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Abstract 

HOT (high-occupancy target) regions, which are bound by surprisingly large number 

of transcription factors, are considered to be among the most intriguing findings of 

recent years. Improved understanding of the roles that HOT regions play in biology 

would be afforded by knowing the constellation of factors that constitute these 

domains and by identifying HOT regions across the spectrum of human cell types. We 

describe here the population of transcription factors, cofactors, chromatin regulators, 

and transcription apparatus occupying HOT regions in embryonic stem cells (ESCs) 

and demonstrate that HOT regions are highly transcribed. We produce a catalogue of 

HOT regions in a broad range of human cell types and find that HOT regions are 

associated with genes that control and define the developmental processes of the 

respective cell and tissue types. We also show evidence of the developmental 

persistence of HOT regions at primitive enhancers and demonstrate unique signatures 

of HOT regions that distinguish them from typical enhancers and super-enhancers. 

Thus, HOT regions play key roles in human cell development and differentiation. 
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Introduction 

Recent studies have identified a class of mysterious genomic regions that are bound 

by a suprisingly large number of often functionally unrelated transcription factors 

(TFs) but lack their consensus binding motifs in Caenorhabditis elegans [1, 2], 

Drosophila melanogaster [3-7], and humans [8-10]. These regions are called HOT 

(high-occupancy target) regions or “hotspots”. In C. elegans, 22 different TFs were 

used to identify 304 HOT regions bound to 15 or more TFs [1]. Using the binding 

profiles of 41 different TFs, nearly 2,000 HOT regions were identified in D. 

melanogaster, each binding an average of 10 different TFs [5]. Many regions that 

bound to dozens of TFs were also identified in a small number of human cells [9, 10]. 

The broad presence of these regions in metazoan genomes suggests that they might 

reflect a general property of regulatory genomes. However, how hundreds of TFs 

coordinate clustered binding to regulatory DNA to form HOT regions across cell 

types and tissues is still unclear. Furthermore, the function of HOT regions in gene 

regulation remains unclear [11, 12], and their proposed roles include functioning as 

mediators of ubiquitously expressed genes [1], sinks or buffers for sequestering 

excess TFs [4], insulators [5], DNA origins of replication [5], and patterned 

developmental enhancers [7]. In addition, it is unknown what effect these regions 

have on human diseases and cancer. Thus, it is important to systematically analyse 

HOT regions in a large variety of cell types and tissues and to further understand their 

functional roles in the control of specific gene expression programs.  
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Resolving these challenges requires knowledge of the ensemble of all TF bindings in 

a cell. However, even predicting where a single TF binds in the genome has proven 

challenging. Computational motif discovery in regulatory DNA is a commonly used 

strategy for identifying candidate TF binding sites (TFBSs) for TFs with known 

binding motifs. Numerous algorithms have been developed for discovering motifs, 

such as FIMO (Find Individual Motif Occurrences) [13] and HOMER 

(Hypergeometric Optimization of Motif EnRichment) [14]. It has been reported that 

TFBSs tend to be DNase I hypersensitive, and only a fraction of the human genome is 

accessible for TF binding [15]. Remarkably, HOT regions correlate with decreased 

nucleosome density and increased nucleosome turnover and are primarily associated 

with open chromatin [1, 5, 6]. DNase I hypersensitive sites (DHSs) in chromatin have 

been used extensively to mark regulatory DNA and map active cis-regulatory 

elements in diverse organisms [16-18]. Recent advances in Next-Generation 

Sequencing (NGS) technologies have enabled genome-wide mapping of DHSs in 

mammalian cells [19-21], laying the foundations for comprehensive catalogues of 

human regulatory DNA regions. Thus, DHSs, combined with motif discovery 

algorithms, could be used in a very powerful approach for identifying a large 

repertoire of TFs in diverse cell and tissue types with high precision. This approach is 

likely to be widely applicable for investigating cooperativity among TFs that control 

diverse biological processes.  
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Here, we have developed a computational method for the genome-wide mapping of 

HOT regions in human genome. We have extended our understanding of HOT regions 

by demonstrating that embryonic stem cell (ESC) HOT regions are highly transcribed; 

by identifying the population of TFs, cofactors, chromatin regulators, and core 

transcription apparatus that occupy these regions in ESCs; and by demonstrating the 

enrichment of known TF motifs in ESC HOT regions. We have created a catalogue of 

HOT regions for 154 different human cell and tissue types and have shown that these 

regions are associated with genes encoding cell-type-specific TFs and other 

components that play important roles in cell-type-specific developmental process. We 

have shown evidence for the developmental persistence of HOT regions at primitive 

enhancers and have demonstrated unique signatures of HOT regions that distinguish 

them from typical enhancers and super-enhancers.  

 

Results 

HOT regions in ESCs 

Recently, we used Gaussian kernel density estimation across the binding profiles of 

542 TFs to identify TFBS-clustered regions and defined a “TFBS complexity” score 

based on the number and proximity of contributing TFBSs for each TFBS-clustered 

region (Chen et al., under review). Preliminary inspection of these regions with 

different TFBS complexity in ESCs revealed an unusual feature: Although the vast 

majority of TFBS-clustered regions with a median length 5.8 Kb exhibited only low 
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TFBS complexity, a small portion of TFBS-clustered regions spanning as much as 

11.9 Kb exhibited TFBS complexity scores greater than 61 (Table S1). Thus, we 

divided these ESC TFBS-clustered regions into two classes based on TFBS 

complexity—one class comprised the vast majority of TFBS-clustered regions, which 

we call LOT (low-occupancy target) regions, and the other encompassed 8533 (10.6%) 

TFBS-clustered regions with high TFBS complexity, which we call HOT 

(high-occupancy target) regions (Fig. 1A).  

