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Abstract

The power spectrum of brain electric field potential recordings is dominated by an arrhyth-

mic broadband signal but a mechanistic account of its underlying neural network dynamics is

lacking. Here we show how the broadband power spectrum of field potential recordings can be

explained by a simple random network of nodes near criticality. Such a recurrent network pro-

duces activity with a combination of a fast and a slow autocorrelation time constant, with the

fast mode corresponding to local dynamics and the slow mode resulting from recurrent excita-

tory connections across the network. These modes are combined to produce a power spectrum

similar to that observed in human intracranial EEG (i.e., electrocorticography, ECoG) record-

ings. Moreover, such a network naturally converts input correlations across nodes into temporal

autocorrelation of the network activity. Consequently, increased independence between nodes

results in a reduction in low-frequency power, which offers a possible explanation for observed

changes in ECoG power spectra during task performance. Lastly, changes in network cou-

pling produce changes in network activity power spectra reminiscent of those seen in human

ECoG recordings across different arousal states. This model thus links macroscopic features

of the empirical ECoG power spectrum to a parsimonious underlying network structure and

proposes potential mechanisms for changes in ECoG power spectra observed across behavioral

and arousal states. This provides a computational framework within which to generate and test

hypotheses about the cellular and network mechanisms underlying whole brain electrical dy-

namics, their variations across behavioral states as well as abnormalities associated with brain

diseases.
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Introduction

The power spectrum of electrical field potentials recorded from the brain consists of a set of os-

cillatory peaks, indicative of underlying rhythmicity, riding on top of a broadband “1/fβ” slope

(power falls off with frequency, following P ≈ A/fβ , where β is the power-law exponent), which

constitutes the majority of signal power. Research over the past decades has significantly advanced

our understanding of the functional roles and generative mechanisms of brain oscillations at dif-

ferent frequencies (Buzsaki, 2006; Fries, 2009; Wang, 2010; Jensen et al., 2012; Womelsdorf et

al., 2014). However, the origins of the arrhythmic signal contributing the 1/fβ component of the

spectrum remain elusive (Bedard and Destexhe, 2009; Roberts et al., 2015).

Recent research has shown that this arrhythmic, broadband field potential cannot be explained

as summation of many oscillations (Miller et al., 2009b; He et al., 2010). By contrast, it appears

to be a distinct type of brain activity, potentially a macroscopic manifestation of the irregular fir-

ing of cortical neurons (Miller et al., 2009a; He, 2014). In particular, broadband power in the

gamma-frequency (>30 Hz) range tightly correlates with population firing rate (Manning et al.,

2009; Whittingstall and Logothetis, 2009; Ray and Maunsell, 2011; Buzsáki and Wang, 2012) and

exhibits functional specificity across a variety of tasks (Crone et al., 1998; Miller et al., 2009b; Os-

sandón et al., 2011; Bouchard et al., 2013). In the very low frequency range (<1 Hz), the slope of

the power spectrum (i.e., the power-law exponent β) — an index of the amount of long-time auto-

correlation in the signal — is reduced during a visual detection task (He et al., 2010). Despite these

results demonstrating the functional significance of arrhythmic, broadband activity, a mechanistic

account explaining the full frequency range of its signature power spectrum remains lacking.

Multiple studies using local field potential (LFP) and ECoG recordings have found the power
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law exponent β is typically between 2 and 3 (Milstein et al., 2009; Miller et al., 2009a; Manning

et al., 2009; Freeman and Zhai, 2009; He et al., 2010). A study using DC-recording revealed the

shape of human ECoG power spectra across a wide range of frequencies, from 0.01 Hz to >100

Hz (He et al., 2010). The power spectra exhibit a distinctive shape: at very low frequencies (<0.1

Hz) and above 1 Hz, power scales approximately proportional to the inverse-square of frequency

(P ∼ 1/f 2), while power spectra in the intermediate frequency range (0.1-1 Hz) are much flatter.

This tripartite shape was conserved across subjects, albeit with differences in the locations of the

transitions between the decaying and flat regions of the spectrum.

Here, we use a network model to investigate the potential neural-circuit-level origins of the

broadband signal in field potential recordings. We find that the power spectrum is well fit as the

combination of two linear modes, which sum to produce the characteristic tripartite shape of the

empirically-observed human ECoG spectrum. We then show that such a power spectrum generi-

cally emerges from the activity of a recurrent network model with nodes randomly connected to

each other, provided that the net excitation (i.e. excess of excitation over inhibition) between nodes

roughly balances the intrinsic decay of activity. In this sense, the network is close to dynamical

criticality (Beggs and Timme, 2012; Deco and Jirsa, 2012; Priesemann et al., 2014; Roberts et al.,

2015; Bellay et al., 2015). We characterize the dependence of the power spectrum on network pa-

rameters and on input structure, and show that such random recurrent networks naturally convert

spatial correlation in the input into temporal correlations in network activity. We then extend the

architecture and investigate networks with a distance-dependent connectivity profile and networks

where the nodes are themselves clusters of sub-nodes. Our analyses link empirically observed hu-

man ECoG power spectra to plausible underlying neural network dynamics and suggest potential

circuit-level explanations for changes in the low-frequency power spectrum across behavioral and
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arousal states.

Results

Two modes in the low-frequency power spectrum

The power-law exponents seen in ECoG and LFP power spectra (Fig. 1A) are characteristic of

linear systems, which have an autocorrelation function composed of a weighted sum of exponen-

tials. The power spectrum of an exponential function, e−λt, is proportional to 1
f2+f20

, where f is the

frequency and f0 = λ/2π. As shown in Fig. 1B, when plotted on a log-log scale these functions

(often called Lorentzians) are approximately flat at low frequencies and scale with slope−2 at high

frequencies; the transition between the two regimes happens at the frequency f0, which we refer to

as the “knee” frequency.

Motivated by this observation, we fit the power spectrum from the 5 subjects of He et al. (2010)

as the weighted sum of a fast and a slow linear mode (Fig. 1C). The corresponding functional form

is

P (f) = A

(
B

f 2 + f 2
slow

+
1

f 2 + f 2
fast

)
≈ A

(
B

f 2
+

1

f 2 + f 2
fast

)
.

In the second equation we have assumed that fslow is small enough to be outside the observational

range and thus can be neglected. Thus, the fit with two Lorentzians has a single knee frequency,

located at ffast.

In Fig. 1D we show this fit for the average power spectrum of each of the 5 subjects in the

study of He et al. (2010). The functional form accounts for the shape of the power spectrum across

several orders of magnitude (with deviations at high frequencies; see Fig. 8). The location of the
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Figure 1. The low-frequency power spectra of human ECoG are well-fit by the sum of two
Lorentzian functions. A, Average power spectrum from one patient in the study of He et al. (2010).
The power spectrum resembles a power law with frequency dependence 1/f 2 at low and high fre-
quencies, with a roughly flat intermediate region. B, The power spectrum of an exponential is a
Lorentzian function, which shows near-flat behavior at low-frequencies and 1/f 2 scaling at high
frequencies, with a transition point set by the time-constant of the exponential. C, The sum of two
Lorentzian functions yields a shape resembling the power spectrum of Fig. 1A, with the “knee”
frequency set by ffast. D, Each plot is the power spectrum from one patient in He et al. (2010).
The light grey traces correspond to recordings from each electrode while the dark grey circles are
the averages across all electrodes. Red traces are fits of a sum of two Lorentzian functions (cor-
responding to the functional form shown in Fig. 1C). The functional form is fit to the frequencies
below 5 Hz and the data is shown up to 25 Hz. The slope of the power spectrum is steeper for
frequencies beyond 25 Hz; see Discussion and Fig. 8 for fits to the remainder of the spectrum.

