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Abstract 
Cooperation between DNA-binding proteins (DBPs) such as transcription factors and 
chromatin remodeling enzymes plays a pivotal role in regulating gene expression and 
other biological processes. Such cooperation is often via interaction between DBPs that 
bind to loci located distal in the linear genome but close in the 3D space, referred as 
trans-cooperation. Due to the lack of 3D chromosomal structure, identification of DBP 
cooperation has been limited to those binding to neighbor regions in the linear genome, 
referred as cis-cooperation. Here we present the first study that integrates protein ChIP-
seq and Hi-C data to systematically identify both cis- and trans-cooperation between 
DBPs. We developed a new network model that allows identification of cooperation 
between multiple DBPs and reveals cell type specific or independent regulations. 
Particularly interesting, we have retrieved many known and previously unknown trans-
cooperation between DBPs in the chromosomal loops that may be a key factor for 
influencing 3D chromosomal structure. The software is available at 
http://wanglab.ucsd.edu/star/DBPnet/index.html. 
 
Introduction 
DNA binding proteins (DBPs) such as transcription factors (TFs), insulators and 
chromatin remodeling enzymes play key roles in many important biological processes. 
These proteins rarely function alone but rather cooperate with one another to regulate 
gene expression, epigenetic modifications and formation of 3D interactions between 
distal genomic loci[1, 2]. Identification of DBP cooperation is thus critical for 
understanding the mechanisms regulating these crucial molecular and cellular functions.  
 
Previous studies have focused on identifying DBPs binding to neighbor genomic 
regions[3-7], which is hereinafter referred as cis-cooperation. Despite the great insight of 
these studies provided into revealing combinatorial regulation of DBPs, they missed 
cooperation between DBPs binding to distal genomic loci but localized in spatial 
proximity to form so called trans-cooperation. Trans-cooperation of DBPs either 
enhances the existing 3D contacts or creates new ones to bring functional elements 
such as enhancers to their target loci such as promoters. However, no study has 
thoroughly investigated the trans-cooperation and its relationship with cis-cooperation. 
 
The ENCODE project has generated hundreds of ChIP-seq data to map binding sites of 
DBPs in multiple cell lines[8-10]. Recently, kilobase-resolution Hi-C data were available 
in two of these cell lines, GM12878 and K562[11]. These data provide an unprecedented 
opportunity to systematically map both cis- and trans-cooperation between DBPs. 
However, it is a great challenge to analyze this large amount of data and extract the 
cooperation among multiple rather than a pair of DBPs.  
 
To tackle this challenge and comprehensively catalog DBP cooperation, we present here 
a new model to constructing networks that represent both cis- and trans-association 
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between DBPs. Analyzing these networks in GM12878 and K562 has revealed complex 
cooperative relationship among TFs, histone modifications, chromatin remodeling 
enzymes and chromatin structure mediators. Through identification of modules and 
cliques in the network composed of trans-cooperation, we have uncovered many DBP 
interactions in the chromatin loop regions. Particularly interesting, many of these trans-
cooperated DBPs directly interact with one another, which suggests their binding may be 
important for loop formation or stabilization in 3D space. Comparative analysis between 
GM12878 and K562 revealed cell-type specific cooperation between DBPs that are 
critical for regulating cell-type specific functions.  
 
Results 
Gaussian Graphical model (GGM) 
To systematically identify DBP cooperation, we analyzed DBP ChIP-seq data using 
Gaussian graphical model (GGM)[12]. GGM is an undirected probabilistic graphical 
model with the assumption that the data follows a multivariate Gaussian distribution with 
mean µ and covariance matrix ∑. Let ∑-1 be the inverse of covariance matrix. If the ijth 
component of ∑-1 is zero, then variable i and variable j are conditional independent given 
all other variables in the network[12]. This important theorem serves as the foundation 
for GGM to infer direct interactions from data. Unlike relevance networks or correlation 
networks[13-16], in which edges are determined based on marginal correlations, GGM 
provides stronger criterion of dependency, and thus further reduces false positive 
rate[17]. For this reason, GGM has been applied to constructing biological networks[18, 
19]. However, classic GGM includes too many edges in the estimated graph, which also 
raises an issue of overfitting the data. To cope with this, Friedman et al. proposed an 
efficient algorithm, named graphical Lasso, to solve this problem[20]. Recently, Liu et al. 
developed a data transformation method called Copula that can be used with the 
graphical Lasso algorithm to relax the assumption of normality in constructing GGM[21, 
22]. Based on these recent advancements, we developed a new method to 
systematically investigate cooperation between hundreds of DBPs. 
 