 

Further characterisation of the ESC HOT regions revealed that they contain many 

features of LOT regions but at a considerably larger scale (Figs. 1B–D, S1, and Table 

S1). Previous reports have demonstrated that chromatin modifiers are enriched in 

enhancer regions. In the present study, we found that the levels of enhancer markers, 

including histone modifications H3K27ac and H3K4me1 [22, 23] and DNase I 

hypersensitivity [24], in HOT regions significantly exceed the levels in LOT regions. 

Similar results were observed for active markers, such as H3K9ac. Interestingly, the 

permissive histone marker H2AZ was significantly depleted in HOT regions, whereas 

the repressive marker H4K20me1 was significantly enriched in HOT regions. 

Strikingly, compared to LOT regions, HOT regions were simultaneously enriched 

with both permissive histone marker H3K4me3 and repressive marker H3K27me3 

signals, which are thought to play an important role in pluripotency by silencing 

developmental genes in ESCs while keeping them poised for activation upon 

differentiation [25, 26].  
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RNA polymerase II can transcribe enhancers and produce noncoding RNAs that 

contribute to enhancer activity [27-31]. We measured the levels of RNA polymerase II 

in HOT and LOT regions to determine the effect of these regions on transcriptional 

control. RNA polymerase II was highly enriched in HOT regions relative to LOT 

regions, which was consistent with RNA signalling levels (Fig. 1C). This result helps 

to explain why HOT regions drive high-level expression of their associated genes 

compared to LOT regions (Fig. 1E). Our results suggest that HOT regions could be 

involved in regulating RNA polymerase II activities and could therefore affect gene 

expression. Thus, HOT regions may harbour features resembling those of recently 

identified enhancer RNAs that can contribute to enhancer function [27-29, 32-36].  

 

To further investigate the factors that constitute HOT and LOT regions, we compiled 

chromatin immunoprecipitation-sequencing (ChIP-seq) data for 13 different 

chromatin regulators and 30 TFs in ESCs from the ENCODE project [24, 37] (Figs. 

1D and S1B, Table S2). It was notable that a broad spectrum of chromatin regulators 

(12 out of 13, 92%) and transcription regulators (26 out of 30, 87%) that are 

responsible for cell growth, tissue development, cell cycle progression and 

developmental events are especially enriched in ESC HOT regions relative to LOT 

regions, including ATF2, POU5F1, HDAC2, HDAC6, and PHF8. In contrast, four 

chromatin regulators and TFs, CTCF, RAD21, BCL11A, and MAFK, were 

significantly enriched in ESC LOT regions relative to HOT regions. Recent studies 
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have revealed that CTCF and RAD21 co-occupy many genomic targets of 

pluripotency factors in ESCs to play key roles in the control of pluripotency and 

cellular differentiation [38, 39]. Strikingly, SUZ12 and JARID1 were differentially 

depleted within HOT and LOT regions. SUZ12, a subunit of PRC2, maintains 

pluripotency in ESCs by repressing developmental genes that are preferentially 

activated during ESC differentiation [40]. Recent studies from multiple model 

organisms, including corn fungus, yeast, C. elegans, Drosophila, zebrafish, and mice, 

have demonstrated that JARID1 proteins, as histone H3K4 demethylases, play key 

roles in development and differentiation [41-43].  

 

Distinct sequence signatures of HOT regions 

To gain insight into characteristic sequence features of HOT regions, we studied the 

enrichment of known TF motifs in HOT and LOT regions using HOMER [14]. Both 

the genome and the LOT/HOT regions were used as backgrounds in the motif 

scanning within HOT/LOT regions, respectively. Overall, 226 out of 542 (41.7%) TFs 

with known motifs exhibited significantly enriched binding in HOT or LOT regions 

(Fig. 1F, and Table S3). Of these 226 TFs, 59 (26.1%) TFs exhibited specifically 

enriched binding within HOT regions, relative to the expectations based on the 

backgrounds of both genome and LOT regions. The majority of these TFs play 

important roles in development, including MYB, MZF1, TCF7, ZBTB7A/B, HNF4A, 

POU1F1, PAX2, SRF, XBP1, EGR3 and CREB1, as well as in cell proliferation and 

differentiation, including RORA, E4F1, MECOM, SP1, RREB1 and FOXM1. 
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Thirty-four (15.2%) factors exhibited significantly enriched binding in LOT regions 

relative to expectations based on the backgrounds of both genome and HOT regions. 

