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Abstract 

HOT (high-occupancy target) regions, which are bound by a surprisingly large 

number of transcription factors, are considered to be among the most intriguing 

findings of recent years. An improved understanding of the roles that HOT regions 

play in biology would be afforded by knowing the constellation of factors that 

constitute these domains and by identifying HOT regions across the spectrum of 

human cell types. We characterised and validated HOT regions in embryonic stem 

cells (ESCs) and produced a catalogue of HOT regions in a broad range of human cell 

types. We found that HOT regions are associated with genes that control and define 

the developmental processes of the respective cell and tissue types. We also showed 

evidence of the developmental persistence of HOT regions at primitive enhancers and 

demonstrate unique signatures of HOT regions that distinguish them from typical 

enhancers and super-enhancers. Finally, we performed an epigenetic analysis to reveal 

the dynamic epigenetic regulation of HOT regions upon H1 differentiation. Taken 

together, our results provide a resource for the functional exploration of HOT regions 

and extend our understanding of the key roles of HOT regions in development and 

differentiation. 
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Introduction 

Recent studies in Caenorhabditis elegans [1, 2], Drosophila melanogaster [3-7], and 

humans [8-10] have identified a class of mysterious genomic regions that are bound 

by a surprisingly large number of transcription factors (TFs) that are often 

functionally unrelated and lack their consensus binding motifs. These regions are 

called HOT (high-occupancy target) regions or “hotspots”. In C. elegans, 22 different 

TFs were used to identify 304 HOT regions bound to 15 or more TFs [1]. Using the 

binding profiles of 41 different TFs, nearly 2,000 HOT regions were identified in D. 

melanogaster, and each is bound by an average of 10 different TFs [5]. Many regions 

that are bound by dozens of TFs were also identified in a small number of human cells 

[9, 10]. The broad presence of these regions in metazoan genomes suggests that they 

might reflect a general property of regulatory genomes. However, how hundreds of 

TFs coordinate clustered binding to regulatory DNA to form HOT regions across cell 

types and tissues is still unclear. Furthermore, the function of HOT regions in gene 

regulation remains unclear [11, 12], and their proposed roles include functioning as 

mediators of ubiquitously expressed genes [1], sinks or buffers for sequestering 

excess TFs [4], insulators [5], DNA origins of replication [5], and patterned 

developmental enhancers [7]. In addition, the effects of these regions on human 

diseases and cancer remain unknown. Thus, it is important to systematically analyse 

HOT regions in a large variety of cell types and tissues and to further understand their 

functional roles in the control of specific gene expression programs.  
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Resolving these challenges requires knowledge of the ensemble of all TF bindings in 

a cell. However, even predicting where a single TF binds in the genome has proven 

challenging. Computational motif discovery in regulatory DNA is a commonly used 

strategy for identifying candidate TF binding sites (TFBSs) for TFs with known 

binding motifs, which are represented as position weight matrices (PWMs). 

Numerous algorithms have been developed for discovering motifs, such as FIMO 

(Find Individual Motif Occurrences) [13] and HOMER (Hypergeometric 

Optimization of Motif EnRichment) [14]. It has been reported that TFBSs tend to be 

DNase I hypersensitive, and only a fraction of the human genome is accessible for TF 

binding [15]. Remarkably, HOT regions correlate with decreased nucleosome density 

and increased nucleosome turnover and are primarily associated with open chromatin 

[1, 5, 6]. DNase I hypersensitive sites (DHSs) in chromatin have been used 

extensively to mark regulatory DNA and to map active cis-regulatory elements in 

diverse organisms [16-18]. Recent advances in Next-Generation Sequencing (NGS) 

technologies have enabled genome-wide mapping of DHSs in mammalian cells 

[19-21], laying the foundations for comprehensive catalogues of human regulatory 

DNA regions. Thus, DHSs, combined with motif discovery algorithms, could be used 

in a very powerful approach for identifying a large repertoire of TFs in diverse cell 

and tissue types with high precision. This approach is likely to be widely applicable 

for investigating cooperativity among TFs that control diverse biological processes.  
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Here, we have developed a computational method for the genome-wide mapping of 

HOT regions in human genome. We have characterised and validated HOT regions in 

embryonic stem cells (ESCs). Additionally, we have created a catalogue of HOT 

regions for 154 different human cell and tissue types and have shown that these 

regions are associated with genes encoding cell-type-specific TFs and other 

components that play important roles in cell-type-specific developmental process. We 

have shown evidence for the developmental persistence of HOT regions at primitive 

enhancers and have demonstrated unique signatures of HOT regions that distinguish 

them from typical enhancers and super-enhancers. Importantly, our epigenetic 

analysis revealed a preliminary view of dynamic epigenetic regulation of HOT 

regions upon cell differentiation.  