Before applying to the DBP ChIP-seq data, we assessed the performance of GGM using 
synthetic data. Firstly, we generated an Erdős–Rényi random graph (see Methods). To 
generate samples according to the simulated graph, we built a covariance matrix of the 
multivariate Gaussian distribution by assigning each ijth component a non-zero 
covariance if node i and j are connected in the random graph. All other components are 
set to zero. We then drew samples from a multivariate Gaussian distribution with zero 
mean and the constructed covariance matrix. These samples were then used as input to 
the network construction algorithms. For comparison, we selected ARACNE[16], a 
popular algorithm for constructing gene regulatory networks. It uses an information 
theory approach to eliminate most indirect interactions in networks inferred by co-
expression methods, and has been proved useful by independent studies[23-27]. We 
generated 10 networks with 50 nodes and another 10 networks with 100 nodes. We 
observed superior performance of GGM with an average AUC 0.923, obviously higher 
than that of ARACNE (AUC=0.822) (Fig. 1a). This simulation showed that, when 
experimental data follows Gaussian distribution, our GGM can precisely reconstruct the 
underlying graphical model. Because the DBP ChIP-seq data can be noisy and may not 
be Gaussian distributed, we adopted the Copula algorithm[21, 22] for data 
transformation to approximate the real distribution. To assess the GGM performance in 
this scenario, we generated synthetic gene expression profiles using GeneNetWeaver 
3.1[28], an in silico simulator that employs dynamic model to simulate gene regulatory 
networks. The ground truth were subnetworks taken from yeast gene regulatory network 
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with size 50 and 100, respectively. For each size, we performed 10 different simulations 
(network files and sample data are provided in the Supplementary Data). Again, GGM 
outperformed ARACNE (Average AUC 0.695 vs 0.615) (Fig. 1b). 
 
It is worth of noting that GGM is much faster than ARACNE when the sample size is 
large. The time complexity for ARACNE is O(N3+N2M2), where N is the number of 
variables or nodes in the network, M is the number of samples; as it scales with M2, it is 
not suitable for our application where we have more than 10,000 samples (the number of 
ChIP-seq peaks). In contrast, GGM, with a time complexity O(N3+N2M), can easily 
handle a large number of samples. In practice, we observed 50 ~ 100 times faster of 
GGM than ARACNE on the synthetic data sets (Supplementary Table 1). 
 
Constructing DBP cooperation network 
After we confirmed the GGM performance on constructing gene network from synthetic 
data, we applied it to DBP ChIP-seq and Hi-C data, aiming to systematically detect DBP 
cooperation (Fig. 1c). We considered both cis (DBPs bind in nearby linear genome) and 
trans (DBPs bind to loci that are spatially close but linearly distal in the genome) 
cooperation between DBPs. We first computed cis and trans correlation score for each 
pair of DBPs separately using the 84 DBP and six histone modification (H3K4me1, 
H3K4me3, H3K9me3, H3K27ac, H3K27me3, H3K36me3) ChIP-seq as well as loops 
called by the 5kbp-resolution Hi-C data in a lymphoblastoid cell line GM12878[29] (see 
details in Methods). We then merged cis and trans correlation matrices by keeping the 
larger correlation score at each entry. This matrix was used to construct GGM, which 
represents the DBP cooperation network. 
  
The GGM network (Fig. 2a) identified 484 associations among the DBPs. An edge 
between two proteins may indicate either a direct physical interaction or a co-occurrence 
of binding sites without direct interaction. To examine whether our model can recover 
direct protein-protein interactions, for each edge we searched for supporting evidence 
from the public protein-protein interaction databases (Methods). Remarkably, 11% of 
edges (p-value is 10e-9) in the GGM network are also present in the PPI network (Fig. 
2b). Another 80% of the associated DBPs are separated by one protein in the PPI 
network (the intermediate protein may not be analyzed by ChIP-seq). These evidences 
strongly supported that the DBP associations recovered by the GGM network are 
reliable and likely represent direct physical contacts.  
 