Strikingly, 12 of these 34 TFs (p-value = 0.0012, binomial test) were housekeeping 

TFs that are associated with the regulation of transcription (NFE2L1, REST, TCF4, 

NFYC, YY1), protein binding (NFKB1, RBPJ, SMAD4), TF activity (RELA), 

negative regulation of granulocyte differentiation (RUNX1), multicellular organismal 

development (TCF12), and the nucleus (SP3). Additionally, we found that a small 

fraction (8 out of 226, 3.5%) of TFs exhibited specifically enriched binding in both 

HOT and LOT regions relative to the expectations based on the two backgrounds. 

These TFs play important roles in development and differentiation, including 

POU3F2, TCF3, SPY, and MYC, as well as housekeeping roles such as response to 

oxidative stress, including FOXO1 and NFE2L2.  

 

HOT regions in many cell types 

To characterise the HOT regions in as many human cells as possible, we applied a 

uniform processing pipeline to create a catalogue of HOT regions based on 

DNase-seq data from 349 samples, including 154 cell and tissue types studied under 

the ENCODE Project [24, 37] (Fig. 2). We identified an average of 8,036 HOT 

regions per cell type (range 2,405 to 19,753, Table S4), spanning on average ~1.7% of 

the genome. In total, we identified 59,986 distinct HOT regions along the genome, 

collectively spanning 18.8%. To assess the rate of discovery of new HOT regions, we 

performed saturation analysis as described in a previous study [24] and predicted 
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saturation at approximately 107,184 (standard deviation = 8,608) HOT regions and 

774,925,252 bp (standard deviation = 33,534,434) (40.9%) of genome coverage (Fig. 

2A). This result indicates that we have discovered more than half of the estimated 

total HOT regions.  

 

Of these 59,986 HOT regions, 287 localise to UTRs defined by GENCODE, and a 

collective 9% lie within promoter (n = 4,039, 6.7%) and exon (n = 1,391, 2.3%) 

regions. Among the remaining HOT regions, 56.8% (n = 34,090) and 33.6% (n = 

20,179) are positioned in intronic and intergenic regions, respectively (Fig. 2B). We 

found that HOT regions were more likely localised to genic regions (intron and exon) 

and less likely localised to intergenic regions compared with LOT regions. HOT 

regions are typically much more cell-selective than LOT regions (Fig. 2C, 1st column). 

Promoter proximal HOT regions typically exhibit high accessibility across cell types, 

with the average proximal HOT region detected in 21 cell types; however, distal HOT 

regions are largely cell selective, with the average distal HOT region detected in 7 cell 

types (Fig. 2C, 2nd and 3rd columns). 

 

Gene Ontology (GO) analysis of HOT regions 

We next performed GO analysis on HOT region-associated genes (HOT genes). This 

analysis revealed that HOT genes are linked to developmental processes of the 

respective cell and tissue types (Fig. 2D). To gain further understanding of the 

transcriptional regulatory circuitry of development, it would be valuable to identify 
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key developmental TFs that control this process. As the majority of HOT genes are 

involved in developmental processes, we deduced that candidate key developmental 

TFs could be identified in human cells by identifying HOT genes that encode TFs. We 

then performed this analysis in all of the 154 human cells. For cells in which key 

developmental TFs have already been identified, this analysis captured the vast 

majority of these factors (Fig. 2E and Table S5). A catalogue of candidate key 

developmental TFs for other cell types can be found in Table S6. These candidates 

will be helpful in deducing the transcriptional regulatory circuitry of diverse human 

cells and in further understanding cell development and cell differentiation. 

 

Associations with validated regulatory elements 

To gain understanding of the functional roles of HOT regions, it would be valuable to 

explore their associations with previously validated regulatory elements. First, we 

explored the extent to which HOT regions associate with microRNAs, which 

comprise a major class of regulatory molecules and have been extensively studied, 

resulting in the consensus annotation of hundreds of conserved microRNA genes [44]. 

Of 2,633 annotated microRNA transcriptional start sites (TSSs), 1,667 (63%) coincide 

with a HOT region. The accessibility of HOT regions at microRNA promoters was 

highly promiscuous compared with GENCODE TSSs (Fig. 2C, 4th column) and 

showed cell lineage organisation, paralleling the known regulatory roles of 

well-annotated lineage-specific microRNAs (Fig. 3A). Next, we investigated the 

association between HOT regions and transposon sequences. A surprising number of 
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these sequences contain highly regulated HOT regions (Fig. 2C, 5th column, and Table 

S7), which is compatible with the cell type-specific transcription of repetitive 

elements detected using ENCODE RNA sequencing data [45]. The examples shown 

in Figure 3B also illustrate the strong cell-selectivity of chromatin accessibility 

observed for each major repeat class. Finally, we compared HOT regions with an 

extensive compilation of 373 experimentally validated distal, non-promoter 

cis-regulatory elements, such as insulators, locus control regions (LCRs), transcription 

initiation platforms (TIPs), and more (Fig. 3C). This analysis revealed that the 

overwhelming majority (76%) of these elements are encompassed within HOT 

regions (Table S8), typically with strong cell selectivity (Fig. 2C, 6th column).  