 

Results 

Identification and validation of HOT regions 

Recently, we used Gaussian kernel density estimation across the binding profiles of 

542 TFs to identify TFBS-clustered regions and defined a “TFBS complexity” score 

based on the number and proximity of contributing TFBSs for each TFBS-clustered 

region [22]. A preliminary inspection of these regions with different TFBS complexity 

revealed an unusual feature: Although the vast majority (~90%) of the TFBS-clustered 

regions exhibited only low TFBS complexity, a small portion of the TFBS-clustered 

regions exhibited much higher TFBS complexity scores (Fig. 1A and Table S1). The 
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former were called LOT (low-occupancy target) regions, whereas the latter were 

called HOT (high-occupancy target) regions.  

 

HOT regions were initially defined as regions with high occupancy of TFs and were 

identified by the binding peaks of many TFs using ChIP-seq data in previous reports 

[1-10]. However, we defined HOT regions by the colocalisation of a large number of 

TF motif binding sites and identified them using the TF motif scanning method 

iFORM [23] on DHSs with PWMs for 542 TFs. To validate our identified HOT 

regions, we compared them with the classical HOT regions that were defined by the 

ENCODE Consortium, which assessed more than 100 TFs from approximately 500 

ChIP-seq experiments in more than 70 cell types [24, 25]. We performed a GSC 

(genome structure correction) analysis between our HOT regions and the classical 

HOT regions in five cell types, including H1-hESC, K562, Hep-G2, HeLa-S3, and 

GM12878 cells (Fig. 1B and S1A). The GSC results indicated that our HOT regions 

were significantly enriched and depleted compared to the classical HOT and LOT 

regions, respectively. In addition, our LOT regions were significantly enriched and 

depleted compared to the classical LOT and HOT regions, respectively.  

 

To further verify whether TFs indeed bound within the HOT regions, we counted the 

occurrence rates of peaks in the ChIP-seq data that corresponded to diverse TFs that 

were located within our HOT regions and the classical HOT regions. We found that 

the number of TFs that colocalised within our HOT regions (median = 7 and mean = 
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7.98 in H1 cells) was much greater than the number of TFs that colocalised within the 

classical HOT regions (median = 0 and mean = 1.96 in H1 cells) (Fig. 1C and S1B). 

Additionally, with the increase in the TFBS complexity of our HOT regions, the 

number of TFs that colocalised within our HOT regions also increased (Fig. 1D and 

S1C). Taken together, these findings strongly validated our identified HOT regions. 

Furthermore, the TFBS complexity well represented the colocalisation of multiple 

TFs within our HOT regions. 

 

Using a uniform processing pipeline, we created a catalogue of 59,986 distinct HOT 

regions across 154 cells/tissues studied under the ENCODE Project [24]. Collectively, 

these HOT regions span 18.8% of the genome (Table S2). To assess the rate of 

discovery of new HOT regions, we performed a saturation analysis as described in a 

previous study [24] and predicted saturation at approximately 107,184 HOT regions, 

suggesting that we have discovered more than half (59,986 out of 107,184, 56.0%) of 

the estimated total number of HOT regions (Fig. S2A). An additional location analysis 

of these 59,986 HOT regions demonstrated that HOT regions were more likely 

localised to genic regions (intron and exon) and less likely localised to intergenic 

regions compared with LOT regions (Fig. S2B). Furthermore, HOT regions are 

typically much more cell-selective than LOT regions (Fig. 1E, 1st column). Promoter 

proximal HOT regions typically exhibit high accessibility across cell types, with the 

average proximal HOT region detected in 21 cell types; however, distal HOT regions 

are largely cell selective, with the average distal HOT region detected in 7 cell types 
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(Fig. 1E, 2nd and 3rd columns).  

 

We further characterised these HOT regions using multiple data types and showed 

that they are enriched for active histone markers and depleted for repressive histone 

markers (Fig. S3A), they are highly transcribed (Fig. S3B), they extensively overlap 

with the transcriptional regulators that control cell development and differentiation 

(Fig. S3C, S3F), they exhibit distinct sequence signatures (Fig. S3D), and their 

neighbouring genes illustrate functional enrichment linked to the developmental 

processes of the respective cell and tissue types (Fig. S3E, Tables S3-S4).  

 

Associations with functional regulatory elements 

To gain understanding of the functional roles of HOT regions, it would be valuable to 

explore their associations with previously validated regulatory elements. First, we 

explored the extent to which HOT regions associate with microRNAs, which 

comprise a major class of regulatory molecules and have been extensively studied, 

resulting in the consensus annotation of hundreds of conserved microRNA genes [26]. 

