to effectors. With these cutoffs, 20% (115 species) of the Gram-negative bacteria 9 

in our set are identified as type III secreting. We randomly picked ten species from these 10 

20% and found evidence in the literature for T3SS presence for seven of them 11 

(Supplementary Table S6). No archaeal species and only five Gram-positive bacteria fit 12 

these cutoffs. Note that our rule does not imply that organisms with full T3SS and over 5% 13 

predicted effectors necessarily have the complete ability to use the system. Instead, we 14 

suggest that organisms without the necessary components cannot use the system. Overall, 15 

our results indicate that the experimental annotation of the type III secretion in isolated and 16 

cultured organisms is incomplete, leaving significant room for improvement, possibly with 17 

assistance from pEffect.  18 

Finally, we extracted from the HAMAP database29 available annotations of pathogenicity and 19 

symbiotic relationships for 115 Gram-negative bacteria in our set with a complete T3SS and 20 

≥5% of the genome dedicated to effectors. We compared the number of predicted effectors 21 

in organisms that infect eukaryotic cells in general and mammalian cells in particular with 22 

those that are currently not known to be symbiotic or pathogenic. Note that further manual 23 

curation of currently not annotated bacteria still highlights possibility of type III secretion for a 24 

large fraction of them30-32. Our analysis showed that while the distributions of numbers of 25 

effectors across the different types of bacteria were not significantly different, mammalian 26 

pathogens carried, on average, more effectors than pathogens of other taxa. Those, in turn, 27 

carried more effectors than bacteria not currently annotated as pathogenic or symbiotic 28 

(Supplementary Fig. S4). Thus, we believe that pEffect can be used to pinpoint for future 29 

exploration of the type III secretion-mediated pathogenicity of newly sequenced organisms. 30 

Discussion 31 

pEffect successfully combines complementary approaches for the prediction of type III 32 

effector proteins: homology-based and de novo. Specifically, it uses PSI-BLAST for a high 33 

accuracy (precision) mode of prediction and SVM for improved coverage (recall). The 34 

resulting single method pEffect outperforms both of its individual components (Table 1) and 35 

other methods (Fig. 1, Supplementary Tables S1-S2). When tested on samples 36 

contaminated with eukaryotic proteins, pEffect predicts effectors with a performance level 37 

that is significantly higher than that of any other currently available method (Fig. 1, 38 

Supplementary Tables S1 and S7). Similar to the results of Arnold et al.12, we find that there 39 

is no significant difference in performance across different species of bacteria (pEffect: F1= 40 

0.54±0.31on a data set with no proteins of the same species shared between training and 41 

test sets vs. F1= 0.91±0.08 on the Development set). pEffect was trained on a sequence 42 

homology reduced data set at HVAL=0 (i.e. there is no pair of sequences in our data set with 43 

over 20% sequence identity that have over 250 amino acid residues aligned) that to our 44 
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knowledge presents the largest and most complete set of effector proteins currently 1 

available. The data set can be downloaded from pEffect’s website. 2 

pEffect uses information stored in the entire protein sequence and performs on sequence 3 

fragments just as well as on full-length protein sequences (Fig. 1, Supplementary Table S2). 4 

This result made us conclude that signals discriminating effector proteins are distributed 5 

across the entire protein sequences and are not confined to the N-terminus, as it is currently 6 

anticipated. This finding was surprising and extremely relevant for the analysis of 7 

metagenomic read data. Deep Sequencing (or NGS) produces immense amounts of DNA 8 

reads, which need to be assembled and annotated to be useful. Erroneous (chimeric) gene 9 

assemblies or wrong gene predictions are common in sequencing projects33. To bypass the 10 

assembly errors when identifying type III secretion activity in a particular metagenomic 11 

sample it would help to annotate effectors from peptides translated directly from the DNA 12 

reads. pEffect facilitates this type of direct analysis of metagenomic sequence data, 13 

establishing the level of type III secretion activity and, by proxy, the endosymbiotic 14 

interactions and the potential presence or absence of pathogenic organisms in a particular 15 

environment. 16 

We applied pEffect to over 900 prokaryotic proteomes with the aim of annotating those 17 

organisms that are likely to utilize a T3SS. We validated our results using three different 18 

metrics: (i) percentage of predicted effector proteins per proteome, (ii) evolutionary age of an 19 

organism and (iii) the number of conserved T3SS elements. As expected, pEffect predicted 20 

a higher percentage of effector proteins per proteome in Gram-negative bacteria with full 21 