 

Developmental persistence of HOT regions at embryonic enhancers 

As HOT regions drive genes that control and define cell development, it is reasonable 

to surmise that HOT regions could be persistently associated with enhancers active 

during early development in definitive cells. We compiled 882 early developmental 

enhancers that were identified through comparative genome analysis and 

experimental validation of in vivo enhancer activity in transgenic mice [46]. Each of 

these enhancers displays reproducible tissue-staining patterns in one or more 

embryonic tissues at embryonic day 11.5 (Fig. 4A). Of these 882 non-promoter 

human enhancers, a surprising proportion (308/882, 35%) occur within HOT regions 

in at least one definitive human cell type. To quantify the tissue activity spectra of 

these embryonic enhancers, we systematically examined their lacZ expression 
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patterns in transgenic mice and related these patterns to HOT region patterning at the 

same elements across different definitive cell types (Fig. 4B). For example, an 

enhancer that is selectively active in embryonic forebrain tissue (Fig. 4A, 1st column) 

is selectively found in HOT regions within cells derived from human ESCs (Fig. 4B, 

1st column), and an enhancer that is selectively active in embryonic blood vessels (Fig. 

4A, 2nd column) is selectively found in HOT regions within endothelial cells (Fig. 4B, 

2nd column). In contrast, an enhancer with extremely broad tissue activity (Fig. 4A, 7th 

column) is found in HOT regions in nearly all definitive cell types (Fig. 4B, 7th 

column). These findings were further confirmed across the spectrum of enhancers 

(Figs. 4C–D). A total of 62.5% of enhancers active in embryonic blood vessels are 

found in HOT regions of endothelial cells, whereas only 26.3% of all other embryonic 

enhancers are found in endothelial HOT regions. Similarly, 59.3% of enhancers active 

in embryonic heart tissue are found in HOT regions within cells derived from human 

heart and great vessel structures, whereas only 30.7% of all other embryonic 

enhancers are found in HOT regions in these cell types.  

 

Distal HOT regions in super-enhancers  

Recently, Richard A. Young and his colleagues identified an unusual class of enhancer 

domains, called super-enhancers, that drive the high-level expression of genes that 

control and define cell identity and disease [47-49]. To elucidate the relationship 

between HOT regions and super-enhancers, we collected the HOT regions and 

super-enhancers from the same 14 cell types. We found that super-enhancers were 
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highly enriched in HOT regions compared to LOT regions (Fig. 5A, p-value < 10-4, 

binomial test). To determine whether HOT regions might cooperate with 

super-enhancers to regulate cell type-specific gene regulation, we performed 

colocalisation analysis of these two types of regions in 14-by-14 cell line 

combinations, as previously described [50, 51] (Fig. 5B). The diagonal-matched cell 

line enrichment values (> 1.00 for all comparisons) were much larger than the 

off-diagonal mismatched cell line values (< 1.00 for all comparisons), indicating that 

cell type-specific HOT regions tend to strongly colocalise with super-enhancers that 

function in the corresponding cell types. Furthermore, we compared the densities of 

chromatin markers, TFs, and RNA polymerase II between HOT regions, enhancers, 

and super-enhancers. All of these elements exhibited similar DNase I hypersensitivity. 

As expected, enhancer markers, such as H3K27ac, H3K4me1, and P300, were 

significantly enriched within enhancers and super-enhancers compared to HOT 

regions. In addition, RNA Pol II was significantly enriched within enhancers and 

super-enhancers compared to HOT regions. Notably, HOT regions demonstrated 

simultaneous significant enrichment of the bivalent markers H3K4me3 and 

H3K27me3, whereas enhancers and super-enhancers showed both enrichment of 

H3K4me3 and depletion of H3K27me3 compared to the background genome (Fig. 

5C). Finally, we characterised super-enhancer-associated and HOT region-associated 

genes by GO analysis. Our results revealed that super-enhancer-associated genes are 

linked to biological processes that largely define the identities of the respective cell 

and tissue types, which is well consistent with previous study [47]. However, HOT 
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region-associated genes are linked to biological processes that largely define the 

development and differentiation of the respective cell and tissue types (Fig. 5D).  

 

Discussion and Conclusions 

Previous studies have revealed regions in worms [1, 2], flies [3-7], and humans [8-10] 

with heavily clustered TF binding, termed HOT regions. These reports [1-10] 

identified HOT regions by the binding peaks of many TFs using ChIP-seq data, 

whereas we defined HOT regions by a large number of TF motif binding sites on 

DHSs in DNase-seq data. Although the identifications of HOT regions were based on 

different data, both definitions demonstrate that HOT regions are a novel class of 

genomic regions that are bound by a surprisingly large number of TFs and TF motifs. 

Importantly, our identification of HOT regions using TF motif discovery on DHSs can 

greatly extend the repertoire of both TFs and cell types in the genome, thus greatly 

enhancing our understanding of HOT regions.  

 

We have extended our understanding of HOT regions by demonstrating that ESC 

HOT regions are highly transcribed and by identifying the population of TFs, 

cofactors, chromatin regulators, and core transcription apparatus that occupy these 

domains in ESCs. ESCs were chosen for identifying components of HOT regions 

because the TFs, cofactors, chromatin regulators, and noncoding RNAs that control 

the ESC state and that contribute to the gene expression program of pluripotency and 
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self-renewal are likely better understood than those for any other cell type [52-54]. 