Of 2,633 annotated microRNA transcriptional start sites (TSSs), 1,667 (63%) coincide 

with a HOT region. The accessibility of HOT regions at microRNA promoters was 

highly promiscuous compared with GENCODE TSSs (Fig. 1E , 4th column) and 

showed cell lineage organisation, paralleling the known regulatory roles of 

well-annotated lineage-specific microRNAs (Fig. 2A). Next, we investigated the 

association between HOT regions and transposon sequences. A surprising number of 
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these sequences contain highly regulated HOT regions (Fig. 1E, 5th column, and Table 

S5), which is compatible with the cell type-specific transcription of repetitive 

elements detected using ENCODE RNA sequencing data [27]. The examples shown 

in Fig. 2B also illustrate the strong cell-selectivity of chromatin accessibility observed 

for each major class of repeats. Furthermore, we compared HOT regions with an 

extensive compilation of 373 experimentally validated distal, non-promoter 

cis-regulatory elements, such as insulators, locus control regions (LCRs), transcription 

initiation platforms (TIPs), and more. This analysis revealed that the overwhelming 

majority (76%) of these elements are encompassed within HOT regions (Table S6) 

and typically show strong cell selectivity (Fig. 1E, 6th column, Fig. 2C and S4A). 

Finally, we explored the extent to which HOT regions associate with different classes 

of DNA methylation depleted regions, including low methylation regions (LMRs), 

unmethylated regions (UMRs), and DNA methylation valleys (DMVs). These DNA 

methylation-depleted regions have been reported to function as cis regulatory 

elements that are strongly associated with transcription factor genes and 

developmental genes [28, 29]. Our GSC analysis demonstrated that LMRs, UMRs and 

DMVs were highly enriched within HOT regions (Fig. S4B-D) and typically showed 

strong cell selectivity (Fig. 1E, 7-9th column and Fig. 2D). Together, our results 

suggested that HOT regions are highly associated with the functional regulatory 

elements that play key developmental roles in a manner that is typically 

cell-type-specific.  
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HOT regions at embryonic enhancers 

As HOT regions drive genes that control and define cell development, it is reasonable 

to surmise that in definitive cells, HOT regions could be persistently associated with 

enhancers that are active during early development. We compiled 882 early 

developmental enhancers that were identified through a comparative genome analysis 

and experimental validation of in vivo enhancer activity in transgenic mice [30]. Each 

of these enhancers displayed reproducible tissue-staining patterns in one or more 

embryonic tissues at embryonic day 11.5 (Fig. 3A). Of these 882 non-promoter 

human enhancers, a surprising proportion (308/882, 35%) occurred within HOT 

regions in at least one definitive human cell type. To quantify the tissue activity 

spectra of these embryonic enhancers, we systematically examined their lacZ 

expression patterns in transgenic mice and related these patterns to HOT region 

patterning at the same elements across different definitive cell types (Fig. 3B). For 

example, an enhancer that is selectively active in embryonic forebrain tissue (Fig. 3A, 

1st column) was selectively found in HOT regions within cells derived from human 

ESCs (Fig. 3B, 1st column), and an enhancer that is selectively active in embryonic 

blood vessels (Fig. 3A, 2nd column) was selectively found in HOT regions within 

endothelial cells (Fig. 3B, 2nd column). In contrast, an enhancer with extremely broad 

tissue activity (Fig. 3A, 7th column) was found in HOT regions in nearly all definitive 

cell types (Fig. 3B, 7th column). These findings were further confirmed across the 

spectrum of enhancers (Figs. 3C–D). A total of 62.5% of enhancers that are active in 

embryonic blood vessels were found in HOT regions in endothelial cells, whereas 
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only 26.3% of all other embryonic enhancers were found in endothelial HOT regions. 

Similarly, 59.3% of enhancers that are active in embryonic heart tissue were found in 

HOT regions within cells derived from human heart and great vessel structures, 

whereas only 30.7% of all other embryonic enhancers were found in HOT regions in 

these cell types.  

 

Distal HOT regions in super-enhancers  

Recently, Richard A. Young and his colleagues identified an unusual class of enhancer 

domains, called super-enhancers, that drive the high-level expression of genes that 

control and define cell identity and disease [31-33]. To elucidate the relationship 

between HOT regions and super-enhancers, we assessed the HOT regions and 

super-enhancers from the same 14 cell types. We performed a GSC analysis between 

distal HOT regions and super-enhancers in these cell types and found that HOT 

regions were significantly enriched with super-enhancers (Fig. 4A). To determine 

whether HOT regions might cooperate with super-enhancers to regulate cell 

type-specific gene regulation, we performed a colocalisation analysis of these two 

types of regions in 14-by-14 cell line combinations, as previously described [34, 35] 

(Fig. 4B). The diagonally matched cell line enrichment values (> 1.00 for all 

comparisons) were much larger than the off-diagonal mismatched cell line values (< 

1.00 for all comparisons), indicating that cell type-specific HOT regions tended to 

strongly colocalise with super-enhancers that function in the corresponding cell types. 