T3SS (five conserved T3SS elements) than in Gram-positive bacteria and archaea that are 22 

not known to utilize the system (Fig. 2-3). This indicates a possible acquisition of a larger 23 

effector repertoire in Gram-negative bacteria, which was unnecessary for other organisms. 24 

Incorporating the independently established evolutionary age estimate, effector proteins of 25 

T3SS-using Gram-negative bacteria appear to further diversify with the increasing 26 

evolutionary distance from the last common ancestor (Fig. 4a). This correlation could not be 27 

expected at random, as the age of bacteria and their effector quantities are independently 28 

established and are not correlating for other organisms.   29 

Interestingly, homology searches have identified roughly equal numbers of effectors (on 30 

average, 1% of each respective proteome; Supplementary Table S3) across both types of 31 

bacteria. As their percentage per proteome remains stable over time (Supplementary Table 32 

S3) and as they are found in almost all organisms with PSI-BLAST, we suggest these 33 

effectors to be the older ones that had the time to spread throughout different species. On 34 

the other hand, the increasing number of new effectors, recognized by the SVM, in 35 

relationship to organism age (as long as organism is using T3SS, Fig. 4b), indicates likely 36 

new “inventions” that accumulate over time of T3SS use. These results are in line with 37 

potential ancestral presence of the early complete secretory system10,34, including the 38 

machinery and the secreted proteins, and further diversification of effectors exclusively in 39 

T3SS-utilizing Gram-negative bacteria.  40 

 41 
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 1 
 2 

Figure 4: pEffect’s whole proteome predictions in Gram-negative bacteria. (a) pEffect predicted type III 3 
effector proteins in the proteomes of 294 Gram-negative bacteria. The proteomes are shown as red and purple 4 
dots. Purple dots indicate proteomes with five type III machinery components (full T3SS) and red dots are 5 
proteomes with fewer components. For each proteome, the evolutionary distance from the last common ancestor 6 
(X-axis), extracted from Lang et al.

35
, is plotted against the percentage of proteins predicted as effectors (Y-axis). 7 

While there is a correlation between the age and the quantities of effectors in proteomes of organisms with full 8 
T3SS (purple trend-line), the same appears not to be the case for organisms with less than five components. (b) 9 
Proteomes with full T3SS identified by source. Green dots are the percentage of proteins predicted as effectors 10 
by homology searches (PSI-BLAST) and blue dots are de novo predictions. While PSI-BLAST appears to 11 
consistently pick up ~1% of each proteome of all organisms (green horizontal trend-line), the effectors in Gram-12 
negative bacteria diversify further over evolutionary distance, as indicated by the increase in the number of de 13 
novo predictions.  14 
 15 

The set of de novo-identified effectors found across bacteria is a good starting point for 16 

further investigation into effector origins. Due to T3SS significance in pathogenicity of Gram-17 

negative bacteria, the de novo identified effectors are also potentially interesting as drug 18 

targets. 19 

pEffect’s high prediction accuracy raises an interesting question about its false positive 20 

predictions of effectors in Gram-positive bacteria, which is not known to utilize T3SS. 21 

Roughly one fourth of these predicted effectors are of yet-unknown function. Those that are 22 

annotated include enzymes necessary for flagellar motility (Supplementary Table S6). This 23 

finding is in line with evidence of shared ancestry between bacterial flagellar and type III 24 

secretion systems9. Gene genealogies20 and protein network analysis approaches21 suggest 25 

independent evolution of both systems from a common ancestor, comprising a set of 26 

proteins forming a membrane-bound complex. The fact that the flagellar system can also 27 

secrete proteins36 suggests that this ancestor may have played a secretory role9. The 28 

pervasiveness of the flagellar apparatus across the bacterial space also suggests that the 29 

ancestral complex existed prior to the split of the cell-walled and double-membrane 30 

organisms, indicated by the differences in gram staining. Thus, it is not surprising that we 31 

find T3SS component homology in Gram-positive bacteria even in the absence of type III 32 

secretion functionality. Curiously, our results show that the loss of the type III secretion 33 

functionality, indicated by the loss of the complete T3SS, has proceeded at a roughly similar 34 

rate in Gram-positive and Gram-negative bacteria (Fig. 5a); i.e. once the T3SS becomes 35 

incomplete (4 components) and, arguably, non-functional, further loss of components 36 
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consistently follows. Notably, a complete T3SS is only visible in early Gram-positive bacteria, 1 

but preserved across time in Gram-negative bacteria (Fig. 5b), further confirming the likely 2 

presence of the ancestral secretory complex in the last common bacterial ancestor.  3 