To characterize the topological properties of the DBP cooperation network, we first 
plotted the node degree distribution, which follows power law, indicating that it is a scale-
free network[30] (Supplementary Fig. 1). A property of scale-free network is the 
existence of hubs, the highly connected nodes critical for network stability. To identify 
hubs, we ranked the nodes in our network by two popular metrics used to measure the 
importance of a given node in a network -- node degree and eigenvector centrality. Node 
degree, the number of links a node has, is the simplest centrality metric. A more 
sophisticated metric is the eigenvector centrality which assigns high centralities to nodes 
that are linked to many other well-connected nodes[31]. We ranked the nodes by their 
node degree and eigenvector centrality. EP300, CREB1 and EBF1 as the top three 
DBPs that have the best average rank (Fig. 2a and Supplementary Table 2). EP300 is 
an important co-factor that cooperates with many TFs[32, 33] and CREB1 plays a 
central role in immune system through binding to c-AMP response element, a ubiquitous 
DNA motif, to regulate gene transcription[34, 35]. It is not unexpected that these two 
general DBPs were found as hubs. On the other hand, EBF1 (Early B-cell Factor 1) is 
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mainly expressed in B-lymphocyte (GM12878 is a lympoblastoid cell line) and is pivotal 
for maintenance of B cell identity[36]. Moreover, DBPs that are highly correlated with 
EBF1 include EP300, PAX5, SP1, BHLHE40, TCF12, and BCL11A. EP300 and SP1 are 
general transcriptional activators. The functions of PAX5, TCF12 and BCL11A are highly 
specific to B-lymphocyte development[37-40]. 
   
Identifying cis and trans interactions between DBPs 
DBPs can cooperate through cis or trans interactions, which can be determined for each 
DBP pair using the constructed network. In this study we defined an interaction as cis or 
trans cooperation if the cis or trans correlation score is larger than a pre-selected cutoff 
(0.3, see Methods). In GM12878, we found roughly same numbers of cis and trans 
edges, 413 and 417 respectively. We noticed a great overlap between cis and trans 
edges (Fig. 2c). DBP cooperation falls into three categories: cis dominant, trans 
dominant and mix (Supplementary Table 3).  
 
Cis dominant association between two DBPs represents a strong occurrence in linear 
space but not in long-range interacting loci that form loops in the 3D space. In this 
category we recovered some previously known interactions such as RNA Pol II-TAF1 
interaction[41] (Fig. 2d). Interestingly, we found 71 trans-dominant edges in GM12878. 
Most of these edges show weak cis correlation but have significantly larger trans 
correlations such as EP300-MYC whose cis and trans correlation scores are 0.127 and 
0.348 (z-score: -0.081 and 1.301). Indeed, a number of independent studies have shown 
that EP300 and MYC can cooperate to regulate gene transcription and the physical 
interaction between them was previously reported[42-44]. We also identified novel DBP 
cooperation mediated by trans-interactions. For example, EBF1 is an important TF in B-
lymphocyte, and Egr-1 is one of the important transcriptional regulators induced upon B 
cell antigen receptor activation[45]. Both EBF1 and Egr-1 have crucial roles in B cell 
development and differentiation. However, the interplay between these two proteins has 
not yet been reported. In our network, we found a trans-dominant edge between EBF1 
and Egr-1 (Fig. 2e), which suggests that they may form long-range loops to regulate cell 
type specific genes (4.4% loop regions contain peaks of both EBF1 and Egr-1). 
Therefore, our framework provides a systematic way to uncover trans interactions 
between DBPs that are otherwise impossible to be identified using previous approaches. 
The mix category consists of DBP pairs with both cis and trans associations. Most 
associations fall into this category. A well-known example is CTCF-RAD21 (Fig. 2f). 
Previous studies have focused on identification of cis associations between DBPs[4]. 
However, the last two categories of DBP associations can only be identified through the 
integration of DBP ChIP-seq and Hi-C data.  
 
To further confirm the importance of DBP cooperation, we carried out genotype 
variations (GVs) enrichment analysis in regions bound by cooperative DBPs. Firstly, we 
downloaded disease associated GVs from the NHGRI-EBI GWAS database[46]. 
Assuming A and B are two cis-cooperative DBPs, we then calculated enrichments of 
GVs at two types of binding sites: (1) sites bound by both A and B; (2) sites bound by A 
or B. The ratio of the former to the latter is termed as the fold change of GV enrichment 
for cis interacting sites. Likewise, to calculate this fold change for trans interacting sites, 
we required A and B are trans-associated. The GVs enrichment in sites involved in trans 
association are then computed and the fold change is calculated similarly. Fig. 2g shows 
that the vast majority of DBP associations, either cis or trans, are more enriched with 
disease associated GVs (p-values are 1.5e-21 and 8.6e-27 respectively compared to 
unassociated DBP pairs), which suggests that DBP cooperation has important functional 
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implication in a variety of diseases. Therefore, we anticipate that the binding sites of 
cooperative DBPs can be used to prioritize GVs to identify causal associations. 
 