Furthermore, we compared the densities of chromatin markers, TFs, and RNA 
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polymerase II between HOT regions, enhancers, and super-enhancers. All of these 

elements exhibited similar DNase I hypersensitivity. As expected, enhancer markers, 

such as H3K27ac, H3K4me1, and P300, were significantly enriched within enhancers 

and super-enhancers compared to HOT regions. In addition, RNA Pol II was 

significantly enriched within enhancers and super-enhancers compared to HOT 

regions. Notably, HOT regions demonstrated simultaneous significant enrichment of 

the bivalent markers H3K4me3 and H3K27me3, whereas enhancers and 

super-enhancers showed both enrichment of H3K4me3 and depletion of H3K27me3 

compared to the background genome (Fig. 4C). A much higher proportion of HOT 

regions (28%) were marked with both H3K4me3 and H3K27me3, whereas only 2% 

of super-enhancers were marked with both H3K4me3 and H3K27me3. Finally, we 

characterised super-enhancer-associated and HOT region-associated genes by GO 

analysis. Our results revealed that super-enhancer-associated genes are linked to 

biological processes that largely define the identities of the respective cell and tissue 

types, which is highly consistent with the results of a previous study [31]. However, 

HOT region-associated genes are linked to biological processes that largely define the 

development and differentiation of the respective cell and tissue types (Fig. S5).  

 

HOT regions upon H1 differentiation 

To preliminarily explore the epigenetic regulatory mechanism of HOT regions upon 

development and differentiation, we examined the potential role of histone 

modifications at HOT regions during the differentiation of the hESC line H1 to 
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mesendoderm (ME), neural progenitor cells (NPCs), trophoblast-like cells (TBL), and 

mesenchymal stem cells (MSCs). We first identified 5,410, 5,602, 4,250, 3,408, and 

6,719 HOT regions in H1, ME, TBL, NPCs, and MSCs, respectively, as well as 4,002 

HOT regions in a control for terminally differentiated cells (IMR90).  

 

Previously, bivalent genes marked by both H3K4me3 and H3K27me3 were shown to 

be highly associated with developmental genes [36]. Intriguingly, an analysis of the 

data from previous studies [37, 38] showed that the genes associated with HOT 

regions during H1 differentiation appeared to be highly enriched in bivalent genes 

(p-value < 1.77×10-9, hypergeometric test, Table S7). We then asked whether HOT 

regions undergo dynamic epigenetic regulation upon development and differentiation. 

We examined the dynamic epigenetic modifications at these HOT regions upon H1 

differentiation and found that over 50% of HOT regions in H1 cells were bound 

simultaneously by H3K4me3 and H3K27me3. We named these regions bivalent HOT 

regions. Interestingly, the number of bivalent HOT regions decreased upon H1 

differentiation. In differentiated cells, a large portion of HOT regions were bound only 

by H3K4me3 or H3K27me3 relative to H1 cells (Fig. 5A). This is in good agreement 

with the opinion that bivalent genes become monovalent upon cell differentiation [36]. 

Furthermore, over three-quarters of bivalent HOT regions in H1 cells were “lost”, 

whereas less than one-quarter of bivalent HOT regions in H1 cells were “shared” 

during the differentiation of H1 into its derived cell types (Fig. 5B). Moreover, a 

considerable proportion (ranging from 10% to 38%) of “lost” bivalent regions were 
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differentiated into “activated” HOT regions bound by H3K4me3 only, whereas only a 

very small proportion of these regions differentiated into HOT regions bound only by 

H3K27me3 alone (Fig. 5B).  

 

We further explored the dynamic epigenetic signals upon H1 differentiation. We 

found that in H1-derived cells, the “activated” HOT regions were marked by a higher 

level of H3k4me3 and a lower level of H3K27me3 compared to the H1 bivalent HOT 

regions. Moreover, the “repressed” HOT regions in H1-derived cells were marked by 

a lower level of H3k4me3 and a higher level of H3K27me3 compared to the H1 

bivalent HOT regions. The levels of H3K4me3 and H3K27me3 in the activated HOT 

regions of H1-derived cells increased and decreased during differentiation, 

respectively. A gene expression analysis of the “activated” and “repressed” HOT 

regions further confirmed these findings (Fig. 5C). Furthermore, we performed GO 

analysis of the bivalent HOT regions in H1 and the activated HOT regions in 

H1-derived cells and found that the genes associated with these regions were strongly 

enriched for the functional categories “regulation of transcription”, “metabolic 

process” and “differentiation” (Fig. 5D). Taken together, our findings reveal a 

preliminary view of the dynamic epigenetic regulation of HOT regions, which were 

strongly associated with developmental genes and had key roles upon cell 

differentiation.  
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Discussion and Conclusions 

Previous studies have revealed regions in worms [1, 2], flies [3-7], and humans [8-10] 

with heavily clustered TF binding that have been termed HOT regions. These reports 

[1-10] identified HOT regions by the binding peaks of many TFs using ChIP-seq data, 

whereas we defined HOT regions by a large number of TF motif binding sites on 

DHSs in DNase-seq data. This change was made because previous investigations of 

classical HOT regions were restricted by the currently limited amount of TF ChIP-seq 

data and by the consistency of HOT regions defined by identical combinations of TFs 

across diverse cells/tissues. Although the identifications of HOT regions were based 

on different data, both definitions demonstrate that HOT regions are a novel class of 

genomic regions that are bound by a surprisingly large number of TFs and contain 

numerous TF motifs. Importantly, our identification of HOT regions using TF motif 

discovery on DHSs can greatly extend the repertoire of both TFs and cell types in the 

genome, thus greatly enhancing our understanding of HOT regions.  

