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Abstract

Genomic sequencing assays such as ChIP-seq and DNase-seq can measure a wide variety of types of
genomic activity, but the high cost of sequencing means that a panel of at most 3–10 assays is usually
performed on each cell type. Therefore, the choice of which assay types to perform is a crucial step in
any genomics project. We present submodular selection of assays (SSA), a method for choosing a diverse
panel of genomic assays based on the observed pattern of correlations in existing assays. The method
optimizes over submodular functions, which are discrete set functions that have properties analogous
to certain continuous convex functions. SSA is computationally efficient, extremely flexible, and is
theoretically optimal under certain assumptions. We find that SSA chooses panels of assay types that
measure diverse activities, in one case nearly exactly replicating the panel selection choice made by
the Roadmap Epigenomics consortium. To quantitatively evaluate SSA, we present a framework for
evaluating the quality of a panel of assay types based on three common applications of genomics data
sets: imputing assays that have not been performed, locating functional elements such as promoters and
enhancers, and annotating the genome using a semi-automated method. Using this framework, we find
that panels chosen by SSA perform better than alternative strategies. We therefore expect that SSA will
replace manual selection as the first step of future genomics projects. In addition, this application may
serve as a model for how submodular optimization can be applied to other discrete problems in biology.

Introduction

Genomics assays such as ChIP-seq, DNase-seq and RNA-seq can measure a wide variety of types of DNA
activity, but the cost of these assays limits their application. In principle, to fully characterize a cell type,
one would like to perform every possible type of assay. However, at current sequencing prices, performing a
single genomics assay with reasonable sequencing depth costs on the order of $2,500 (scienceexchange). As
a point of comparison, consider the ENCODE and Roadmap Epigenomics consortia, which develop, perform
and analyze genomics assays as their primary activity (Bernstein et al., 2010; ENCODE Project Consortium,
2012). As of 2015 the two consortia have performed a total of 216 types of assays on at least one cell type,
and at least one assay on a total of 228 cell types (Methods). Applying all these assay types to all these cell
types would require 49,248 assays; however, the two consortia have performed just 1,359 assays, 5% of the
possible number (encodedcc.org; 2014). These consortia are worldwide efforts with large budgets; a typical
lab might be able to perform at most several assays per cell type in order to analyze a particular tissue or
perturbation that they are interested in. Moreover, there are virtually limitless perturbations and variations
of a given cell type for which it would be interesting to examine the effect on DNA activity, including drug
treatments, age, differentiation, etc.

Consequently, selecting a small panel of assays to perform on each cell type of interest—a problem we
call assay panel selection—is a key step in any genomics project. To our knowledge there has been little
discussion in the literature of how to choose such a panel. In consortia such as ENCODE and Roadmap, the
procedure for choosing which assay types to perform on each cell type is typically ad hoc. These decisions
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are made by the investigators involved, based on their intuition about the diversity of assay types, perhaps
based on pairwise correlations between assays or similar simple metrics. Ernst and Kellis (Ernst and Kellis,
2015) proposed that imputation methods can be used to prioritize assay types that are hard to impute given
the others, but did not propose a specific formula for comparing two panels nor a method for selecting a
panel other than exhaustive search.

In this work, we propose a principled method to solve the assay panel selection problem. Qualitatively,
the method aims to identify, on the basis of existing data sets, assay types that yield complementary views
of the genome. In practice, many pairs of assay types yield redundant information. For example, the
transcription factors REST and RCOR1 are cofactors and therefore bind almost the same set of genomic
positions (Andrés et al., 1999). Similarly, the histone modification H3K36me3 primarily marks gene bodies,
which are also transcribed and therefore measured by RNA-seq. Therefore, a great deal of what can be
learned from the full set of assays can likely be learned by performing a small subset of the possible assays.
This redundancy among assay types suggests that a carefully chosen panel of assays is likely to produce most
of the information that performing all assays would. In general, the smallest complete high quality panel of
assays measures all types of genomic activity in a given cell type at a minimal total cost. Our solution to
the assay panel selection problem is composed of two parts: an objective function that defines the quality
of a panel, and an optimization algorithm that efficiently finds a panel that scores highly according to the
objective function.

The objective function that we propose to use, called facility location (defined mathematically below),
measures what fraction of the information available in the full set of assay types is contained within the
panel. This function has been previously applied in many fields, including document summarization (Lin
and Bilmes, 2012), feature selection (Liu et al., 2013), and exemplar based clustering (Mirzasoleiman et al.,
2013). This function also corresponds to the objective function of the widely-used k-medoids clustering
problem (Gomes et al., 2010). The facility location function is based on a matrix of similarities between
assay types; we define this similarity as the Pearson correlation between the two assay types, averaged over
the cell types in which both have been performed.