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2016. ; https://doi.org/10.1101/036228doi: bioRxiv preprint 

https://doi.org/10.1101/036228


transition from the initial 1/f 2 behavior to the flat region is set by the relative contributions of

the two Lorentzians and hence is determined by the parameter B. As previously mentioned, the

intermediate transition to 1/f 2 has location set by ffast. For the five patients shown in Fig. 1C, the

knee frequency (ffast) is at 0.49 Hz, 0.55 Hz, 0.81 Hz, 1.10 Hz and 3.47 Hz respectively.

In Fig. 2, we show the knee frequency (ffast) for individual fits to each electrode in each patient.

As can be seen, there is considerable variation in the characteristic frequency across electrodes, with

the fastest frequency being 2-5 times the slowest one. However, neighboring electrodes show sim-

ilar values for the knee frequency, with correlations of 0.35, 0.31, 0.28, 0.32, and 0.33 respectively

(p<0.002 for all patients; see Methods for further details). This suggests that the variation is not

random and contains spatial structure (see Discussion).

A random network model for the power spectrum

We next construct a recurrent network model which reproduces the observed power spectrum. The

model network has N nodes, which could be neurons or networks of neurons. The jth node has

activity rj , which evolves in time according to the equation

d

dt
rj(t) = −rj(t)

τ
+

N∑
k=1

Wjkrk(t) + Ij(t). (1)

Each node receives input from the other nodes in the network (rk) with weightWjk and also receives

some external input Ij , corresponding to input that does not come from within the network. In the

absence of any input, the firing rate of the jth node decays exponentially to 0 with a rate given by

τ . Grouping the firing rates into a vector and the weights into a matrix, we can rewrite this equation
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Patient 1

0.3 Hz /

530 ms

1 .2 Hz /

1 33 ms

Patient 2

0.35 Hz /

455 ms

0.85 Hz /

1 87 ms

Patient 3 2.5 Hz /

64 ms

0.5 Hz /

31 8 ms

Patient 4

0.75 Hz /

21 2 ms

2.3 Hz /

69 ms

Patient 5

1 .85 Hz /

86 ms

11 .0 Hz /

1 4 ms

Figure 2. The knee frequency (ffast) for individual electrodes across patients. Left panel: Loca-
tions of electrodes for each of the five patients. Right panel: knee frequency for individual elec-
trodes, with location in the heat map corresponding to the electrode locations shown on the left.
Electrodes excluded in the study of He et al. (2010) are shown in grey and, for Patient 5, electrodes
poorly fit as a sum of Lorentzians are shown in blue. Timescales shown are the time-constants of a
linear system with corresponding knee frequency (i.e. τ = 1/2πfknee).

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2016. ; https://doi.org/10.1101/036228doi: bioRxiv preprint 

https://doi.org/10.1101/036228


as

d

dt
r(t) = −r(t)

τ
+Wr(t) + I(t) = Ar(t) + I(t). (2)

Here the matrix A is identical to W except along the diagonal, where we subtract 1/τ to account

for the intrinsic decay of activity.

We assume that the observed field potential recording results from summing together the activ-

ity of a subset of network nodes. Thus, if x(t) is this summed activity, we have

x(t) =
αN∑
j=1

rj(t) (3)

Here 0 < α < 1 is the fraction of the network we are summing over, and we have written the sum

over the first αN nodes for convenience. We will refer to x(t) as “network activity”. While we

consider an equally-weighted sum of nodes contributing to x, our analysis can easily be extended

to a differentially-weighted sum or spatial kernel applied to the nodes.

We choose the connections (the entries of matrix W ) to be sparse and random: each entry is

non-zero with probability p, and non-zero entries are drawn from a normal distribution: wij ∼

1
N
N (µconn, σ

2
conn). In Fig. 3B, we show the power spectrum of network activity. This reproduces

the data for appropriately chosen values of τ , µconn and α. Note that µconn must be set to almost

balance the intrinsic decay of network activity (which decays with time-constant τ at each node).

The activity of the multidimensional linear system in Eq. 2 can be thought of geometrically:

the vector r lives in an N -dimensional space with each dimension corresponding to the activity at

one node (i.e., rj is the activity along the jth node). The system can be solved by changing the

coordinate system and rewriting the activity vector, r, in a new coordinate system whose directions
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Figure 3. The power spectrum of a random network reproduces observed ECoG power spectra.
A, Schematic of a sparse randomly-connected network. B, Power spectrum of network activity in
a random network where mean connection strengths approximately balance the intrinsic decay of
activity. The power spectrum from patient 3 is shown for comparison. C, The eigenvalue spectrum
of the network coupling matrix shows a cluster of fast modes (in blue) and a single slow mode
(in red). D, The power spectrum of the simulated network is the sum (purple) of Lorentzians
contributed by the fast modes (blue) and the slow mode (red). E, Effect of spatial averaging on
power spectrum. Black: power spectrum from the network in panel B with the same degree of
averaging. Blue: network activity derived by summing over a smaller fraction of the network
(here, a single node). Red: network activity derived by summing over a larger fraction of the
network (here, all nodes in the network). The slow mode is shared between nodes, while the fast
modes are uncorrelated; thus averaging over nodes boosts the contribution of the slow mode. In
particular, summing over the entire network yields a power spectrum that shows pure power-law
behavior.
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are given by the eigenvectors of the matrix A. These eigenvectors form the natural coordinate sys-

tem in which to see the activity of A: they provide a decomposition of the network activity into a

set of characteristic modes, each of which evolves independently in time with its own characteris-

tic timescale. This decouples an N -dimensional problem into a collection of N one-dimensional

problems.

The eigenvectors are defined as vectors vm that satisfy the equationAvm = λmvm, where λm is

a constant, called the eigenvalue corresponding to the eigenvector vm. The characteristic timescale

of network activity corresponding to the eigenvector vm is −1/Re(λm). Thus, the eigenvalues tell

us what timescales the network will show, and the eigenvectors tell us how this activity is distributed

across nodes.

To understand how the network model is able to reproduce the data, we consider the distribu-

tion of eigenvalues of the network coupling matrix, A . These eigenvalues describe the character-

istic temporal modes of the network (see Methods for more details). For the randomly-connected

network we consider, the eigenvalues take a particularly simple form, known from the theory of

random matrices (Rajan and Abbott, 2006; Ganguli et al., 2008; Tao, 2011) and depicted in Fig.

3C. The network has one slow mode, here corresponding to an eigenvalue near 0 (the red point in

Fig. 3C), and N − 1 fast modes, which are centered around −1/τ (the cloud of blue points in Fig.

3C). If the external input to each node is independent, then the power spectrum of network activity

can be approximately broken up into contributions from each of these two sets of modes (Fig. 3D

and see Methods for derivation), and is given by

P (f) ≈ A

(
α/(1− α)

f 2 + (λslow/2π)2
+

1

f 2 + (λfast/2π)2

)
. (4)
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Thus, if λslow is small (i.e. the corresponding mode is very slow), the power spectrum is of the

same form as the fit in Fig. 1, with the relative contribution of the slow and fast modes determined

by α (the fraction of the network averaged over), and the location of the knee frequency given by

λfast/2π.