 4 

 5 
Figure 5: Loss of T3SS functionality differentiates Gram-positive and -negative bacteria. 274 Gram-6 
positive bacteria (blue dots) and 588 Gram-negative bacteria (red dots) are screened for the number of 7 
conserved components of T3SS (max. 5 T3DB Ortholog clusters; Material and Methods) in their genomes (Y-8 
axis) and plotted against the evolutionary distance from the most recent common ancestor (X-axis). Once the 9 
T3SS is lost (a), i.e. less than 5 components are present, further rate of loss of components is the same for all 10 
bacteria. The number of Gram-negative bacteria with the complete system (b), i.e. all 5 components present, 11 
however, remains constant across evolutionary time, while the number of Gram-positive bacteria declines. 12 

 13 

pEffect also predicts a significant number of false positive effectors in archaea, inspiring the 14 

question: did T3SS exist before the archaea/bacteria split? Unfortunately, the presence of 15 

the beginnings of T3SS in the common ancestor of bacteria and archaea is neither directly 16 

supported nor negated by our results. Archaeal flagella have little or no structural similarities 17 

to bacterial flagella and none of the archaea that we tested had the complete T3SS (Fig. 2). 18 

If the common ancestor of archaea and bacteria did encode the core ancestral complex, the 19 

latter observation would indicate a loss of functionality in archaea. Another possibility is that 20 

the T3SS in bacteria may have been built over time from duplicated and diversified 21 

paralogous genes of the core complex after the archaea/bacteria split. In both of these 22 

scenarios, the prediction of type III effectors in archaea would indicate re-purposing of the 23 

proteins secreted by the ancestral complex. In fact, 0.5% of an average archaeal genome is 24 

identified by homology to known effectors and another 0.9% de novo-identified proteins are 25 

homologous (PSI-BLAST e-value≤10-3) to de novo-identified effectors of Gram-negative 26 

bacteria. These proteins must have been re-purposed in modern archaea; in fact, they are 27 

annotated with a range of molecular functionalities (Supplementary Table S6). The use of an 28 

additional 0.5% of the archaeal proteome that is picked up by pEffect de novo and has no 29 

homologs in bacteria remains an enigma. While similarity between archaeal proteins and 30 
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bacterial type III effectors and machinery is insufficient to draw definitive conclusions 1 

regarding common ancestry, it is significant for further exploration; i.e. if roughly one tenth of 2 

the identified effectors of Gram-negative bacteria and half of the machinery have homologs 3 

in archaea, could there have been a common ancestral secretion complex that has 4 

developed early on in evolutionary time and has given root to many systems observed today? 5 

pEffect immediately and importantly contributes to the study of type III secretion 6 

mechanisms. It allows for rapid identification of type III secretion abilities within unassembled 7 

genomic and metagenomic read data. Moreover, the quantity of identified effectors seems to 8 

correspond with bacterial pathogenicity, potentially contributing to the tracking of infectious 9 

strains. We believe that pEffect will facilitate future experimental insights in microbiological 10 

research and will significantly contribute to our understanding and management of infectious 11 

disease. 12 

Methods 13 

Development data sets. Our positive data set of known type III effector proteins was 14 

extracted from scientific publications12,37-44 and the Pseudomonas-Plant Interaction web site 15 

(http://www.pseudomonas-syringae.org/). We additionally queried Swiss-Prot with keywords 16 

‘type III effector’, ‘type three effector’ and ‘T3SS effector’ and manually curated the results 17 

for experimentally identified effectors (removing entries with “potential”, “probable” and “by 18 

similarity” annotations). All corresponding amino acid sequences were taken from UniProt26, 19 

2012_01 release. In total, our positive (effector) data set contained 1,388 proteins. 20 