Identifying DBP modules 
To identify cooperation between multiple DBPs, we searched for modules in the 
constructed network. Previous approaches have focused on cis DBP modules but trans 
DBP modules have not been systematically identified. The DBP cooperation network 
provided an unprecedented opportunity to tackle this challenge. We first used 
community detection algorithm[47] to identify 4 communities in GM12878 (Fig. 3a and 
Supplementary Table 4). A community is composed of tightly interconnected DBPs[47]. 
DBPs within a community presumably have related functions. For instance, we found 
that the yellow community consists of CTCF, RAD21, ZNF143, SMC3 and YY1. 
Because these proteins are important to mediate chromatin looping[29, 48-50], the main 
function of the yellow community is likely to be maintenance of chromatin structure.  
 
Interestingly, all the six histone modifications are located in the green community, 
including H3K4me1/2/3, H3K9ac, H3K27ac, H3K36me3, which indicates the global 
correlation between histone modifications despite their distinct roles in marking 
regulatory elements. To reveal the functions of different communities, we analyzed the 
ChIP-seq peaks of proteins in this community. We ranked genomic loci by the number of 
proteins bind to them and selected the top 5000 loci as input to GREAT analysis 
searching for enriched GO terms. We found the green community is linked to mRNA 
metabolic process and translation related functions (Supplementary Fig. 2a). 
  
Similarly, the cyan community is enriched with general GO terms such as “mRNA 
metabolic process” and “translation regulation” (Supplementary Fig. 2b), which suggests 
both green and cyan community are involved in regulating the basic functionality of the 
cell. In fact, these two communities contain numerous general transcription machinery 
proteins such as RNA polymerase II, TATA box binding protein (TBP) and TAF1. 
 
In contrast to the general function of the green and cyan communities, the most enriched 
GO terms for the red community are “immune response”, “leukocyte activation”, and 
“lymphocyte activation” that are highly related to B cell functions (Supplementary Fig. 
2c), which suggests that this community plays important roles in determining cell type 
specificity. Indeed, many proteins in this community are known to be important for 
immune system development, such as STAT5A[51], BATF[52], BCL3[53], and 
RELA[54]. 
  
Identifying DBP cliques that potentially form protein complexes 
DBPs often cooperate with one another to form a large complex. Identification of such 
complex is crucial for understanding the mechanisms of transcriptional regulation. 
Therefore, we searched for maximal cliques in the network. In a clique, each node is 
linked to all the other nodes. DBPs involved in a clique are thus likely to form a protein 
complex. In GM12878, we identified 220 cliques (Supplementary Table 5). We ranked 
DBP cliques by their average correlation scores of each DBP pair. We observed that 
most of the top cliques have both high cis and trans interaction edges, which suggests 
that they are likely to form complexes mediating chromosome loop formation. Fig. 3b 
shows the top 3 highest ranked cliques. Next, we checked the percentage of shared 
peaks in the union of all DBP peaks and found the loops in these shared peaks. All the 
DBPs in the cliques share a significant amount of peaks that occur in loops (Fig. 3c), 
which confirmed the co-occurring bindings of the DBPs in a clique.  
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One of the top ranked cliques is CTCF-RAD21-SMC3-ZNF143. RAD21 and SMC3 are 
components of cohesin complex. Cohesin is a multi-subunit protein complex and plays 
an essential role in sister chromatid cohesion and chromosome segregation during cell 
division[55]. Cohesin is also crucial for regulating gene expression and mediating 
chromatin long-range interaction[56]. Cohesin-dependent chromatin interactions are 
usually mediated by the cooperation of cohesin and CTCF[49, 50]. The involvement of 
Zinc Finger Protein 143 (ZNF143) in this complex has also been reported[48, 49]. 
ZNF143 is believed to provide sequence specificity for chromatin interactions[57]. 
Overall, our analysis successfully recovered this important and well characterized loop 
forming complex. 
 
The other two cliques, PML-FOXM1-MTA3-STAT5A-CEBPB-RUNX3 and MAX-MAZ-
MXI1-CHD2-BHLHE40 (Fig. 3d), are novel and their functions have not been 
characterized. STAT5A and RUNX3 are two of the major transcription factors that play 
essential roles in lymphocyte development. The physical interaction between STAT5 and 
RUNX3 has been reported[58]. Moreover, CEBPB binds to RUNX2 which has been 
shown to be associated with RUNX3[59, 60]. To investigate the function of this module, 
we extracted all loci bound by these six DBPs and performed GREAT analysis. The 
most significant GO terms are “immune response”, “leukocyte activation”, and 
“lymphocyte activation”. These results suggested this novel module may play important 
roles in the immune system development of lymphocytes. 
 