The eigenvalue λslow emerges from inter-node recurrent interactions: in response to an input,

nodes of the network excite each other, thus reverberating the signal around the network and slow-

ing its decay. λslow is approximately located at µ− 1/τ , where µ = µconnp, and when the recurrent

excitation (µ) balances the intrinsic decay of activity (1/τ ) this is very close to 0 (see Methods).

In this case signals reverberate in the network for a long time, giving rise to a slowly-decaying

autocorrelation function.

On the other hand, λfast is set by the intrinsic properties of each network node and is approxi-

mately located at −1/τ . There are N − 1 such fast modes, each with time-constant approximately

equal to τ . Note that if each node is a cluster of neurons, the time-constant τ itself emerges from

underlying recurrent interactions; we return to this issue later.

Since the slow mode emerges from inter-node interactions, it corresponds to a spatially-distributed

pattern of network activity. This is given by the eigenvector, vslow, corresponding to the eigenvalue

λslow. vslow can be thought of as a slowly-varying background state of the network that all the nodes

are coupled to; in particular, for low variability in connection strengths, vslow has approximately

equal weight at each node. By contrast, the fast modes are uncorrelated with each other and thus

different nodes participate in a particular fast mode to greatly varying degrees. As a consequence

of this spatial distribution of the fast and slow modes, the network model accounts for the common

observation that low frequency activity (i.e. slow timescales) shows a wider spatial correlation than

activity at high frequencies (Leopold et al., 2003; von Stein and Sarnthein, 2000; Buzsaki, 2006).

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2016. ; https://doi.org/10.1101/036228doi: bioRxiv preprint 

https://doi.org/10.1101/036228


Frequency (Hz)

Po
we

r

1 0-2

1 05

1 01 0-2

A B

Real(λ)

Im
(λ
)

-8 0
-2

2

C

Figure 4. Power spectrum of a random network with both excitatory and inhibitory connections.
A, Schematic of network, as in Fig. 3A but with the incorporation of interneurons shown in red.
B, Eigenvalue spectrum of the network. C, Power spectrum of network activity (black) along with
data from patient 3 (grey filled circles).

Moreover, because of the broader spatial distribution of the slow mode, averaging activity across

multiple nodes in a network will emphasize the slow mode and increase its contribution to the

observed power spectrum. This can be seen in the equation for the power spectrum of network

activity above, where the relative contributions of the slow and fast modes are given by α, the

fraction of the network averaged over to generate the network activity. In Fig. 3E, we show the

effect of averaging over different fractions of the network. In particular, averaging over a large

fraction of nodes yields a power spectrum dominated by the 1/f 2 term.

Note, however, that if there exist multiple recurrent networks, each described by an equation

such as Eq. 1 but only weakly coupled to each other, then averaging across nodes belonging

to these different networks will not change the shape of the power spectrum, because the weak

coupling between these networks would not generate another slow mode.

While the network model has purely excitatory connections between the nodes (recall that these
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nodes may, in turn, be clusters of neurons), a similar picture holds for a network where some frac-

tion of the nodes have inhibitory projections onto their targets and others have excitatory projections

(Fig. 4A). As previously argued (Rajan and Abbott, 2006; Ganguli et al., 2008), and as depicted

in Fig. 4B, a randomly-connected network where a subset of nodes make inhibitory connections

onto their targets has an eigenvalue spectrum that is similar to that of Fig. 3. Here the location

of the slow network mode depends on the difference between excitation and inhibition. The slow

eigenvalue is located at µEpE − µIpI − 1/τ , where µE and µI are the magnitudes of the coupling

strengths for excitation and inhibition respectively, pE and pI are the respective connection prob-

abilities, and, as before, τ is the intrinsic decay time-constant (see Methods). If this difference

between excitation and inhibition closely balances the intrinsic decay then the network will show

long timescales. In Fig. 4C we show how the power spectrum of a network with 80% excitatory

and 20% inhibitory connections can reproduce the observed power spectra.

The low frequency component of the ECoG power spectrum has been shown to differ between

arousal states (i.e. waking vs sleep) and to change upon task initiation (He et al., 2010). We next

investigate manipulations of the model that may underlie such state-dependent changes in the shape

of the low-frequency power spectrum.

Correlations in the input preferentially drive slow timescales

The eigenvector corresponding to a particular timescale determines not only the spatial distribution

of that mode, but also how much that mode is activated in response to a given profile of input.

Given a particular spatial pattern of input, the correlation of this spatial pattern with an eigenvector

determines how strongly the corresponding temporal mode is driven (this is approximately true,
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but see Eq. M6 in Methods for a more precise statement). This corresponds to the intuition that

input whose spatial distribution resembles a particular eigenvector should preferentially activate the

temporal mode corresponding to that eigenvector.

The slow and fast modes have different spatial distributions, and thus are differentially driven

by various inputs (see Eq. M14 for the power spectrum). Since the slow mode is shared across the

network, it is driven by the component of the input that is common between nodes. By contrast,

input that is uncorrelated between nodes drives the slow network mode incoherently, with some

nodes contributing positively and others negatively, so that the net effect is small. As a consequence,

a random recurrent network architecture generically transforms correlations in input across nodes

into long temporal correlations in network activity. In Fig. 5 we show how the power spectrum of

node activity depends on the degree of spatial correlation in the input (recall that the power spectra

in Fig. 3 are for uncorrelated input). In particular, we note that a spatial decorrelation of input to

a network would lead to a reduction in low-frequency power, as observed in ECoG power upon

task-initiation (He et al., 2010).

Distance-dependent connection probability changes the slope of low-frequency

power spectrum

We have assumed that the nodes in the network are connected to each other with equal probability

and mean weight. However, networks of neurons that are widely-distributed in space typically have

a distance-dependence in connection probability and number: several studies have concluded that

neural connectivity is primarily local and, despite notable exceptions, tends to decay with distance

both within a cortical area and between cortical areas (Destexhe et al., 1999; Ercsey-Ravasz et
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Figure 5. The network converts shared input into network activity with long temporal correlations.
(A) Schematic of a random network with nodes that receive both shared input (red) and uncorrelated
input (blue). (B) Power spectra for network activity in response to different fractions of correlated
input. Left panel shows normalized power spectra, while the right panel highlights that correlated
input leads to an increase in low-frequency power in the network. The average power spectrum
from Patient 3 is shown as dark gray circles, for comparison. To highlight the role of correlated
input in driving the slow mode, we average over a smaller fraction of network nodes. Thus, the
blue trace (without input correlations) reflects the fast modes to a greater extent than the data,
but this can be compensated for by more correlation in the input. σshared is the variance of the
common input; the variance of the remaining input (uncorrelated across nodes) is chosen so that
total variance is constant (see Methods). Note that the power spectrum is still well-fit by the sum
of two Lorentzians, with the amplitudes depending on the degree of correlation (Eq. M14).

al., 2013; Markov et al., 2014). We now consider model networks with nodes that have some

underlying spatial location and whose connection strength decays exponentially with distance.