 

We have extended our understanding of HOT regions by demonstrating that ESC 

HOT regions are highly transcribed and by identifying the population of TFs, 

cofactors, chromatin regulators, and core transcription machinery that occupy these 

domains in ESCs. ESCs were chosen for identifying components of HOT regions 

because the TFs, cofactors, chromatin regulators, and noncoding RNAs that control 

the ESC state and that contribute to the gene expression programmes of pluripotency 

and self-renewal are likely better understood than those for any other cell type [39-41]. 
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HOT regions are occupied by a large portion of enhancer-associated RNA polymerase 

II and its associated cofactors and chromatin regulators, which may explain how these 

molecules contribute to the high transcriptional levels of genes associated with HOT 

regions. Furthermore, the levels of RNA detected in HOT regions vastly exceed the 

levels of RNA in LOT regions, and recent evidence suggests that these enhancer 

RNAs (eRNAs) may contribute to gene activation [42-49]. Several additional 

important insights were gained by studying how more than 40 TFs, cofactors, 

chromatin regulators, and components of the core transcription machinery occupy 

HOT regions and LOT regions in ESCs. All of the enhancer-binding TFs are enriched 

in HOT regions, with some so highly enriched that they distinguish HOT regions from 

LOT regions. 

 

By uncovering characteristic sequence signatures of HOT regions, our computational 

analysis revealed that more than one quarter of enriched TF motifs exhibited 

significantly enriched binding within HOT regions; the majority of these TF motifs 

play essential roles in development and cell differentiation. Strikingly, 12 of 34 TFs 

(p-value = 0.0012, binomial test) that showed specifically enriched binding within 

LOT regions were housekeeping TFs. In combination with previous observations that 

HOT regions are depleted in the bound TFs’ motifs [1, 3-5] compared with regions 

bound by single TFs, our findings suggest that HOT regions have distinct sequence 

features that distinguish them from LOT regions and the genome background. 

Moreover, these findings suggest that information regarding HOT regions is encoded 
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in the DNA sequence.  

 

We have generated a catalogue of HOT regions and their associated genes in a broad 

spectrum of human cell and tissue types. HOT regions tend to be cell type-specific, 

and the genes associated with these elements are linked to biological processes that 

largely define the development and differentiation of the respective cell and tissue 

types. Genes that encode candidate key developmental TFs and noncoding RNAs, 

such as microRNAs, are among those associated with HOT regions. Thus, the HOT 

region catalogue should be a valuable resource for further studies of the 

transcriptional control of cell development and differentiation [50-53]. Based on the 

catalogue of HOT regions, our further study has explored the association of GWAS 

SNPs and HOT regions, and our findings have illustrated the key roles of HOT 

regions in human disease and cancer [54].  

 

An association analysis between HOT regions and embryonic enhancers presented 

direct evidence of the systematic developmental persistence of tissue-selective early 

developmental enhancers at HOT regions and of the persistent imprint of enhancer 

roles on the formation of cross-cell-type patterning of HOT regions in definitive cells. 

Additionally, we found that super-enhancers were highly enriched in HOT regions 

across diverse cell types, and cell type-specific super-enhancers tend to strongly 

colocalise with the HOT regions that function in the corresponding cell types. 

Furthermore, all enhancer markers, including DNaseI, H3K27ac, H3K4me1, 
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enhancer-binding TFs and chromatin regulators, are enriched at HOT regions but have 

lower levels of enrichment that distinguish them from super-enhancers. Strikingly, we 

observed the paradoxical coexistence of permissive and repressive histone marks, 

H3K4me3 and H3K27me3, in HOT regions. Although GO analysis revealed that 

super-enhancers drive the expression of genes that define the identity of the respective 

cell and tissue types, HOT regions are associated with biological processes that 

largely define the development and differentiation of the respective cell and tissue 

types. Together, our results suggest that HOT regions might therefore represent a 

novel class of enhancers because they contain many discriminatory features that are 

different from enhancers or super-enhancers. The activities of HOT regions and 

super-enhancers are both defined by the colocalisation of TFs in these regions but on 

different genomic scales of colocalisation. A recent study [55] described the 

relationship between hotspots and super-enhancers in the early phase of adipogenesis, 

demonstrating that hotspots are highly enriched in large super-enhancers and 

revealing that hotspots and super-enhancers function as two levels of regulatory hubs 

that serve to integrate external stimuli through cooperativity between TFs on 

chromatin. These findings are highly consistent with ours. 