To optimize the facility location function, we borrow methods from the field of submodular optimization.
A simple approach to selecting a panel of assays would compute the facility location function valuation for
every possible subset of assays and choose the highest-performing panel. Unfortunately, 216 possible assay
types yield 2216 ≈ 1065 possible panels of assays, so it is necessary to use a method for selecting a panel that
does not involve enumerating all possible panels. Such an efficient selection method exists because the facility
location function has the property of submodularity. The property of submodularity (defined mathematically
below) is analogous to the property of convexity but is defined on discrete set functions rather than continuous
functions. Submodular functions have a long history in economics (Vives, 2001; Carter, 2001), game theory
(Topkis, 1998; Shapley, 1971), combinatorial optimization (Edmonds, 1970; Lovász, 1983; Schrijver, 2004),
electrical networks (Narayanan, 1997), operations research (Cornunéjols et al., 1990), and more recently,
machine learning (Narasimhan and Bilmes, 2005; Krause et al., 2008; Liu et al., 2013; Wei et al., 2014), but
they are not yet widely used for problems in biology. Therefore, this application may serve as a model for
how submodular optimization can be applied to biological problems more generally.

We apply existing submodular optimization algorithms to the facility location function to efficiently select
a high-quality panel of assays, a method we call submodular selection of assays (SSA). There exists a large
literature of methods for optimizing submodular functions. The optimization method we employ is very
efficient and is theoretically guaranteed to find a solution that comes within a constant factor in quality of
the optimal solution (Nemhauser et al., 1978a).

In addition to proposing solutions to the assay panel selection problem, an important contribution of this
work is development of three general methods for evaluating the quality of a selected panel of assays. These
three methods correspond to three distinct practical applications of the selected panel: (1) the accuracy
with which the panel can be used to impute the results of assays not included in the panel; (2) the accuracy
with which the panel can be used to detect functional elements such as transcription factor binding sites,
promoters, and enhancers; and (3) the quality of a whole-genome annotation produced using the panel.
These evaluation metrics share the property that an informative and diverse set of assay types yields better
performance, according to each metric, than does a redundant set. Note that these evaluation metrics differ
from the objective function because they use information that is not available at the time a panel is chosen;
therefore, the evaluation metrics themselves cannot be used directly to choose a panel. These three metrics
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Figure 1: Schematic of genomics assay panel selection process performed by Submodular Selection of Assays
(SSA). The method takes as input all available existing genomics assays, where each assay is represented as
a real-valued track over the genome. In the selection of past assays mode, SSA selects a panel of already-
performed assays to use as input to an expensive computational analysis. In the selection of future assays
mode, SSA chooses a panel of assay types to be performed in a new cell type. In both cases, the resulting
data sets are input into downstream analysis, which may include imputing assays that weren’t performed,
predicting the locations of functional elements, and semi-automated genome annotation.

will be useful for any future study of the quality of a panel of assays, independent of the particular procedure
used to choose such a panel.

We consider two variants of the assay panel selection problem. We are primarily interested in the “future”
variant, which arises when a researcher is interested in applying a panel of genomics assays to a new tissue
type or cellular condition. In this case, the researcher must use previously performed assays in other cell
types to choose a representative panel of assay types. We also consider the “past” variant, which arises when
a researcher is interested in applying a computationally expensive analysis, such as a genome annotation
method, that cannot efficiently be run on all available data sets. The researcher must therefore choose a
representative panel of the available data to use as input to the analysis. In this case, the researcher may
use the data from assays performed on the cell type in question to inform their choice. We propose two
variants of the method, SSA-future and SSA-past, each of which applies to the three evaluation metrics. In
this manuscript we will focus on the future setting unless otherwise specified.

Results

Submodular selection of assays (SSA) identifies diverse panels of genomics assays

Submodular selection of assays (SSA) takes as input a collection of genomics data sets and identifies a high-
quality subset of those assays (Methods, Figure 1). Each input data set is represented as a real-valued signal
vector over the genome. SSA begins by computing a pairwise similarity matrix that contains, for each pair
of assays, the mean Pearson correlation over all cell types in which both assays have been performed. The
method employs a submodular function, called facility location (Methods), to estimate the quality of any
possible panel of assay types. The facility location function takes a high value for a particular panel when
all assay types have at least one similar representative in the panel. SSA then applies the greedy submodular
optimization algorithm (Methods) to efficiently choose a panel of assays that maximizes this facility location
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function. The output of this method is an ordered list of assay types, where the top k assay types in this
list represent a high-quality panel of size k.

We found that applying SSA results in assay panels with diverse genomic functions. Because researchers
generally perform panels of either histone modifications or transcription factor ChIP-seq assay types but
rarely perform mixed panels, we ran the method separately on transcription factor and histone modification
types. When choosing from transcription factors, SSA chooses factors that engage in diverse regulatory
pathways (Figure 2B). The vast majority of transcription factors in our data set bind to promoters and
enhancers and regulate the transcription of RNA Pol II-transcribed genes. The top five transcription factors
chosen by SSA includes three of these factors, each of which regulate very different regulatory pathways:
SMARCB1, an ATP-dependent chromatin remodeler; PML, a tumor suppression factor; and STAT5A, a
factor involved in developmental signal transduction (UniProt Consortium, 2014). The top five also includes
CTCF and BRF2. CTCF, part of the cohesin complex, regulates chromatin conformation and enhancer-
promoter insulation and only about half of its binding sites occur in promoters or enhancers. BRF2 is part
of the RNA Polymerase III complex, which transcribes rRNA, tRNA and other small RNAs. Therefore these
two factors represent very different types of regulatory activity from most other factors in the data set and
therefore are important to include in a diverse panel.