In Fig. 6A, we show the eigenvalue distributions of three such networks with progressively

sharper connectivity profiles. In contrast to the completely random network of Fig. 3, these net-

works contain a number of intermediate eigenvalues between the slow shared mode and the cluster

of modes around the single-node timescale. As the decay of connections with distance becomes

sharper, the number of intermediate eigenvalues increases; this can be understood by noting that the

positions of the eigenvalues are approximately given by the Fourier transform of the connectivity

profile (see Methods), and hence networks with sharply-localized connectivity will have eigenval-

ues that are more spread out.

In Fig. 6B we show the effect of distance-dependent connectivity on the network power spec-
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Figure 6. Network endowed with distance-dependent connectivity yields shallower power spectra.
A, Connectivity profile of three networks with increasingly sharp decay of connection strength with
distance (top), and the corresponding eigenvalue spectra (bottom). B, Power spectra for the three
networks shown in A (in successively lighter shades of green) along with the power spectrum from
Fig. 3, for comparison (shown in black).
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trum. Heuristically, the intermediate eigenvalues contribute Lorentzian functions with knee fre-

quencies located in the low-frequency part of the power spectrum. These combine to produce a

shallower low-frequency slope. As the distance-dependent decay of connectivity becomes steeper

there are more such intervening modes, and the slope of the low-frequency network power spec-

trum continues to become shallower, leading to a scaling of power with frequency that is closer to

1/f (as seen in the light green trace of Fig. 6B). Thus networks with predominantly local connec-

tivity could underlie experimental observations of 1/f power spectra in recordings (Bedard et al.,

2006; Bedard and Destexhe, 2009; Dehghani et al., 2010), and different distance-dependent pro-

files of connectivity could explain differences in the slope of low-frequency power spectra between

subjects, regions of the cortex or arousal states.

Clustered network architectures

Thus far we have treated the nodes in our network as single entities with no internal structure.

While it is possible that the nodes correspond to single neurons, the node timescales we observe

are on the order of hundreds of milliseconds. This is longer than membrane time constants and most

synaptic time constants; however it is within the range of other long cellular time constants (Carter

and Wang, 2007; Zhang and Seguela, 2010; Letzkus et al., 2011), and we consider these further in

the Discussion. An alternative hypothesis is that the nodes correspond to cell assemblies or clusters

of neurons, with the individual neurons in these clusters showing faster timescales (on the order of

milliseconds) and the timescales of each cluster emerging from inter-neuron recurrent interactions.

The resulting architecture would thus be hierarchical: individual neurons form clusters via recurrent

interactions and the clusters further interact to produce the very long network timescales.

18

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2016. ; https://doi.org/10.1101/036228doi: bioRxiv preprint 

https://doi.org/10.1101/036228


Real(λ)

Im
(λ
)

0.4

0
-0.4

-1 20

B

0-8
-0.1

0.1

Real(λ)-1 02 -98

0.4

-0.4

Im
(λ
)

Real(λ)

Frequency (Hz)

Po
we

r

1 0-2

1 05

1 01 0-2

A

C

D

Fre
qu

en
cy

(H
z)

τ (ms)

Recurrent strength (Hz)

Fre
qu

en
cy

(H
z)

Figure 7. Power spectrum of a network with nodes which are themselves clusters of sub-nodes. A,
Schematic of the network, with four clusters shown. B, Eigenvalue spectrum of the network. Top
panel shows the full eigenvalue spectrum while the two bottom panels highlight the eigenvalues
in the two gray regions. Note the hierarchical organization of the eigenvalue spectrum: the black
eigenvalues reflect the timescales of individual nodes; the blue eigenvalues reflect within-cluster
recurrent connections; and the red eigenvalue emerges from connections between clusters. C,
Power spectrum of network activity (black) along with data from patient 3 (grey filled circles). D,
Dependence of the knee frequency on intrinsic time-constant of sub-node (top panel) and on the
recurrent connection strength for within-cluster connections (bottom panel). The recurrent input
within a cluster is the product of connection probability, recurrent connection strength and the
number of sub-nodes (i.e. size of a cluster). Increasing the intrinsic time-constant or the recurrent
strength makes the network dynamics slower and thus the knee in the power spectrum shifts to
lower frequencies.
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The eigenvalue spectrum of a network with such a clustered structure is shown in Fig. 7B. For

a network with N clusters, the eigenvalue spectrum shows a single slow mode near 0 (red circle)

andN−1 faster modes distributed around the time-constant of a single cluster (blue circles). Thus,

the long timescale behavior is the same as before. However, the eigenvalue spectrum also shows a

number of much faster modes clustered around the intrinsic time-constant of a single neuron (black

circles). In the lower panel of Fig. 7B we highlight these two regions of the eigenvalue spectrum,

revealing the signature of the underlying hierarchical architecture.

In Fig. 7C we show the power spectrum of the average activity of a cluster in this network, after

averaging across the individual neurons. This power spectrum is dominated by the emergent slow

timescale and by the timescale of the clusters. The contribution of the very fast neural timescales is

small: they originate locally and are only weakly correlated with each other and thus their contri-

bution is strongly attenuated by averaging over the spatial scale of the cluster. Moreover, these fast

timescales are on the order of milliseconds, and thus any contribution they do make is only visible

at high frequencies.

As shown in Fig. 2, the knee frequencies we fit vary across electrodes and between subjects. In

the model, the knee frequency corresponds to the timescale of a node or local cluster, and a vari-

ation in knee frequency suggests that the network nodes underlying each electrode show different

timescales. These differences could emerge from spatial variation in the cellular and synaptic time

constants of individual neurons, in the strength of recurrent interactions between the neurons and

in the characteristic size of a cluster. In Fig. 7D, we show how the location of the knee frequency

(i.e. the timescale of a cluster) depends on these parameters.
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Discussion

Human ECoG power spectra show evidence of simple linear dynamics dominated by a slow and a

fast mode. We demonstrate how these can emerge from an underlying network with few assump-

tions on the connectivity: connections are random and net excitatory so as to balance the intrinsic

decay of node activity. In this architecture, the fast mode reflects intrinsic properties of network

nodes, and the slow mode emerges from distributed network interactions.

Fitting such recurrent networks to ECoG data reveals an eigenvalue near 0, corresponding to

long correlation times. In the model, this slow timescale emerges when recurrent excitatory interac-

tions closely balance the intrinsic decay of activity at each node (or decay plus inhibition). We find

these long time-constants empirically and do not propose how recurrent excitation (or the balance

between excitation and inhibition) can be driven to this point. However, several mechanisms have

been proposed (Levina et al., 2007; Magnasco et al., 2009; Chialvo, 2010; Millman et al., 2010;

Rubinov et al., 2011). Long correlation times are seen in systems near phase transitions (Stanley,

1999; Sethna, 2006), leading to speculation that the brain is perched at a critical point (Beggs and

Plenz, 2003; Plenz and Thiagarajan, 2007; Beggs and Timme, 2012; Deco and Jirsa, 2012; Priese-

mann et al., 2014; Roberts et al., 2015; Bellay et al., 2015), and to suggestions that proximity to

criticality provides desirable functional properties (Langton, 1990; Mitchell et al., 1993; Mora and

Bialek, 2011). Our model is primarily of the system in its resting-state and we do not address these

functional properties. Interestingly, both long temporal correlations and the amount of total fluc-

tuations are suppressed upon task initiation (He et al., 2010; He, 2011, 2013; Ciuciu et al., 2012),

suggesting that task performance may shift the system away from criticality (Deco and Jirsa, 2012;

Fagerholm et al., 2015).
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Multiple model features can be understood from the link between long timescales and recurrent

excitatory interactions. The long timescales that emerge from inter-node interactions are spatially-

distributed and hence correlated across nodes, while faster timescales are more local. This may

explain why correlations in low-frequency activity are more widely-distributed than correlations

in high-frequency activity (von Stein and Sarnthein, 2000; Buzsaki, 2006). In general, network-

level activity is correlated across nodes and will become more visible after spatial averaging, such

as during field potential recordings, while activity that emerges more locally will be suppressed.