The functions of MAX-MAZ-MXI1-CHD2-BHLHE40 clique seem to be more general. 
GREAT analysis of their binding sites revealed enriched GO terms as “ribonucleoprotein 
complex biogenesis”, “nuclear-transcribed mRNA catabolic process ribosome 
biogenesis” and “translation”. We then searched for evidences supporting their 
cooperation in literature. The interaction between MAX and MXI1 is well studied[61] but 
interactions between other proteins have not been reported. However, the functions of 
these proteins are related. For example, BHLHE40 is a repressor that can interact with 
and recruit HDACs, which suggests a role of BHLHE40 in chromatin remodeling. CHD2 
is also a chromatin remodeler. These observations suggest that DBPs in this clique may 
act together to alter chromatin states and regulate gene translation. 
 
Comparative analysis of DBP cooperation networks across cell types 
DBPs have different cooperative modes in different cells. To perform a comparative 
analysis of the networks in different cell types, we focused on 68 proteins for which 
ChIP-seq data were available in both K562 and GM12878 and constructed TF 
cooperation networks in these two cell types. 
 
In order to find cell type specific DBP cliques, we first identified cell type specific edges 
in the 68-node networks. We then searched for cliques in both GM12878 and K562 
specific networks that consist of edges present in one but not the other cell line. We 
found 74 and 7 cell type specific cliques for GM12878 and K562, respectively 
(Supplementary Table 6). Cell type specific cliques shed light on how cells achieve 
transcriptional specificity through combinatorial regulation of DBPs. For example, 
STAT5A is a member of STAT protein family. It is activated by a number of cytokines 
and plays a central role in the development of many different organs. However, how 
STAT5A cooperates with other DBPs to carry out cell type specific regulation is largely 
unknown. Our analysis showed that STAT5A, together with MYC and RCOR1, forms a 
clique in K562, which is absent in GM12878. MYC is an oncogene and has been shown 
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to play a critical role in leukemia formation[62, 63]. STAT5A-MYC cooperation may be 
important to maintain the state of leukemic cells. To further characterize the functions of 
STAT5A-MYC-RCOR1 module, we performed GREAT analysis on loci bound by all the 
three proteins in K562 and observed functions specific to leukocyte, such as "leukocyte 
degranulation", "regulation of interleukin-2 secretion", "mast cell activation" (Fig. 3e). 
These functions are drastically different from those enriched in GM12878 where 
STAT5A is associated with BCLAF1, SRF, CREB1 and SP1; GREAT analysis on the 
shared peaks suggests this module is involved in lymphocyte specific functions (Fig. 3f).  
 
Next, we sought to identify common DBP modules in GM12878 and K562. Firstly, we 
extracted a common network using edges shared by the two networks. We then 
searched for cliques in this network. We identified CTCF-RAD21-SMC3, MAX-MYC-
MAZ-CHD2, EP300-H3K4me1-H3K4me2 and STAT5A-CEBPB-PML as top ranked 
cliques (Fig. 3g). CTCF-RAD21-SMC3 interaction is known to be conserved across 
different cell types and it is not surprising that this clique is shared between the two cells. 
In the MAX-MYC-MAZ-CHD2 clique, MAX-MYC-MAZ is also a well-known complex that 
is found in multiple cell lines but their interaction with CHD2 has not been reported. The 
involvement of the chromatin remodeling gene CHD2 in MAX-MYC-MAZ complex 
suggests MAX-MYC-MAZ may utilize CHD2 to modify chromatin structure and alter 
gene expression. EP300-H3K4m1-H3K4me2 represents enhancer’s signature, and has 
been found in many cell types. In the clique of STAT5A-CEBPB-PML, evidences have 
been shown for the STAT5A-CEBPB interaction: STAT5A was demonstrated to 
cooperate with CEBPB to regulate gene transcription[64]; STAT5A can induce 
deacetylation of CEBPB[65]. Their interaction with PML is less well studied but STAT5 is 
shown to be activated by PML/RARα fusion protein in acute myeloid leukemia[66]. 
These common cliques in both GM12878 and K562 indicate their cell-type independent 
cooperation.  
 