HOT regions are occupied by a large portion of enhancer-associated RNA polymerase 

II and its associated cofactors and chromatin regulators, which may explain how these 

molecules contribute to the high-level transcription of associated genes. Furthermore, 

the levels of RNA detected in HOT regions vastly exceed the levels of RNA in LOT 

regions, and recent evidence suggests that these enhancer RNAs (eRNAs) may 

contribute to gene activation [27-29, 32-36]. Several additional important insights 

were gained by studying how more than 40 TFs, cofactors, chromatin regulators, and 

components of the core transcription apparatus occupy HOT regions and LOT regions 

in ESCs. All of the enhancer-binding TFs are enriched in HOT regions, with some so 

highly enriched that they distinguish HOT regions from LOT regions. 

 

By uncovering characteristic sequence signatures of HOT regions, our computational 

analysis revealed that more than one quarter of enriched TFs exhibited significantly 

enriched binding within HOT regions, and the majority play essential roles in 

development and cell differentiation. Strikingly, 12 of 34 TFs (p-value = 0.0012, 

binomial test) that specifically enriched binding within LOT regions were 

housekeeping TFs. Our findings, combined with previous observations that HOT 

regions are depleted in the bound TFs’ motifs [1, 3-5] compared with regions bound 

by single TFs, suggest that HOT regions have distinct sequence features 

distinguishing them from LOT regions and the genome background, as well as 

suggesting that information on HOT regions is encoded in the DNA sequence.  
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We have generated a catalogue of HOT regions and their associated genes in a broad 

spectrum of human cell and tissue types. HOT regions tend to be cell type-specific, 

and the genes associated with these elements are linked to biological processes that 

largely define the development and differentiation of the respective cell and tissue 

types. Genes that encode candidate key developmental TFs and noncoding RNAs 

such as microRNAs are among those associated with HOT regions. Thus, the HOT 

region catalogue should be a valuable resource for further study of transcriptional 

control of cell development and differentiation [55-58].  

 

Association analysis between HOT regions and embryonic enhancers presents direct 

evidence of the systematic developmental persistence of HOT regions at 

tissue-selective early developmental enhancers and of the persistent imprint of 

enhancer roles on the formation of cross-cell-type patterning of HOT regions in 

definitive cells. Additionally, we found that super-enhancers were highly enriched in 

HOT regions relative to LOT regions, and cell type-specific super-enhancers tend to 

strongly colocalise with HOT regions that function in the corresponding cell types. 

Furthermore, all enhancer markers, including DNaseI, H3K27me3, H3K4me1, 

enhancer-binding TFs and chromatin regulators, are enriched at HOT regions but have 

lower levels of enrichment that distinguish them from super-enhancers. Strikingly, we 

observed the paradoxical coexistence of permissive and repressive histone marks, 

H3K4me3 and H3K27me3, in HOT regions. GO analysis revealed that 
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super-enhancers and HOT regions both drive the expression of genes that define cell 

identity and cell development of the respective cell and tissue types. Together, our 

results suggest that HOT regions might therefore represent a novel class of enhancers 

because they contain many features of enhancers or super-enhancers but at a smaller 

scale. The activities of HOT regions and super-enhancers are both defined by 

colocalisation between TFs in these regions but on different genomic scales of 

colocalisation. A recent study [59] described the relationship between hotspots and 

super-enhancers in the early phase of adipogenesis, demonstrating that hotspots are 

highly enriched in large super-enhancers and revealing that hotspots and 

super-enhancers function as two levels of regulatory hubs that serve to integrate 

external stimuli through cooperativity between TFs on chromatin. These findings are 

highly consistent with ours. 

 

Materials and Methods 

Data sets 

The DNaseI Hypersensitivity by Digital DNaseI data were obtained from the Duke 

and UW ENCODE groups. Histone modifications according to ChIP-seq data were 

downloaded from the Broad histone ENCODE group. TFs according to ChIP-seq data 

were obtained from the HAIB and SYDH TFBS ENCODE groups. Gene annotations 

were obtained from the GENCODE data (V15). All these data were provided through 

the ENCODE Project [24, 37], and use of the data strictly adheres to the ENCODE 
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Consortium Data Release Policy.  

 

Identifying TFBS-clustered Regions and HOT regions 

Position-specific weight matrices of 542 TFs, which corresponded to 796 motif 

models, were collected from the TRANSFAC [60], JASPAR [61], and UniPROBE [62] 

databases. The genomic sequence under DHSs from the hg19 genome was used as 

input for iFORM (Chen et al., in preparation) with a custom library of all 796 motifs 

scanned for motif instances at a p-value threshold of 10-18 (corresponding to the 

FIMO threshold of 10-5). For each TF, motif instances were combined to generate its 

TFBSs.  

 

An established method [5] was used to perform Gaussian kernel density estimations 

across the genome (bandwidth 3 kb, centred on each TFBS). Each peak of the density 

profile was denoted as a TFBS-clustered region. To determine the complexity of each 

TFBS-clustered region, the Gaussian kernalised distance from a peak to each TFBS 

that contributed at least 0.1 to the strength was determined. The window around each 

TFBS-clustered region was derived by finding the maximum distance (in bp) from the 

TFBS-clustered region to a contributing TF and adding 1.5 kb (one half of the 

bandwidth). Each window was centred on a TFBS-clustered region.  