Thus, the model predicts that recordings that average activity over large numbers of neurons will

be dominated by slower timescales (see Fig. 3E).

The clustered architecture of Fig. 7 demonstrates how the link between slow timescales and

distributed interactions might operate hierarchically: neurons with fast intrinsic timescales could

be arranged in clusters to produce intermediate timescales; at a higher level of organization clusters

interact to produce the very long network timescales. This is compatible with recent work showing

that clustered and hierarchical networks can produce dynamics with long timescales and high vari-

ability (Litwin-Kumar and Doiron, 2012; Rubinov et al., 2011). Further investigation should help

identify the spatial extent of these proposed clusters.

Our model suggests potential mechanisms for the decrease in auto-correlation (as captured by

the low-frequency power-law exponent β) in ECoG and fMRI recordings upon task initiation (He

et al., 2010; He, 2011; Ciuciu et al., 2012). As shown in Fig. 5, a reduction of shared inputs

among nodes leads to a decrease of low-frequency power of the network fluctuations, supporting

a suggestion (He, 2011) that task-induced changes may result from neurons in the local network

becoming more independent (Poulet and Petersen, 2008). This decorrelation could result from

nodes receiving more heterogeneous input or from an active top-down process, such as attentional
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decorrelation (Cohen and Maunsell, 2009; Mitchell et al., 2009).

Moreover, adding a decay of connection strength with distance caused the low-frequency power

spectrum slope to become shallower. Thus, differences in connectivity structure within the same

model can account for observed divergences in low-frequency power spectra. Given observations

of reduced long-range effective connectivity in the human brain during slow-wave sleep (Massi-

mini et al., 2005), this might provide a mechanistic explanation for shallower power spectra in

the <0.1 Hz range during slow-wave sleep compared to the awake state (He et al., 2010). Fur-

thermore, while a power spectrum that scales as 1/f is often taken to signify self-organization,

we find that sharply decaying connectivity produces a spread of exponential modes; as previously

shown, summing such dispersed modes can produce a spectrum that scales as 1/f without invok-

ing additional physical processes (Bell, 1960; Milotti, 1995; Wagenmakers et al., 2004; Erland and

Greenwood, 2007). More generally, our model suggests that the low-frequency power spectrum

is sensitive to features of network organization (such as degree of averaging, connectivity decay

length, excitation-inhibition balance, and correlations in the input) and could be a probe of network

reconfiguration.

The average empirical power spectra (Fig. 1C) show knee frequencies at 0.49 Hz, 0.55 Hz, 0.81

Hz, 1.10 Hz and 3.47 Hz respectively, corresponding to timescales of 325 ms, 290 ms, 195 ms, 144

ms and 46 ms (timescale is 1/2πffast). This knee frequency varies dramatically between subjects

and electrodes. In the model, the frequency is determined by the timescales of individual nodes. If

the nodes correspond to neurons then these might be the timescales of a slow synaptic or cellular

process such as the NMDA pathway (Wang, 1999), metabotropic glutamate receptors (Zhang and

Seguela, 2010), cholinergic modulation (Letzkus et al., 2011) or endocannabinoid signaling (Carter

and Wang, 2007), which may vary across electrodes and subjects. For instance, time constants for
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synaptic transmission and single neuron dynamics may differ between sensory and association

areas (Wang et al., 2008; Pereira and Wang, 2014). Alternately, the nodes might correspond to

neural assemblies or clusters and the knee frequency would correspond to the timescales of these

clusters, determined by local timescales and recurrent interaction within a cluster.

The location of the knee frequency shows spatial dependence and, at least in patients #1 and

#3, frontal areas tend to exhibit lower frequencies (slower timescales). This may reflect a hierarchy

of cortical timescales, with sensory areas processing information rapidly, whereas cognitive areas

integrate information over time (Honey et al., 2012). The timescales we find are similar to those

observed across cortical areas in the macaque (Murray et al., 2014), perhaps suggesting a common

origin. Moreover, models suggest that a gradient of recurrent connection strengths across cortical

areas could produce such a hierarchy of timescales (Chaudhuri et al., 2014, 2015). We also note that

while four patients show knee frequencies near 1 Hz, patient #5 shows a faster frequency near 3.5

Hz. While our sample size is small, patient #5 is older and the difference may reflect an age-related

shift in electrophysiological activity towards higher frequencies (McIntosh et al., 2010).

Above ∼ 80 Hz, ECoG power spectra have a slope steeper than 2 (Miller et al., 2009a; He et

al., 2010). As observed in Miller et al. (2009a), this transition points to an even faster timescale

in the data and suggests fitting the high-frequency data with a product of two Lorentzians. This

produces a power spectrum that transitions from 1/f 2 scaling to 1/f 4 (Fig. 8). The very short

timescale could emerge from fast timescales in neural input possibly imposed by synaptic time

constants (Miller et al., 2009a), from a fast timescale in the output (perhaps reflecting a neuronal

membrane time constant, especially in the high-conductance state (Koch et al., 1996; Destexhe et

al., 2003)), or from dendritic filtering (Linden et al., 2010; Einevoll et al., 2013). Extracellular

tissue filtering might also play a role (Bedard et al., 2006; Dehghani et al., 2010), although this
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Figure 8. Adding a fast filtering timescale accounts for the high-frequency structure of observed
power spectra. The light grey traces are recordings from each electrode while the dark grey circles
are the averages across all electrodes. Red traces are the original fits with a sum of two Lorentzian
functions, while blue traces are fits using a fourth free parameter, corresponding to a timescale on
the order of milliseconds. The data is fit to the frequencies below 50 Hz.

effect remains controversial (Logothetis et al., 2007). Modeling these effects by assuming that

the input to or activity from our model is convolved with a timescale on the order of milliseconds

allows the model to extend into the very high frequency ranges.

While the ECoG power spectra are well-fit by linear systems, the underlying networks are likely

to have non-linear components, and it will be interesting to identify neural systems with emergent

macroscopic linear structure. Switches between discrete network states could produce a low fre-

quency 1/f 2 scaling, but such switches would need to be very infrequent (switching timescale

close to the recording length), and the network power spectrum on shorter timescales (i.e. within a

discrete state) would not show the low frequency power law scaling, in contradiction to the obser-

vations of He et al. (2010). Nevertheless rapid but infrequent shifts between states may contribute

to the power spectrum, and future work should probe the differential contribution of slow drifts and
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abrupt switches.

In summary, our model provides a parsimonious, biologically realistic framework for inter-

preting broadband, arrhythmic field potentials recorded by ECoG and LFP. This framework links

macroscopic arrhythmic field potentials with underlying neural network dynamics, and shows that

features of the broadband power spectrum may be diagnostic of the underlying network architec-

ture. As such, this framework may contribute to a unified understanding of previous studies and to

generating and testing new hypothesis.