We next investigated whether these common cliques bind to the same loci in the two 
cells. For each clique, we identified the sites bound by all the member DBPs and 
counted how many of them are shared between the two cell types. We observed that the 
CTCF-RAD21-SMC3 clique shared 13,960 (51.3%) common binding sites in K562 and 
GM12878 (Fig. 3g), which is in agreement with the general roles of CTCF and cohesin 
complex in stabilizing loops[29]. The MAX-MYC-MAZ-CHD2 clique shows moderate 
conservation with 729 (15%) common binding sites across the two cell types. In contrast, 
the binding sites of P300-H3K4me1-H3K4me2 and STAT5A-CEBPB-PML are highly 
cell-type specific. Since P300-H3K4me1-H3K4me2 mark active enhancers and 
enhancers are highly cell type specific, it is understandable that there are only 62 (1.2%) 
of P300-H3K4me1-H3K4me2 peaks are shared across cell types. Only a small percent 
(2.4%, 117 sites) STAT5A-CEBPB-PML sites shared between GM12878 and K562 was 
unexpected. To investigate the reason why STAT5A-CEBPB-PML has distinct binding 
profiles in the two cell types, we first analyzed the enriched GO terms for the sites bound 
by all three DBPs in K562 and GM12878 respectively. Enriched GO terms in each cell 
type are highly specific: the top terms in GM12878 are “immune response” and 
“lymphocyte activation”; sites in K562 are enriched with GO terms such as “platelet 
activation” and "erythrocyte differentiation” which are highly specific to K562.  
 
The above analyses showed that the same DBPs can bind to different loci to regulate 
cell type specific functions, which is likely due to their cooperation with different partners 
in different cell types. To identify their cell-specific partners, we examined the binding 
peaks of all the available ChIP-seq data in the regions bound by STAT5A-CEBPB-PML 
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in GM12878 and K562 (Fig. 4a and Fig. 4b). It is obvious that the co-occurring DBPs are 
completely different in the two cell types: RUNX3, ATF2, MEF2A in GM12878 compared 
to TEAD4, TAL1, GATA2 in K562. Because of the limited number of ChIP-seq 
experiments, possible partners might not be profiled. Therefore, we performed de novo 
motif analysis using MEME-ChIP[67] in STAT5A-CEBPB-PML sites and then matched 
the found motifs to the known ones. It is also obvious that the de novo motifs found in 
K562 and GM12878 were very different. Encouragingly, all de novo motifs matched to 
the motifs recognized by the DBPs showing co-occurring ChIP-seq peaks. These results 
suggest STAT5A-CEBPB-PML complex indeed have different regulatory mechanisms in 
different cell types. To further interrogate the regulatory mechanisms of their cooperation, 
we used Spamo[68] to find spacing constraints between de novo motifs. As a result, in 
GM12878 we found two de novo motifs, corresponding to STAT5 and MEF2, showing a 
statistically significant spacing constraint with MEF2 motif occurring 13 bp downstream 
of STAT5 motif (Fig. 4c). This finding is novel as there is no previous report about the 
partnership of STAT5 and MEF2. On the other hand, in K562 the TAL1::GATA1 motif 
frequently appears at the upstream of RUNX1 sites at a distance of 38 bp. GATA and 
RUNX usually cooperate with each other and form a cis-regulatory module[69-71]. 
Therefore, our analysis has identified both novel and known spacing constraints 
between TFs. 
 
Discussion 
We present here a novel method to systematically identify both cis and trans cooperation 
between DBPs the first time. Many of these interactions are likely resulted from physical 
interactions as most of the edges in the DBP cooperation network are supported by the 
PPI data. Our results showed that trans-cooperation between TFs is ubiquitous, 
indicated by 86% of identified associations having strong trans correlation scores, which 
can only be discovered by integrating DBP binding and chromatin structure data. These 
trans-interactions most often accompany cis-interactions as the majority (71%) of DBP 
cooperation is a mixture of trans and cis events. Furthermore, we observed enrichment 
of disease associated GVs in DBP cooperative binding sites, which suggests the 
functional importance of DBP interactions. 
 
Identification of cooperation between multiple DBPs has been a challenging problem. 
Combinatorial approaches are limited to consider cooperation between small number of 
DBPs because of the exponential increase of the possible combinations. In contrast, our 
model can easily search combinatorial cooperation in thousands of DBPs. By identifying 
modules and cliques in the network, we have uncovered closely collaborated DBPs, 
particularly those associated through trans interactions in chromatin loops that may be 
crucial for loop formation or stabilization.  
 