 

To identify HOT regions, we first ranked all the TFBS-clustered regions in a cell type 

by increasing and plotting TFBS complexity (Fig. 1A). This plot revealed a clear 
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point in the distribution of the TFBS-clustered regions at which the complexity signal 

began increasing rapidly. To geometrically define this point, we first scaled the data 

such that the x and y axes were from 0–1. We then found the x axis point for which a 

line with a slope of 1 was tangent to the curve. We defined the TFBS-clustered 

regions above this point to be HOT regions and the TFBS-clustered regions below 

that point to be LOT regions. The pipeline for identifying HOT or LOT regions was 

applied uniformly to datasets from 349 samples, including 154 cell types studied 

under the ENCODE Project [24, 37]. The classification of the TFBS-clustered regions 

in each cell type as a HOT or LOT region can be found in Table S4 for diverse human 

cells and tissues. 

 

Characterisation of HOT Regions 

The genome-wide ChIP-seq densities of TF and histone modifications around HOT 

regions and LOT regions (Figs. 1C, 1D, 3D and S1B) were created by mapping reads 

to these regions and their corresponding ±5 kb flanking regions. Each HOT/LOT 

region and its flanking regions were split into 50 equally sized bins. This procedure 

split all HOT/LOT regions, regardless of their size, into 150 bins. All HOT/LOT 

regions were then aligned, and the average ChIP-seq density in each bin was 

calculated to create a genome-wide average in units of reads per kilobase per million 

(rpkm). 

 

To find sequence motifs enriched in HOT and LOT regions, we analysed the genomic 
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sequences under the DHSs within these regions. HOMER [14] was used to examine 

whether any of the 542 non-redundant TFs from TRANSFAC [60], JASPAR [61], and 

UniPROBE [62] were overrepresented with default parameters. Overrepresentation 

was statistically evaluated using three independent background sets: the entire 

chromosome 20, all the RefSeq transcription start sites (TSSs) (±2.0�kb), and all the 

CpG islands annotated in the hg19 genome. A motif was retained only when it was 

significantly overrepresented (P�≤�0.01) compared to all these backgrounds.  

 

Master list and annotation for HOT regions 

HOT regions from 154 cell types were consolidated into a master list of 59,986 

unique, non-overlapping HOT region positions by first merging these regions across 

cell types. Then, for each resulting interval of merged regions, the HOT region with 

the highest TFBS complexity was selected for the master list. Any HOT regions 

overlapping the regions selected for the master list were then discarded. The 

remaining HOT regions were merged, and the process was repeated until each original 

TFBS-clustered region was either incorporated into the master list or discarded.  

 

Genomic annotations from GENCODE annotations (V15) [63], i.e., Basic, 

Comprehensive, PseudoGenes, 2-way PseudoGenes, and PolyA Transcripts, were 

used. The promoter class for each GENCODE-annotated TSS was defined as a region 

from the master list within 1 kb of the TSS. The exon class was defined as any HOT 

region not in the promoter class that overlapped a GENCODE-annotated “CDS” 
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segment by at least 75 bp. The UTR class was defined as a HOT region not in the 

promoter or exon class that overlapped a GENCODE-annotated “UTR” segment by at 

least 1 bp. The intron class was defined as GENCODE segments annotated as “gene” 

with all “CDS” segments. The intron class also covered any HOT regions not defined 

by other categories that overlapped introns by at least 1 bp.  

 

The cell-type number was defined for each HOT region by annotating the master list 

with the number of cell-types with overlapping HOT regions. Plots in Figure 2B were 

generated using the R function “geom_violin” from the “ggplot2” package, which 

summarises the distribution of cell-type numbers for distinct categories of HOT 

regions. The distribution of cell types containing a HOT region was calculated 

separately for HOT regions observed in 154 cell types.  

 

Gene Ontology Analysis 

For gene ontology (GO) analysis, a subset of 19 data sets, representing the diversity of 

cells in the collection used for this study, were first selected. Each HOT region was 

assigned to the closest genes annotated in the GENCODE (V15) by determining the 

distance from the centre of the HOT region to the TSS of each GENCODE gene. For 

each cell, the genes associated with HOT regions in that cell and no more than six 

other cells in the subset were analysed using Database for Annotation, Visualization 

and Integrated Discovery (DAVID) [64]. For each cell, the four top scoring categories 

(i.e., the categories with the lowest p-values) were selected for display. A threshold 
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p-value score of 10-6 was incorporated as a minimum requirement filter for scoring as 

a top category. 

 

Analysis of microRNAs, RepeatMasker, and cis-regulatory elements 

The microRNA coordinates were downloaded from miRBase (version 20) [44] and 

used to map microRNAs to their genomic locations. We used the method described in 

a recent study [15] to assign TSSs for 2633 microRNA loci.  

 

RepeatMasker data were downloaded from the hg19 rmsk table associated with the 

UCSC Genome Browser. There are 1395 distinctly named repeats in 56 families in 21 

repeat classes. The data were analysed by repeat family because this procedure gives a 

granularity suitable for display. A number of the classes are structural classes rather 

than classes derived from transposable elements. Bedops utilities [65] were used to 

count the number of repeat elements that overlapped at least 1 bp with HOT regions. 

The HOT regions from 154 cell types/tissues were tested for overlap with repeat 

families. Supplementary Table 7 shows overlap statistics for families of elements with 

at least 5000 overlapping HOT regions.  