Materials and Methods

Empirical Human ECoG Data All empirical data have been previously reported in He et al. (2010).

Details of patient demographic and recording parameters can be found therein. Briefly, the study

included eight patients undergoing surgical treatment for intractable epilepsy. To localize epilepto-

genic zones, patients underwent a craniotomy for subdural placement of electrode grids and strips

followed by 1-2 weeks of continuous video and ECoG monitoring. The placement of electrodes

and the duration of monitoring were determined solely by clinical considerations. All patients gave

informed consent according to the procedures established by Washington University Institutional

Review Board. Exclusion criteria were: (1) widespread interictal spike-and-wave discharges; (2)

age < 8 years old; (3) severely impaired cognitive capability; (4) diffuse brain tissue abnormality,

e.g., tuberous sclerosis, cerebral palsy; (5) limited electrode coverage.

The electrode arrays (typically 8x8, 4x5 or 2x5) and strips (typically 1x6 or 1x8) consisted

of platinum electrodes of 4-mm diameter (2.3 mm exposed) with a center-to-center distance of

10 mm between adjacent electrodes (AD-TECH Medical Instrument Corporation, Racine WI).
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ECoG signals were split and sent to both the clinical EEG system and a research EEG system

(SynAmp2 RT, Neuroscan, DC-coupled recording). All data in the present study were from the

research amplifier. Sampling rate varied from 500 to 2000 Hz across subjects, with the majority of

subjects (6 out of 8) having a sampling rate of 1000 Hz.

Noisy electrodes and electrodes overlying pathologic tissue (including both the primary epilep-

togenic zone and areas showing active interictal discharges) were eliminated from all analyses.

The remaining electrodes were re-referenced to the common average before any further analyses.

Number of usable electrodes in each patient ranged from 28 to 64.

In Patients #1-#5, artifact-free, interictal-spike-free ECoG data were collected from both wake-

fulness and slow-wave sleep (SWS, sleep stages 3/4). Arousal state determination was based on

the conjunction of ECoG and video recordings.

The power spectrum of a linear system. The autocorrelation function of a linear system is a

weighted sum of exponentials (Gardiner, 2004). Consider a single exponential function Ae−λt,

where A is the amplitude, λ is the decay constant (the time-constant is thus 1/λ) and t is time (or,

more generally, the independent variable). The Fourier transform of this is C1

2πif+λ
, where f is the

frequency, i2 = −1, and C1 is a normalization constant. The corresponding power spectrum is

the squared magnitude: P (f) =
C2

1

4π2f2+λ2
(we treat λ as real here). By defining f0 = λ/2π and

C2 = C1/2π, we can rewrite this function as C2
2

f2+f20
. This function is a rescaled Cauchy distribution

and is often called a Lorentzian.

At low frequencies (i.e. when f is small), the denominator is approximately f 2
0 and the Lorentzian

function is close to constant. On the other hand, at high frequencies (i.e. when f is much bigger

than f0) this function is proportional to 1/f 2. In the region where f ≈ f0, the function shows a

transition between these two behaviors. This transition is particularly distinctive on a log-log plot,
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where the function shows a “knee” at f0 (see Fig. 1B), and we will refer to f0 as the characteristic

or knee frequency of the Lorentzian.

Linear fit to the data. As depicted in Fig. 1A, the data show roughly three regimes of behavior.

At very low frequencies the power spectrum is proportional to 1/f 2, at intermediate frequencies the

power spectrum is flat and at high frequencies the power spectrum is again proportional to 1/f 2. We

fit the data as the sum of two Lorentzians, with one capturing the low-frequency dependence of 1/f 2

and the other capturing the intermediate flat region and the high-frequency scaling. We assume that

the characteristic timescale of the low-frequency Lorentzian is longer than experimental timescales

and is thus unobserved. For simplicity, we set the corresponding characteristic frequency of this

Lorentzian to 0, giving us a fitting function that contains three parameters:

P (f) = A

(
B

f 2
+

1

f 2 + f 2
fast

)

Note that, except for a small region of the power spectrum, this function is dominated by the larger

of the two terms. This is depicted in the lower panel of Fig. 1B, where the sum of the two terms is

well-approximated by the maximum.

In Fig. 2, we fit this functional form to the traces from each electrode. We test for spatial struc-

ture in the fitted frequencies by calculating the correlation between the frequencies of neighboring

electrodes. To test for significance, we then shuffle the assignment of frequencies to electrodes and

recalculate the correlation among neighbors; doing this multiple times yields a null distribution.

We then compare the observed (i.e. unshuffled) correlation among neighbors with this distribution

to generate a p-value.

Power spectrum of a general linear recurrent network We consider the general case of a linear
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recurrent network with N nodes (the nodes could be neurons or networks of neurons). The jth

node has activity rj , which changes in time according to the equation

d

dt
rj(t) = −rj(t)

τ
+

N∑
k=1

Wjkrk(t) + Ij(t).

Thus, the intrinsic time-constant of a node is τ . The jth node receives input from all the other

nodes (rk) with weight Wjk. It also receives external input Ij , which accounts for all input that

does not originate within the network. In the absence of input or inter-node coupling, the firing

rate of a node decays exponentially to 0 with this time-constant. Defining the firing rate vector

r(t) = [r1, . . . , rN ]T gives the equation

d

dt
r(t) = −r(t)

τ
+Wr(t) + I(t) = Ar(t) + I(t). (M5)

Here W is the matrix whose entry in row j and column k is Wjk, the connection from the kth

node to the jth node. A = W except along the diagonal, where we incorporate the intrinsic decay

by subtracting 1/τ from each (diagonal) entry.

This system can be solved by changing into the eigenvector basis. vn is defined as a right

eigenvector of A if Avn = λnvn. Here the constant λn is the eigenvalue corresponding to the

eigenvector vn. The activity at the jth node is the sum of contributions from each eigenvector and

(assuming that we have run the network long enough to forget initial conditions) can be written as

r(t) =
N∑
n=1

(∫ t

−∞
(un · I(t′))eλn(t−t

′)dt′
)
vn. (M6)

Here uT
n is the nth left eigenvector of A. Taking the dot product with each of the left eigenvectors
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allow us to convert into the eigenvector basis, so that un · I(t′) gives the nth component of I(t′) in

the eigenvector basis. Thus, Eq. M6 says that to get the contribution of each eigenvector, vn, we

convert the input into the eigenvector basis and filter the component along each vm with the time-

constant corresponding to λn. The network activity is stable if all the eigenvalues have negative

real part; in this case the corresponding exponentials decay with time.

For a sub-class of matrices called normal matrices, the right and left eigenvectors are identical,

and the dot product un · I(t′) can be replaced by vn · I(t′). In this case, converting into the

basis given by the vn is equivalent to projecting the input along vn. Most matrices are close to

normal, meaning that right and left eigenvectors tend to be aligned, and a matrix requires special

structure to be highly non-normal (Trefethen and Embree, 2005). Moreover, adding randomness to

the entries will tend to disrupt this special structure and make matrices more normal. Consequently,

un ≈ vn. We will use this approximation later. However, note that the connectivity matrices of

networks with segregated excitatory and inhibitory populations can be quite non-normal (Murphy

and Miller, 2009; Goldman, 2009).