 

Finally, we examined the dynamical epigenetic regulation at HOT regions during H1 

differentiation. We found that a large proportion of HOT regions in H1 cells 

demonstrated a bivalent state, and the portion of the bivalent HOT regions decreased 

during the differentiation of the hESC line H1 into ME cells, TBL cells, NPCs, and 
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MSCs. Many of these bivalent HOT regions were differentiated into activated regions. 

Additionally, we demonstrated that the activated regions showed an inverse 

relationship with the levels of H3k4me3 and H3k27me3. Our results present a 

preliminary view of the dynamic epigenetic regulation of HOT regions upon cell 

differentiation.  

 

Taken together, our findings provide a resource for the functional exploration of HOT 

regions and extend our understanding of the key roles of HOT regions during 

development and differentiation.  

 

Materials and Methods 

Data sets 

The DNaseI Hypersensitivity by Digital DNaseI data were obtained from the Duke 

and UW ENCODE groups. Histone modifications according to ChIP-seq data were 

downloaded from the Broad histone ENCODE group. TFs according to ChIP-seq data 

were obtained from the HAIB and SYDH TFBS ENCODE groups. DNase-seq and 

ChIP-seq data in both peak file and bam file formats were used in this study. Gene 

annotations were obtained from the GENCODE data (V15). All these data were 

collected from the ENCODE Project [24], and the use of these data strictly adhered to 

the ENCODE Consortium Data Release Policy. The data used for epigenomic analysis 

of HOT regions in H1 cells and four H1-derived lineages were obtained from a recent 
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study [29].  

 

Identifying TFBS-clustered Regions and HOT regions 

Position weight matrices (PWMs) of 542 TFs, which corresponded to 796 motif 

models, were collected from the TRANSFAC [56], JASPAR [57], and UniPROBE [58] 

databases. The genomic sequence under DHSs from the hg19 genome was used as the 

input for iFORM [23] using a custom library of all 796 motifs scanned for motif 

instances at a p-value threshold of 10-18 (corresponding to the FIMO threshold of 10-5). 

For each TF, motif instances were combined to generate the corresponding TFBSs.  

 

An established method [5] was used to perform Gaussian kernel density estimations 

across the genome (bandwidth 3 kb, centred on each TFBS). Each peak of the density 

profile was denoted as a TFBS-clustered region. To determine the complexity of each 

TFBS-clustered region, the Gaussian kernalised distance from a peak to each TFBS 

that contributed at least 0.1 to the strength was determined. The window around each 

TFBS-clustered region was derived by finding the maximum distance (in bp) from the 

TFBS-clustered region to a contributing TF and adding 1.5 kb (one half of the 

bandwidth). Each window was centred on a TFBS-clustered region.  

 

To identify HOT regions, we first ranked all the TFBS-clustered regions in a cell type 

by increasing and plotting the TFBS complexity (Fig. 1A). This plot revealed a clear 

point in the distribution of the TFBS-clustered regions at which the complexity signal 
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began to increase rapidly. To geometrically define this point, we first scaled the data 

such that the x and y axes were from 0-1. We then found the x axis point for which a 

line with a slope of 1 was tangent to the curve. We defined the TFBS-clustered 

regions above this point to be HOT regions and the TFBS-clustered regions below 

that point to be LOT regions. The pipeline for identifying HOT or LOT regions was 

applied uniformly to datasets from 349 samples, including 154 cell types studied 

under the ENCODE Project [24]. The classification of the TFBS-clustered regions as 

a HOT or LOT region in each cell type for diverse human cells and tissues can be 

found in Table S2. 

 

Validation of HOT regions with ChIP-seq 

We downloaded publicly available HOT regions defined based on the ChIP-seq data 

from the ENCODE Consortium obtained in five cell types, including K562, Hep-G2, 

HeLa-S3, H1-hESC, and GM12878 cells [24, 25]. First, we used GSC (genome 

structure correction) analysis to assess the performance of predicting HOT regions. 

The GSC statistic [59, 60] was used to calculate the confidence intervals (CIs) for the 

classical HOT regions that were expected to contain our HOT regions by chance. This 

statistic provides a conservative correction to standard tests.  

 

To further verify whether TFs indeed bound within the identified HOT regions, we 

collected uniform ChIP-seq peaks corresponding to multiple TFs from the ENCODE 

Project in the five cell types. We counted the occurrence rates of ChIP-seq peaks of 
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diverse TFs that were located within our HOT regions and classical HOT regions. 

Additionally, we explored the correlations between the TFBS complexity of our HOT 

regions and the number of TF peaks that were located within our HOT regions.  

 

Master list and annotation for HOT regions 

HOT regions from 154 cell types were consolidated into a master list of 59,986 

unique, non-overlapping HOT region positions by first merging these regions across 

cell types. Then, for each resulting interval of merged regions, the HOT region with 

the highest TFBS complexity was selected for the master list. Any HOT regions 

overlapping the regions selected for the master list were then discarded. The 

remaining HOT regions were merged, and the process was repeated until each original 

TFBS-clustered region was either incorporated into the master list or discarded.  