Our comparative analyses between GM12878 and K562 revealed different mechanisms 
of achieving cell-type specificity: using different combinations of DBPs or using the same 
protein complex but collaborating with different partners. Interestingly, we also found 
spacing constraints between the binding sites of certain partners, which implies higher-
order of regulatory rules for not only cis but also trans DBP cooperation. As ChIP-seq 
data and HiC data are rapidly accumulating, our model provides a powerful tool for 
integrative analysis of DBP binding and chromatin structure data in different cell types, 
which will facilitate to uncovering the molecular mechanisms for transcriptional regulation 
and 3D chromosome organization. 
 
Methods 
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Data sets 
BAM files of ChIP-seq experiments in K562 and GM12878 were downloaded from the 
ENCODE project website[72]. Chromatin loops were downloaded from the Rao et al. 
study[29]. Because only these two cell lines had both DBP ChIP-seq and 5Kbp-
resolution Hi-C data, we focused on these data sets in this study. 
 
Data Preprocessing 
We divided each chromosome into consecutive 1 kb regions. For each protein, we 
computed the Reads Per Kilobase per Million mapped reads (RPKM)[24] on these 
regions. The fold enrichment was calculated using MACS’s algorithm[73] with 
customized parameters. In particular, we set λlocal = max(λBG, λ14k, λ24k), where λBG is the 
average RPKM of  the whole genome; λ14k and λ24k are average RPKM of 14 kb and 24 
kb windows. We used a larger window size than MACS’s default size and a loose p-
value (0.01) to call peaks. By doing so, we increased the sensitivity for detecting broad 
peaks. For each 1 kb region, if it was called as a peak, we used the fold enrichment as 
its ChIP-seq enrichment score; otherwise, a zero score is assigned to that region. After 
computing the enrichment scores for every protein, we removed regions with low 
variation of scores by requiring the standard deviation of scores is at least 1. This 
excludes some unwanted artifacts from our analysis. For instance, regions with low 
mappability or abnormal high signal[72]. Next, for each DBP pair we calculated the 
Spearman’s correlation of ChIP-seq enrichment scores in the remaining bins as the cis-
correlation score. To compute trans correlation scores, we first downloaded the 3D 
interaction loops identified in a 5Kbp-resolution Hi-C study[29]. Next, for each DBP we 
computed its enrichment scores on loop regions as follows: Suppose we have n loops, 
denoted by L(1), L(2), …, L(n) and each loop L(i) consists of two interacting loci L(i)

a and L(i)
b. 

To compute the enrichment score of a given DBP on loop L(i), we first binned L(i)
a into 1 

kb regions, and then take the maximum of ChIP-seq enrichment scores of these bins as 
the enrichment score for L(i)

a. Likewise, we can compute the enrichment score for L(i)
b. 

Then, given a pair of DBPs denoted by A and B, for every loop, we first compared the 
enrichment scores of A on the two interacting loci, and took the larger one as the primary 
binding locus of A. As oppose, we assume the smaller one to be the primary binding 
locus of B. The enrichment scores of primary binding loci for each protein were then 
used to compute correlation coefficient.  
 
Network Construction 
We adapted the Gaussian graphical model (GGM) to construct the DBPs cooperation 
networks. GGM assumes that the observations have a multivariate Gaussian distribution 
with mean µ and covariance matrix ∑. Let ∑-1 be the inverse of covariance matrix. If the ij 
th component of ∑-1 is zero, then variable i and variable j are conditional independent 
given other variables. Therefore, each non-zero component represents an edge in the 
network. To efficiently and accurately estimate the inverse of covariance matrix using 
DBP ChIP-seq data, we employed the Graphical lasso algorithm[20] and the Copula 
method [21, 22]. Specifically, we used the subroutine “huge” from the “huge” R 
package[74], with the lasso penalty equal to 0.3. We choose this value since less than 
15% of DBP pairs have correlation score greater than 0.3. In addition, most of the known 
interactions are above 0.3. Therefore, we decided 0.3 is an appropriate value from our 
experience. Because we aimed at identifying DBP interactions, edges with negative 
correlations were removed in the network analysis. 
 
Network analysis 
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We used Eppstein’s algorithm[75] for maximal clique searching, which gives an exact 
solution in near optimal time. For community detection, we used Newman’s 
algorithm[47]. Both implementations were provided in the “igraph” C library[76]. 
 
Comparing DBP cooperation network with protein-protein interaction (PPI) 
network 
Protein-protein interaction data was obtained from the BioGrid database[77] version 
3.2.99. For each edge formed by node A and B in a DBP cooperation network, if this 
edge is also present in the PPI network, it was considered as a direct interaction. 
Otherwise, we checked whether there exists a third node in the PPI network that 
connects to both A and B; if so, this edge was considered as an indirect interaction. To 
determine the statistical significance of these overlaps, we first replaced the nodes in the 
DBP cooperation network with randomly selected genes from the PPI network. Next, we 
counted the direct and indirect interactions in the simulated network. This process was 
repeated for 10^9 times to generate the background distribution, which was then used to 
calculate the p-values. 
 