 

Additionally, an extensive compilation of 373 experimentally validated distal, 

non-promoter cis-regulatory elements, including insulators, locus control regions, and 

so on, were taken from a recent study [15] (Table S8). 
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Comparison of HOT regions with known enhancers 

Data for tests of human enhancers in a mouse developmental model [46, 66] were 

downloaded from http://enhancer.lbl.gov/. Embryonic mouse images were 

downloaded from the VISTA enhancer browser (http://enhancer.lbl.gov/). 

 

To calculate the enrichment of super-enhancers in a HOT region relative to a LOT 

region in Figure 5A, we first counted the numbers of super-enhancers that overlapped 

with the HOT and LOT regions and normalised them to the total number of HOT and 

LOG regions, respectively. We then calculated the log2 ratios of the normalised 

results to show the enrichment of super-enhancers in HOT and LOT regions.  

 

To perform colocalisation analysis on HOT regions and super-enhancers in N-by-N (N 

= 14) cell line combinations as similarly described in a previous study [50, 51], we 

collected a catalogue of super-enhancers for 15 human cells from recent studies. The 

counts were divided by the corresponding row sum and column sum and multiplied 

by the matrix sum to obtain enrichment values, which was conducted using the same 

approach as the  test. We plotted the enrichment factor for each histone 

modification in a N-by-N heat map. 

 

Accession numbers 

The identified HOT regions across human cell and tissue types have been deposited 

2χ
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with the Gene Expression Omnibus under the accession ID GSE54296. 
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Figure legend 

Figure 1. Identification and characterisation of HOT regions in ESCs 

(A) Distribution of TFBS complexity signal across the 80,326 ESC TFBS-clustered 

regions. TFBS-clustered regions are plotted in increasing order based on their TFBS 

complexity signal. HOT regions are defined as the population of TFBS-clustered 

regions above the inflection point of the curve. (B) ChIP-seq binding profiles for the 

indicated DNaseI, histone modifications, transcription factors, chromatin regulators, 

RNA polymerase II, and MRE at the POLE4 and LINC loci in ESCs. Gene models 

are depicted below the binding profiles. Region bars and scale bars are depicted above 

the binding profiles. rpkm, reads per kilobase per million. (C–D) Metagene 

representations of the mean ChIP-seq signal for the indicated DNaseI, RNA 

polymerase II, histone modifications, transcription factors, transcriptional cofactors, 

and chromatin regulators across LOT (blue) and HOT (red) regions. Metagenes are 

centred on the TFBS-clustered region (5863 bp and 11,890 bp for LOT and HOT 

regions, respectively) with 5 kb surrounding each TFBS-clustered region. (E) Gene 

expression level of HOT-specific genes (red) and LOT-specific genes (blue). (F) Motif 

enrichment in HOT and LOT regions, compared with different backgrounds. Heat 

map showing the most differentially distributed motifs (multiple testing corrected 

P-value < 0.01) between HOT regions compared with the genome average values 

(first column), HOT and LOT regions (second column), LOT regions compared with 

the genome average values (third column), LOT and HOT regions (fourth column). 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 7, 2016. ; https://doi.org/10.1101/036152doi: bioRxiv preprint 

https://doi.org/10.1101/036152
http://creativecommons.org/licenses/by-nc/4.0/


32 

 

See also Figure S1 and Tables S1–S3. 

 

Figure 2. General features of HOT regions in many cell types 

(A) Saturation analysis of HOT regions. We modelled saturation for element count 

and length using a Weibull distribution (r2 ≥ 0.995) and predicted saturation at 

approximately 107,184 (sd = 8,608) and 774,925,252 (sd = 33,534,434) for count and 

length, respectively. The cell line estimation of 95% saturation is 222 and 154 for 

count and length, respectively. (B) Distribution of 59,986 HOT regions and 301,322 

LOT regions with respect to GENCODE gene annotations. Promoter regions are 

defined as the first region located within 1 kb upstream and downstream of a 

GENCODE TSS. 

(C) Distributions of the number of cell types, from 1 to 154 (y axis), in which HOT 

(red) and LOT (blue) regions in each of six classes (x axis) are observed. The width of 

each shape at a given y value shows the relative frequency of regions present in that 

number of cell types. (D) GO terms for HOT-region-associated genes in 19 human 

cell and tissue types with corresponding p-values. (E) Candidate key developmental 

transcription factors identified in six cell types. All of these transcription factors were 

previously demonstrated to play key roles in the development of the respective cell 

type or facilitate differentiating to the respective cell type. 

See also Tables S4–S6. 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 7, 2016. ; https://doi.org/10.1101/036152doi: bioRxiv preprint 

https://doi.org/10.1101/036152
http://creativecommons.org/licenses/by-nc/4.0/


33 

 

Figure 3. Association of HOT regions with validated elements 

(A–B) Examples of HOT regions (red line) overlapping microRNA (A) and repetitive 

elements (B). Peaks are observed in cell types consistent with known functions of the 

microRNAs and repetitive elements. (C) Examples of known cell-selective 

experimentally validated distal, non-promoter cis-regulatory elements. Shown above 

each set of DNaseI data are schematics displaying HOT regions relative to the genes 

they control. 