For input with time-invariant statistics, the network dynamics are most naturally written in the

Fourier basis. Taking the Fourier transform of Eq. M6 yields

r̃(f) =
N∑
n=1

1

2πif + λn

(
un · Ĩ(f)

)
vn = (A+ 2πif)−1Ĩ , (M7)

where we have defined r̃(f) = F{r}(f) and Ĩ(f) = F{I}(f) to be the vector-valued functions

whose jth components are the Fourier transforms of the corresponding components of r and I

respectively.
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The power spectrum at the jth node is the squared magnitude of r̃j . If we define

S(f) = (A+ 2πif)−1Ĩ Ĩ†(A† − 2πif)−1,

then the jth diagonal term corresponds to ||r̃j||2. Finally, note that in the simple case when the

input is uncorrelated white noise and A is normal, this reduces to a weighted sum of Lorentzians

(this can be seen by writing A = V ΛV †, and observing that if A is normal then V † = V −1).

The random network model We choose the connections (i.e. the entries of matrix W ) to be

sparse and random: each entry is non-zero with probability p, and non-zero entries are drawn from

a normal distribution with positive mean µconn and variance σ2
conn and then normalized by the size

of the network (i.e. each non-zero entry wij ∼ 1
N
N (µconn, σ

2
conn)). The entries thus have mean

µ = pµconn/N and variance σ2 = (µ2
connp(1−p)+σ2

connp)/N
2 (as can be seen from an application

of the law of total variance). Depending on µconn and σconn, this form allows a small fraction

of the weights to be negative; results are similar if the normal distribution is truncated at 0. The

eigenvalues of the corresponding random matrix form a cloud of points around the origin (with

radius σ), along with a single outlying eigenvalue located at µ (Rajan and Abbott, 2006; Ganguli et

al., 2008; Tao, 2011).

In Eq. M5, the dynamics are determined by the effective network coupling matrix A, whose

entries are the same as that of W except along the diagonal, where Aii = −1/τ + Wii (thus the

diagonal entries are any self-connections minus the leak). The eigenvectors of A are the same

as those of W , while the eigenvalues of A are the eigenvalues of W shifted by −1/τ . Thus the

matrix A has a cloud of eigenvalues around λfast = −1/τ and a single eigenvalue near λslow =

pµconn − 1/τ .

31

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2016. ; https://doi.org/10.1101/036228doi: bioRxiv preprint 

https://doi.org/10.1101/036228


The resulting network shows two timescales: a slow timescale with τlong = 1/λslow = 1/(pµconn−

1/τ), corresponding to the single eigenvalue near 0, and a set of fast timescales with time-constants

close to τ . If the recurrent excitatory connections approximately balance the intrinsic decay then

pµconn ≈ 1/τ ; in this case λslow will be very close to 0, and τlong will be very long.

The eigenvector vslow corresponding to the slow eigenvalue has special structure: it is shared

across the network and approximately constant at each node (Ganguli et al., 2008). To see this

heuristically, note that applying any matrix W to the constant vector [1, 1, . . . , 1]T yields the sum

of its rows: W [1, 1, . . . , 1]T = [
∑

kW1k,
∑

kW2k, . . . ,
∑

kWNk]. If the rows have the same distri-

bution, then these sums will be similar and [
∑

kW1k,
∑

kW2k, . . . ,
∑

kWNk] will be close to the

constant vector. Thus [1, 1, . . . , 1]T/
√
N is close to an eigenvector of W (the

√
N is introduced to

normalize the vector).

Power spectrum of the random network model We now solve for the power spectrum of the

network. We will use a series of approximations to analytically show that the network yields the

power spectrum of Eq. 4 in the main text for uncorrelated input. In particular, we will (a) substitute

the eigenvalues for the random network architecture into the expression for the Fourier spectrum;

(b) use the special structure of the eigenvector corresponding to the slow mode to simplify the

network response to input and (c) use the independence of the external input to each node to derive

the mean power spectrum.

To begin, we substitute in the eigenvalues for this network architecture into Eq. M7, and make

the approximation that all the eigenvalues in the cloud around λfast are equal to λfast. It then
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follows that

r̃(f) ≈ 1

2πif + λslow

(
u1 · Ĩ(f)

)
v1 +

1

2πif + λfast

N∑
n=2

(
un · Ĩ(f)

)
vn

=
1

2πif + λslow

(
u1 · Ĩ(f)

)
v1 +

1

2πif + λfast

(
N∑
n=1

(
un · Ĩ(f)

)
vn −

(
u1 · Ĩ(f)

)
v1

)

=
1

2πif + λslow

(
u1 · Ĩ(f)

)
v1 +

1

2πif + λfast

(
Ĩ(f)−

(
u1 · Ĩ(f)

)
v1

)
. (M8)

We next exploit the structure of the eigenvector corresponding to the slow mode, v1 to simplify

this expression. Recall that v1 ≈ [1, 1, . . . , 1]T/
√
N and that u1 ≈ v1 (this second expression is

exact for a normal matrix). Substituting, we find that the power spectrum at node j is

r̃j =
1

2πif + λslow

1

N

N∑
k=1

Ĩk(f) +
1

2πif + λfast

(
Ĩj(f)− 1

N

N∑
k=1

Ĩk(f)

)
(M9)

Here one factor of 1/
√
N comes from u1 and the other from v1. Note that 1

N

∑N
k=1 Ĩk(f) = 〈Ĩ(f)〉,

the average of Ĩk(f) over the nodes of the network.

We now sum the activity over a fraction α of network nodes to produce the network activity.

Note that α will typically be small (on the order of a few percent of network size in the fits to the

data). Since the Fourier transform is linear, the Fourier transform of the summed network activity

is the sum of the Fourier transformed activity at the corresponding nodes.

x̃(f) =
αN∑
j=1

r̃j(f) =
α
∑N

k=1 Ĩk(f)

2πif + λslow
+

1

2πif + λfast

αN∑
j=1

(
Ĩj(f)− 1

N

N∑
k=1

Ĩk(f)

)
. (M10)

We have taken the sum over the first αN nodes for convenience (note that the ordering is arbitrary).

For notational convenience, we define the sums S1 =
∑N

k=1 Ĩk(f) and S2 =
∑αN

j=1

(
Ĩj(f)− 1

N

∑N
k=1 Ĩk(f)

)
,
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and rewrite the expression above as: x̃(f) = αS1

2πif+λslow
+ S2

2πif+λfast
. Note that the second term in

S2 is independent of j, so the sum over j yields αN . Thus S2 =
∑αN

j=1 Ĩj(f)− α
∑N

k=1 Ĩk(f).

The average power spectrum of the network activity is the expectation value of the squared

magnitude of x̃(f).

E
[
||x̃(f)||2

]
=

α2E [|S1|2]
4π2f 2 + λ2slow

+
1

4π2f 2 + λ2fast
E
[
|S2|2

]
+ 2E

[
Re

(
αS1S

∗
2

(2πif + λslow)(−2πif + λfast)

)]
(M11)

Next, note that for white noise input E
[
Ĩj(f)

]
= 0 (this condition can easily be relaxed to

accommodate input with a constant mean), and thus E [S2
1 ] = Var(S1) and E [S2

2 ] = Var(S2).