To compile our negative data set of non-type III effectors we used the experimentally 21 

annotated Swiss-Prot proteins from the 2012_01 UniProt release. We extracted all bacterial 22 

proteins that were NOT annotated as type III effectors and had no significant sequence 23 

similarity (BLAST e-value>10) to any type III effector in our positive set. We also added all 24 

eukaryotic proteins applying no sequence similarity filters. Our negative set thus contained 25 

roughly 470,000 proteins.  26 

We removed from our sets all proteins that were annotated as ‘uncharacterized’, ‘putative’, 27 

or ‘fragment’. We reduced sequence redundancy independently in each set using 28 

UniqueProt45, ascertaining that no pair of proteins in one set had alignment length of less 29 

than 35 residues or a positive HSSP-value46,47 (HVAL≥0). After redundancy reduction our 30 

sequence-unique sets contained 115 type III effector proteins from 43 different bacterial 31 

species and 3,460 non-effector proteins (of which 37% were bacterial). Note that proteins 32 

from positive and negative sets were sometimes similar as homology reduction was only 33 

applied within sets and not across sets. Here, this set of sequences (positive and negative 34 

sets together) is termed the Development set. All pEffect performance results were compiled 35 

on stratified cross-validation of this Development set (five-fold cross-validation, i.e. we split 36 

the entire set into five similarly-sized subsets and trained five models, each on a different 37 

combination of four of these subsets, testing each model on every subset exactly once). 38 

Additional data sets. Comparing pEffect performance to that of other methods using our 39 

cross-validation approach has only limited value due to the possible overlap between our 40 

testing and other methods’ training sets, and can lead to an overestimate of other methods’ 41 

performance. A more meaningful way is to use non-redundant sets of effector and non-42 
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effector proteins that have never been used for the development of any method. Toward this 1 

end, we extracted the following data sets: 2 

(1) We collected all type III effectors added to UniProt after the 2014_02 release and non-3 

type III bacterial and eukaryotic proteins added to Swiss-Prot after the same release. These 4 

were redundancy reduced at HVAL<0 to produce the UniProt’15HVAL0 set (51 effectors and 5 

691 non-effectors, of which 53% were of bacterial origin). Note that additionally reducing this 6 

set to be sequence dissimilar to the Development set would retain only 10 type III effectors, 7 

too few for reliable performance estimates. However, even for this smaller and completely 8 

independent set, the performance of pEffect was higher than of other tools, making pEffect a 9 

uniquely reliable method for determining new effectors (Supplementary Table S7).  10 

(2) To answer the question “how well will pEffect perform on protein sequences added to 11 

databases within the next six months?” we collected the proteins added to UniProt (type III 12 

effectors) and Swiss-Prot (non-effector bacterial and eukaryotic sequences) after the 13 

2014_08 release, producing the set UniProt’15Full (498 effectors and 1,509 non-effectors, of 14 

which ).  15 

(3) We also extracted all bacterial type III effectors from the T3DB database11 – T3DBFull set 16 

(218 effectors and 831 non-effectors). We deliberately kept the redundancy in this set (up to 17 

HVAL = 66, i.e. over 85% pairwise sequence identity over 450 residues aligned). Note that 18 

some proteins from this set are contained in the training sets of all compared methods, 19 

including pEffect. 20 

(4) Finally, we redundancy reduced T3DB set at HVAL<0. This gave the T3DBHVAL0 set (66 21 

effectors and 128 non-effectors). 22 

T3DB Ortholog clusters of the type III secretion system (T3SS) machinery. T3DB is a 23 

database of experimentally annotated T3SS-related proteins in 36 bacterial taxa. Proteins of 24 

the same function and the same evolutionary origin are clustered in T3DB into T3 Ortholog 25 

clusters (http://biocomputer.bio.cuhk.edu.hk/T3DB/T3-ortholog-clusters.php). The proteins of 26 

these clusters form ten components of the T3SS. Proteins of five of these components 27 

(export apparatus, inner membrane ring, outer membrane ring, cytoplasmic ring, and 28 

ATPase) are present in all 36 taxa in T3DB (Supplementary Table S2). We thus defined the 29 

minimum number of five components necessary for the formation of the T3SS machinery. 30 