 

Genomic annotations from GENCODE annotations (V15) [61], i.e., Basic, 

Comprehensive, PseudoGenes, 2-way PseudoGenes, and PolyA Transcripts, were 

used. The promoter (proximal) class of each GENCODE-annotated TSS was defined 

as a region from the master list within 1 kb of the TSS. The exon class was defined as 

any HOT region not in the promoter class that overlapped a GENCODE-annotated 

“CDS” segment by at least 75 bp. The UTR class was defined as a HOT region not in 

the promoter or exon class that overlapped a GENCODE-annotated “UTR” segment 

by at least 1 bp. The intron class was defined as a GENCODE segment annotated as 

“gene” with all “CDS” segments. The intron class also covered any HOT regions not 
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defined by other categories that overlapped introns by at least 1 bp.  

 

The distal category was defined as the HOT regions located at least 2 kb away from 

any GENCODE annotated TSS. Repeat categories for the LINE, SINE, LTR, and 

DNA repeat classes were obtained from the UCSC RepeatMasker track annotations. 

The miRNA category counts for each miRNA annotated by miRBase (version 20) [26, 

62] were defined by the closest master list HOT regions within 1kb upstream and 

downstream of the miRNA TSS.  

 

The cell-type number was defined for each HOT region by annotating the master list 

with the number of cell types with overlapping HOT regions. The plots in Figure 1E 

were generated using the R function “geom_violin” from the “ggplot2” package, 

which summarises the distribution of cell type numbers for distinct categories of HOT 

regions. The distribution of cell types containing a HOT region was calculated 

separately for HOT regions observed in 154 cell types.  

 

Association analysis of functional regulatory elements 

The microRNA coordinates were downloaded from miRBase (version 20) [26] and 

used to map microRNAs to their genomic locations. We used the method described in 

a recent study [15] to assign TSSs for 2633 microRNA loci. RepeatMasker data were 

downloaded from the hg19 rmsk table associated with the UCSC Genome Browser. 

There are 1395 distinctly named repeats in 56 families in 21 repeat classes. The data 
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were analysed by repeat family because this procedure gives a granularity suitable for 

display. A number of the classes are structural classes rather than classes derived from 

transposable elements. Bedops utilities [63] were used to count the number of repeat 

elements that overlapped at least 1 bp with HOT regions. The HOT regions from 154 

cell types/tissues were tested for overlap with repeat families. Supplementary Table 

S5 shows overlap statistics for families of elements with at least 5000 overlapping 

HOT regions. Additionally, an extensive compilation of 373 experimentally validated 

distal, non-promoter cis-regulatory elements, including insulators, locus control 

regions, and so on, were taken from a recent study [15] (Table S6). Finally, we 

collected low methylation regions (LMRs), unmethylated regions (UMRs), and DNA 

methylation valleys (DMVs) from a recent study [29]. 

 

Comparison of HOT regions with known enhancers 

We downloaded the data for tests of human enhancers in a mouse developmental 

model [30, 64] from the VISTA enhancer browser http://enhancer.lbl.gov/, and were 

permitted to use the embryonic mouse images. 

 

To calculate the enrichment of super-enhancers in a HOT region, we performed a 

GSC analysis between HOT regions and super-enhancers, as shown in Fig. 4A. To 

perform the colocalisation analysis on HOT regions and super-enhancers in N-by-N 

(N = 14) cell line combinations as similarly described in a previous study [34, 35], we 

collected a catalogue of super-enhancers in 14 human cell types from recent studies. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2016. ; https://doi.org/10.1101/036152doi: bioRxiv preprint 

https://doi.org/10.1101/036152
http://creativecommons.org/licenses/by/4.0/


26 

 

The counts were divided by the corresponding row sum and column sum and 

multiplied by the matrix sum to obtain enrichment values using the same approach as 

the  test. We plotted the enrichment factor for each histone modification in an 

N-by-N heat map. 

 

Epigenomic analysis of HOT regions upon H1 differentiation 

Using the DNase-seq data obtained from a recent study [29], we identified 5,410, 

5,602, 4,250, 3,408, and 6,719 HOT regions in H1-hESCs (H1), mesendoderm (ME), 

neural progenitor cells (NPCs), trophoblast-like cells (TBL), and mesenchymal stem 

cells (MSCs), respectively. As a control for terminally differentiated cells, we also 

identified 4,002 HOT regions in IMR90, a primary human foetal lung fibroblast cell 

line.  

 

MACS (Zhang et al., 2008) was used to identify H3k4me3 peaks using the default 

parameters. For H3k27me3, which typically shows broad enrichment, we used RSEG 

[65] to identify their enriched regions with “-i 20 –b 100 –v –mode 2”.  