See also Tables S7–S8. 

 

Figure 4. Developmental persistence of HOT regions at embryonic enhancers 

(A) Mouse day 11.5 embryonic tissue activity (blue lacZ staining) of seven 

representative transgenic human enhancer elements from the VISTA database. Shown 

below each image are the enhancer ID and numbers of individual embryos with 

enhancer activity (staining) in the indicated anatomical structure. (B) DNaseI 

hypersensitivity at seven enhancer elements corresponding to (A) across 57 definitive 

cell types. Note the relationship between the anatomical staining patterns in (A) and 

the cellular restriction (or lack thereof) of DNaseI hypersensitivity. (C–D) Persistence 

of HOT regions at embryonic enhancers. (C) Percentage of validated embryonic 

enhancers from the VISTA database with blood vessel staining (“Blood vessels”) and 

without blood vessel staining (“NOT Blood vessels”) that overlap a HOT region in 

any human endothelial cell type. (D) Percentage of validated embryonic enhancers 
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from the VISTA database with heart staining (“Heart”) and without heart staining 

(“NOT Heart”) that overlap a HOT region in any human paraxial mesoderm cell type.  

 

Figure 5. Association of distal HOT regions with enhancers 

(A) Enrichment of super-enhancers in HOT regions relative to LOT regions in 14 

different cell types. (B) Distal HOT regions colocalise with super-enhancers in a cell 

type-specific manner. Cell type-specific super-enhancers (y-axis) are mapped relative 

to cell-specific distal HOT regions (x-axis) in 14 different cell types. (C) ChIP-seq 

binding profiles of super-enhancer, enhancer, and distal HOT regions for the indicated 

DNaseI and enhancer-relevant markers including transcription factors, transcriptional 

cofactors, chromatin regulators, and RNA polymerase II in ESCs. (D) GO analysis of 

super-enhancer-associated genes and HOT region-associated genes in H1 hESC, 

CD20, and pancreas cells. The top 10 scoring categories were selected for display. A 

threshold p-value score of 10-4 was incorporated as a minimum requirement filter for 

scoring as a top category. 
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Supplementary figures 

Figure S1. Characterisation of HOT regions, related to figure 1 

(A) ChIP-seq binding profiles for the indicated DNaseI, histone modifications, 

transcription factors, chromatin regulators, polymerase II (RNAPII), and MRE at the 

LINC loci in ESCs. Region bars and scale bars are depicted above the binding profiles. 

rpkm, reads per kilobase per million. (B) Metagene representations of the mean 

ChIP-seq signal for the indicated broad histone, chromatin regulator, transcription 

factor and other markers across LOT (black) and HOT (red) regions. Metagenes are 

centred on the TFBS-clustered region with 5 kb surrounding each TFBS-clustered 

region. 

 

 

Supplementary tables 

Table S1. H1hESC TFBS cluster information, related to figure 1  

Table showing the TF complexity cutoffs for HOT regions in H1hESCs: the total 

number of H1hESC TFBS clusters is 80,326, the number of HOT regions is 8,533, 

and the median length is 11,890 bp and 5,863 bp for HOT regions and LOT regions, 

respectively. 
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Table S2. ChIP-seq density of HOT and LOT regions, related to figure 1 

Fold difference values of ChIP-seq signals between LOT and HOT regions for the 

indicated broad histone, chromatin regulator, transcription factor and other markers. 

Total signal indicates the mean ChIP-seq signal (total reads) at LOT and HOT regions 

normalised to the mean value at LOT regions. Density indicates the mean ChIP-seq 

density at constituent DHSs (rpkm) of LOT regions and HOT regions normalised to 

the mean value at LOT regions. Read % indicates the percentage of all reads mapped 

to TFBS-clustered regions that fall in the constituents of LOT or HOT regions.  

 

Table S3. Enrichment of known transcription factor binding motifs, related to 

figure 1 

Known transcription factor binding motifs in HOT and LOT regions using HOMER. 

Both the backgrounds of the genome and LOT/HOT regions were used in motif 

scanning within HOT/LOT regions. 

 

Table S4. Information on HOT regions in 154 files, related to figure 2 

Table showing the TF complexity cutoffs for HOT regions, HOT region number, total 

number of TFBS clusters and genome coverage in 154 cell lines. 

 

Table S5. Key TF genes shown in figure 2J, related to figure 2 

Functions and references of key developmental transcription factor genes highlighted 
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in figure 2J. 

 

Table S6. Key developmental transcription factor genes, related to figure 4 

Development-associated transcription factor genes identified in 154 cell lines. 

 

Table S7. Repetitive elements in HOT regions, related to figure 2 

Overlap of repeat-masked elements by repeat family for families with more than 

2,000 elements overlapping DHSs. Column 1 shows the repeat family; column 2 

shows the repeat class. Column 3 shows the average size of elements in the family; 

column 4 shows the total number of occurrences of elements of the family in the 

genome. Column 5 indicates the number of repeat families that overlap a HOT region 

by at least 95%. 

 

Table S8. The 1046 validated elements in HOT regions, related to figure 2 

Enrichment of validated elements in HOT and LOT regions. The number of 

non-VISTA enhancer-associated elements is 373, while the total number of validated 

elements is 1,046. 
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