With the exception of the outer membrane ring, these components have also been defined 31 

as the core before9. 32 

Prediction methods. We tested several ideas for prediction, including the following: 33 

Homology-based inference. We transferred type III effector annotations by homology using 34 

PSI-BLAST18 alignments. For every query sequence we generated a PSI-BLAST profile (two 35 

iterations, inclusion threshold e-value≤10-3) using an 80% non-redundant database 36 

combining UniProt48 and PDB49. We then aligned this profile (inclusion e-value≤10-3) against 37 

all type III effectors extracted from the literature and the UniProt 2012_01 release. For 38 

known effectors, we excluded the PSI-BLAST self-hits. We transferred annotation to the 39 

query protein from the hit with highest pairwise sequence identity of all retrieved alignments. 40 

De novo prediction. We used the WEKA50 Support Vector Machine (SVM)19 implementation 41 

to discriminate between type III effector and non-effector proteins. For each protein 42 

sequence, we created a PSI-BLAST profile (as described above) and applied the Profile 43 
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Kernel function51,52 to map the profile to a vector indexed by all possible subsequences of 1 

length k from the alphabet of amino acids; we found that k = 4 amino acids provides best 2 

results. Each element in the vector represents one particular k-mer and its score gives the 3 

number of occurrences of this k-mer that is below a certain user-defined threshold σ; we 4 

found that σ = 7 provides best results. This score is calculated as the ungapped cumulative 5 

substitution score in the corresponding sequence profile. Thus, the dot product between two 6 

k-mer vectors reflects the similarity of two protein sequence profiles. Essentially, the method 7 

identifies those stretches of k adjacent residues in profiles of type III effectors that are most 8 

informative for prediction and matches these to the profile of a query protein. The 9 

parameters for the SVM and the kernel function were determined separately for each fold in 10 

our 5-fold cross-validation and, thus, were never optimized for the test sets. 11 

pEffect. Our final method, pEffect, combined sequence similarity-based and de novo 12 

predictions. Toward this end, over-fitting was avoided through the simplest possible 13 

combination: if any known type III effector is sequence similar to the query use this 14 

(similarity-based prediction), otherwise use the de novo prediction.  15 

Reliability index. The strength of a pEffect prediction is represented by a reliability index (RI) 16 

ranging from 0 (weak prediction) to 100 (strong prediction). For de novo predictions, we 17 

computed RI by multiplying the SVM output by 100 for positive (type III effector) predictions 18 

and subtracted this score from 100 for negative predictions. For sequence similarity-based 19 

inferences, the RI is the percentage of pairwise sequence identity normalized to the interval 20 

[50, 100], to agree with the SVM prediction range.  21 

Evolutionary distances. For the discovery of novel type III effectors in entirely sequence 22 

organisms, we extracted evolutionary distances from the phylogenetic tree of 2,966 bacterial 23 

and archaeal taxa, inferred from 38 concatenated genes and available in the Newick 24 

format35. 25 
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Tables 20 

Table 1. Performance of pEffect and its components on the Development set 21 

Method TP FN FP TN Acc
(5)

 Cov
(5)

 F1
(5)

 

PSI-BLAST
(1)

 97 18 10 3450 91 ± 7 84 ± 8 0.87± 0.09 

De novo
(2)

     69 46 6 3454 92 ± 8 60 ± 11 0.73 ± 0.11 

De novoNo_PSI-BLAST_hit
(3)

 12 6 6 3444 67 ± 25 67 ± 28 0.67 ± 0.23 

pEffect
(4)

 109 6 16 3444 87 ± 7 95 ± 5 0.91 ± 0.08 

(1) PSI-BLAST: sequence similarity-based inference component of pEffect on all 3,755 proteins in the full 22 
Development set. 23 
(2) De novo: SVM-based prediction component on the full Development set. 24 
(3) De novoNo_PSI-BLAST_hit: SVM-based prediction component of pEffect tested only on the set of 3,468 proteins 25 
that did not align to any effectors using PSI-BLAST. 26 
(4) pEffect: PSI-BLAST predictions, if available, and de novo otherwise on the full Development set. 27 
(5) Eqn. 1-4; Acc, accuracy; Cov, coverage; F1: performance measures; ‘±’ standard errors obtained by re-28 
sampling the predictions (Supplementary S1 Text). Highest value in each column in bold. 29 
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