 

HOT regions that were “shared” upon H1 differentiation were defined as HOT regions 

belonging to both H1 cells and H1-derived cell types (using bedops –e -25%). HOT 

regions “lost” upon H1 differentiation were defined as HOT regions belonging to H1 

cells but not found within H1-derived cells (using bedops –n -25%). Upon H1 

differentiation, “activated” HOT regions were defined as HOT regions bearing 

2χ
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H3k4me3 peaks only, whereas “repressed” HOT regions were defined as HOT 

regions bearing either H3k27me3 peaks only or no marker. 

 

The gene ontology (GO) analysis of “activated” HOT regions was performed using 

DAVID [66]. Each HOT region was assigned to the closest genes annotated in 

GENCODE (V15) by determining the distance from the centre of the HOT region to 

the TSS of each GENCODE gene.  

 

Accession numbers 

The identified HOT regions across human cell and tissue types have been deposited 

with the Gene Expression Omnibus under the accession ID GSE54296. 
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Figure legend 

Figure 1. Identification and validation of HOT regions 

(A) Distribution of TFBS complexity signal across the 80,326 ESC TFBS-clustered 

regions. TFBS-clustered regions are plotted in increasing order based on their TFBS 

complexity signal. HOT regions are defined as the population of TFBS-clustered 

regions above the inflection point of the curve. (B) Error bar showing the GSC results 

of HOT/LOT regions versus classical HOT/LOT regions. Red lines indicate the mean 

and normalised SD of 10,000 bootstrap samples; blue bar indicates the real statistics. 

(C) The proportion of HOT regions and classical HOT regions containing different 

numbers of ChIP-seq peaks corresponding to TFs in H1 cells. (D) The distributions of 

TF complexity of HOT regions containing different numbers of ChIP-seq peaks 

corresponding to TFs in H1 cells. (E) Distributions of the number of cell types, from 1 

to 154 (y axis), in which HOT (red) and LOT (blue) regions in each of nine classes (x 

axis) are observed. Width of each shape at a given y value shows the relative 

frequency of regions present in that number of cell types. 

See also Figure S1-S3 and Table S1-S4.  

 

Figure 2. Association of HOT regions with functional elements 

(A–B) Examples of HOT regions (red line) overlapping microRNA (A) and repetitive 

elements (B). Peaks are observed in cell types consistent with known functions of the 

microRNAs and repetitive elements (pink line). (C) Examples of known cell-selective 
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experimentally validated distal, non-promoter cis-regulatory elements. Shown above 

each set of DNaseI data are schematics displaying HOT regions relative to the genes 

they control. (D) Examples of colocalization of DMV (blue) and UMR (pink) with 

HOT regions (red) in a cell-type-specific manner.  

See also Figure S4 and Tables S5–S6. 

 

Figure 3. Developmental persistence of HOT regions at embryonic enhancers 

(A) Mouse day 11.5 embryonic tissue activity (blue lacZ staining) of seven 

representative transgenic human enhancer elements from the VISTA database. Shown 

below each image are the enhancer ID and numbers of individual embryos with 

enhancer activity (staining) in the indicated anatomical structure. (B) DNaseI 

hypersensitivity at seven enhancer elements corresponding to (A) across 57 definitive 

cell types. Note the relationship between the anatomical staining patterns in (A) and 

the cellular restriction (or lack thereof) of DNaseI hypersensitivity. (C-D) Persistence 

of HOT regions at embryonic enhancers. (C) Percentage of validated embryonic 

enhancers from the VISTA database with blood vessel staining (“Blood vessels”) and 

without blood vessel staining (“NOT Blood vessels”) that overlap a HOT region in 

any human endothelial cell type. (D) Percentage of validated embryonic enhancers 

from the VISTA database with heart staining (“Heart”) and without heart staining 

(“NOT Heart”) that overlap a HOT region in any human paraxial mesoderm cell type.  
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Figure 4. Association of distal HOT regions with super-enhancers 

(A) Error bar showing the GSC results between distal HOT regions and super 

enhancers. Red lines indicate the mean and normalised SD of 10,000 bootstrap 

samples; blue bar indicates the real statistics. (B) Distal HOT regions colocalise with 

super-enhancers in a cell type-specific manner. Cell type-specific super-enhancers 

(y-axis) are mapped relative to cell-specific distal HOT regions (x-axis) in 14 different 

cell types. (C) ChIP-seq binding profiles of super-enhancers, enhancers, and distal 

HOT regions for the indicated DNaseI and enhancer-relevant markers, including 

transcription factors, transcriptional cofactors, chromatin regulators, and RNA 

polymerase II in ESCs.  

See also Figure S5. 

 

Figure 5. Epigenetic Regulation of HOT regions upon H1 differentiation 

(A) The chromatin state (presence of H3K4me3 and/or H3K27me3) of HOT regions 

in various cell types. (B) Dynamic changes of bivalent HOT regions between H1 to 

H1-derived cell types. (C) Box plots showing the levels of H3k4me3 (top), 

H3k27me3 (middle), and mRNA (bottom) at activated and repressive HOT regions in 

H1 and H1-derived cells. (D) GO analysis of activated HOT regions in H1-derived 

cells.  

See also Table S7. 
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