Simulated networks 
To generate a Erdős–Rényi random graph, we used the G(n,p) model[78]. This model 
specifies an n-node network, in which each edge is included with a probability p 
independent from every other edge. We used p = 0.2 in this paper which gives rise to a 
sparse network. We follow the procedures in ref [22] to generate a Gaussian distributed 
dataset which was used for constructing the simulated network. 
 
We used Genetweaver 3.1 to extract random subnetworks with different sizes (50 
and100 nodes) from the yeast gene regulatory network provided by the software. For 
other parameters, we used the software’s default setting.  
 
To draw the ROC curve, we counted the number of true positives (TPs), false positives 
(FPs), true negatives (TNs) and false negatives (FNs). If a predicted edge is present in 
the true network, it is a TP, otherwise it is a FP. For edges that are present in true 
network but not identified by the algorithm, they are FNs. TNs are edges that are not 
present in either predicted or true networks. 
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Figures: 
 
Figure 1. The performance of GGM is consistently better than ARACNE. Each plot 
shows the average curve from 10 independent simulations. (a) ROC curve for samples 
generated from random networks. For each simulation 500 (Left) or 1000 (Right) 
samples were generated from a network of 50 (Left) or 100 (Right) nodes. (b) ROC 
curve for samples generated from yeast sub-networks. For each simulation 500 (Left) or 
1000 (Right) samples were generated from a network of 50 (Left) or 100 (Right) nodes. 
(c) Workflow of the DBPnet pipeline. 
 
Figure 2. Constructing DBP cooperation network in GM12878. (a) DBP cooperation 
network in GM12878, with network hubs (EP300, EBF1, CREB1) being highlighted. (b) A 
significant portion of DBP cooperation is supported by the evidences of direct protein-
protein interaction. (c) The majority of DBP cooperation is a mixture of cis and trans 
cooperation. (d) An example of cis-cooperation. (e) An example of trans-cooperation. (f) 
An example of mix cooperation. (g) Disease associated CVs are enriched in cis- and 
trans cooperative sites. 
 
Figure 3. Network analysis reveals functions of DBP modules in GM12878 and K562. 
(a) Communities in DBP cooperation network and their functions. (b) Top DBP cliques. 
(c) The member DBPs in a clique frequently co-occur in a cis and trans fashion. The 
central column gives the number of regions bound by all DBP members in a clique, the 
percent of these regions and its fold enrichment over background. The right column 
gives the number of loops that are overlapped with the DBP binding sites, its percent 
and fold enrichment over background. (d) An example of DBP cliques. (e) An example of 
K562 specific DBP cliques and enriched GO terms of its binding sites. (f) An example of 
GM12878 specific DBP cliques and enriched GO terms of its binding sites. (g) Top 
conserved DBP modules in K562 and GM12878. 
 
Figure 4. CEBPB-PML-STAT5A cooperates with different DBPs in GM12878 and K562. 
(a) DBP binding profile (Left) and enriched de novo motifs (Right) in 2468 CEBPB-PML-
STAT5A binding sites in GM12878. (b) DBP binding profile (Left) and enriched de novo 
motifs (Right) in 2620 CEBPB-PML-STAT5A binding sites in K562. (c) Enriched spacing 
between de novo motifs found in CEBPB-PML-STAT5A sites in K562 and GM12878. 
 
 
Supplemental data: 
 
Supplemental Table 1: Speed comparison of GGM and ARACNE on data sets with 
different sizes. 
 
Supplemental Table 2: Centrality of nodes in GM12878 DBP cooperation network. 
 
Supplemental Table 3: A list of cis, trans and mix associations in GM12878. 
 
Supplemental Table 4: Fours communities found in the GM12878 DBP cooperation 
network. 
 
Supplemental Table 5: All DBP cliques found in GM12878. 
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Supplemental Table 6: Cell type specific DBP cliques and common DBP cliques in 
GM12878 and K562. 
 
Supplemental Figure 1: Degree distribution of DBP cooperation network in GM12878. 
 
Supplemental Figure 2: Functional analysis of communities in the GM12878 DBP 
cooperation network. (a) Enriched GO terms in green community. (b) Enriched GO terms 
in cyan community. (c) Enriched GO terms in red community. 
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