If the input is uncorrelated across nodes and has equal variance σ2, then

Var [S1] =
N∑
k=1

Var[Ĩk(f)] = Nσ2

Var [S2] = Var[
αN∑
j=1

Ĩj(f)− α
N∑
k=1

Ĩk(f)]

= Var[(1− α)
αN∑
j=1

Ĩj(f)− α
N∑

k=αN+1

Ĩk(f)]

= (1− α)2αNσ2 + α2N(1− α)σ2

= (1− α)αNσ2. (M12)

A similar analysis for the third term of Eq. M11 shows that it vanishes (at least for normal matrices

where S1 and S2 are uncorrelated). Regardless, the third term is dominated by the first term at low

frequencies (when f is smaller than any of the constants) and, when α is small, is dominated by the

second term at high frequencies. Thus we ignore it.
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Substituting the expressions for Var [S1] and Var [S2] into M11 and absorbing shared constants

into an overall normalization factor, Knorm then yields

E
[
||x̃(f)||2

]
= Knorm

(
α

4π2f 2 + λ2slow
+

1− α
4π2f 2 + λ2fast

)
. (M13)

As mentioned above, this equation is valid when the input is uncorrelated across nodes. Next

consider an input with some degree of correlation across nodes, consisting of a shared compo-

nent with variance σ2
shared/N and an individual component at each node with variance σ2

indiv. The

shared component lies entirely along the slow eigenvector v1 and is orthogonal to the remaining

eigenvectors. Thus this expression changes to:

E
[
||x̃(f)||2

]
= K

(
α(σ2

shared + σ2
indiv)

4π2f 2 + λ2slow
+

(1− α)σ2
indiv

4π2f 2 + λ2fast

)
, (M14)

Finally, while we have considered input without temporal correlation and with comparatively

simple spatial correlation, note that the analysis can be easily extended.

For Figs. 3 and 5 we set N = 440, τ = 195 ms, µconn = 25.58 Hz, p = 0.2 and σconn = 2.558

Hz. In Fig. 3, we set α = 10/N , so that we average over clusters of 10 nodes. For Fig. 5 we show

the average power spectrum at a single node (i.e. α = 1/N ). In these simulations we set the total

input variance σ2 = 1, and change the fraction of shared variance such that σ2
shared/N+σ2

indiv = σ2.

For the four simulations shown, σshared/
√
N = 0, 0.1, 0.2, 0.4 respectively.

Network with added inhibition For Fig. 4, we consider a network where 80% of the nodes make

excitatory projections onto their targets (both excitatory and inhibitory) with mean strength µE and

20% of the nodes make inhibitory projections (again, onto both excitatory and inhibitory nodes)
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with mean strength −µI (where µI > 0). This network has a similar eigenvalue spectrum to the

previous network (i.e., only excitatory projections), with a cloud of eigenvalues around −1/τ and

a single eigenvalue corresponding to a long timescale. Now the position of this eigenvalue depends

on the difference between excitation and inhibition, and is approximately located at µEpE−µIpI−

1/τ . Here we setN = 440, τ = 195 ms, µE = 51.17 Hz, µI = 25.59 Hz, σE = 0.26 Hz, σI = 0.13

Hz and pE = pI = 0.2. Note that since NE = 4NI , the strength of each inhibitory connection is

twice that of an excitatory connection.

Distance-dependent connectivity We generate the positions of the nodes randomly on a 2-

dimensional sheet (with hard boundary conditions, meaning that the boundary does not wrap

around), with both the x and y coordinates of node positions normalized to lie between 0 and 1. Fol-

lowing recent experimental observations (Markov et al., 2014; Ercsey-Ravasz et al., 2013) we con-

sider a strength of connection that decays exponentially with distance, so that W (i, j) ∝ e−λLd(i,j),

where d(i, j) is the distance between nodes i and j, and λL is the inverse characteristic length of

the spatial connectivity profile. Note that the results are similar if connection strength is kept fixed

but the probability of a connection decays with distance, but using strength instead of probability

allows us to simulate smaller networks.

The eigenvalues of this matrix can be heuristically understood as the combination of a random

matrix, which produces a cloud of points around the origin, and a matrix generated from a determin-

istic distance-dependent connectivity profile, which produces eigenvalues scattered along the real

axis between the origin and the longest timescale. The deterministic component is a translation-

invariant linear operator, whose eigenvalue positions are given by the Fourier transform of the

connectivity profile (Gray, 1971; Trefethen and Embree, 2005). As the connectivity profile gets

more spatially-localized, the corresponding eigenvalue spectrum gets more spread out and more
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eigenvalues interpolate between the single slow mode and the cloud at the origin. These produce

a number of intermediate frequency modes that, when smoothed together, cause a shallower slope

of the power spectrum. For a sharp decay of connection strength with distance, the resulting power

spectrum can show scaling of 1/f−1, as shown in Fig. 6. Note that, at least for small networks,

the exact positions of the eigenvalues (and the corresponding low-frequency scaling) vary based on

the distribution of distances. For the simulations of Fig. 6, we simulate networks with N = 100,

τ = 195 ms and set connectivity Wij = N (µij, σ
2
ij). Here µij = µ0e

−λLdij , where d is the distance

between nodes i and j, and σij = 0.25µij . For the three simulations we choose the inverse decay

length λL to be 0, 10, 15 and 30 respectively with corresponding µ0 = 0.77841, 1.2747, and 2.2438

Hz.

Clustered network structure To build the clustered network, we assume that each of the nodes

in the network architecture of Figures 3 and 4 consists of Nsub sub-nodes with intrinsic time-

constant τsub and within-cluster connections drawn according to 1
Nsub
N (µsub, σ

2
sub). Note that this

sub-network has exactly the same structure as the network shown in Fig. 3: when disconnected it

has a cloud of eigenvalues around τsub and a single eigenvalue near µsubpsub − 1/τsub. We choose

this eigenvalue to give a timescale close to τ , where τ is the node time-constant from the previous

section.

We then connectN of these sub-networks together, with sparse random connections drawn with

probability plr from a normal distribution with mean µlr and variance σ2
lr. The resulting network has

a large cluster of eigenvalues around τsub, then N − 1 eigenvalues around τ and a single eigenvalue

near 0, whose location is approximately µlr(NsubN)plr.

For the simulations of Fig. 7, we set Nsub = 25, τsub = 10 ms, µsub = 118.6 Hz, σsub = 11.86

Hz, N = 44, µlr = 25.58 Hz, σlr = 2.558 Hz. We inject uncorrelated white-noise into all sub-
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nodes, average the resulting activity by cluster and then plot the power spectrum of cluster activity.

Fast timescale fits Assuming the existence of a fast timescale in either the input to the network

or the output is equivalent to convolving the network activity with an exponential with a small

time-constant. In the Fourier domain, this becomes multiplication by a Lorentzian function. Thus,

for Fig. 8, we fit the observed power spectra with a function of the form

P (f) = A

(
B

f 2
+

1

f 2 + f 2
fast

)(
1

f 2 + f̂ 2
fast

)

where 1/2πf̂fast corresponds to a second fast timescale. Convolving the output of the model with

a fast exponential would yield the same result

To correct for power line noise in the high-frequency region of the data, prior to fitting the

power spectrum we remove data points lying within ±0.2 of 30, 60, 90, 120 and 180 Hz. Note that

fits with and without filtering yield very similar parameters (not shown).

Author contributions: R.C., B.J.H., and X.-J.W. designed research; R.C. performed research

and analyzed data; R.C., B.J.H., and X.-J.W. wrote the paper.
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