When choosing from histone modifications, SSA chooses marks that cover diverse types of genomic
regions (Figure 2A,C). The top six histone modifications include a promoter mark (H3K4me3), an enhancer
mark (H3K4me1), a gene mark (H3K79me2) and marks both known types of repressive domains, facultative
(H3K27me3) and constitutive (H3K9me3) heterochromatin. The top six includes two different marks of
transcription, H3K79me2 and H3K36me3, but these two modifications mark different parts of genes and are
regulated differently relative to the gene’s level of transcription (Li et al., 2007). As expected, SSA ranks
additional measures of regulation (H3K4me2, H2A.Z, H3K9ac and H3K27ac) low on the list because these
marks are duplicative of the regulatory marks H3K4me1 and H3K4me3.

Moreover, SSA almost exactly recapitulates the panel of histone modifications chosen by the Roadmap
Epigenomics consortium (bolded font in Table 2C). This consortium chose a set of five “core” histone
modifications to assay across 111 human primary tissues. This choice was made by the organizers of this
consortium based on the expert knowledge of these researchers. These five core histone modifications ranked
among the top six modifications chosen by SSA. In fact, the SSA-chosen and Roadmap-chosen sets have very
similar scores according to the facility location function, ranking 1 and 16 respectively out of all

(
11
5

)
= 2772

possible panels of five histone modifications. Therefore SSA closely reproduces careful, manual selection by
experts in an entirely automated and data-driven way.

Three metrics evaluate the quality of a set of genomics assays.

In order to quantitatively evaluate SSA, we developed an evaluation framework for assay panel selection.
We focused on three of the most common downstream applications of genomics data sets: (1) imputing
assays that haven’t been performed, (2) locating functional elements such as promoters and enhancers, and
(3) annotating the genome using a semi-automated method. We describe each metric briefly here, with full
details provided in Methods.

The first evaluation metric, assay imputation, measures how well a chosen panel of assays can be used to
predict assays that have not been performed. We train a regression model to predict each assay outside of
the panel on the basis of the assays within the panel, using random subsets of the genome for training and
testing, respectively. High performance on the assay imputation metric indicates that the panel contains all
of the information in the assays outside of the panel. Moreover, recent work on imputation has showed that
it is often effective to train a regression model on data from reference cell types and apply it to a target cell
type (Discussion).

The second evaluation metric, functional element prediction, measures how well a chosen panel of assays
can be used to locate functional elements such as promoters and enhancers. Because there are few validated
examples of each type of element, we use experimentally determined binding of transcription factors, as
measured by transcription factor ChIP-seq, as a proxy for functional elements. We train a classifier model
to predict the locations of these elements on the basis of the assays within the panel. High performance on
the functional element prediction metric indicates that a panel can be used to accurately locate functional
elements. Although both the assay imputation and functional element prediction evaluation metrics aim
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A

B
Choice order Transcription factor Function

1 SMARCB1 ATP-dependent chromatin remodeling
2 PML Tumor suppression
3 STAT5A Developmental signal transduction
4 CTCF Chromatin conformation and insulation
5 BRF2 RNA polymerase III initiation complex

C
Choice order Histone modification Association

1 H3K4me3 Promoters
2 H3K79me2 Transcription
3 H3K9me3 Constitutive heterochromatin
4 H3K27me3 Facultative heterochromatin
5 H3K36me3 Transcription
6 H3K4me1 Enhancers
7 H3K4me2 Regulatory
8 H3K9ac Regulatory
9 H2A.Z Promoters
10 H4K20me1 Transcription
11 H3K27ac Regulatory

Figure 2: (A) Redundancy in histone modification signal in the genome. The top five assay types chosen by
SSA are boxed in red. (B,C) Panels of assays chosen by SSA-future, for (B) only transcription factors and
(C) only histone modifications. Each list is in the order assigned by SSA; for any size k, the top k assay
types in the list are the chosen panel of this size. Because there are 80 transcription factors, we display
just the top five chosen by SSA; there are only eleven histone modifications, so we can display the full list.
Associations are summarized from UniProt (UniProt Consortium, 2014). Bold font indicates those chosen
by the Roadmap Epigenomics consortium.
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Figure 3: Relationship between the facility location objective function and evaluation metrics. Each dot
corresponds to one of 40 randomly-chosen panels. Pink triangle indicates results from maximizing the SSA-
future facility location function; red diamond indicates the panel of most-frequently performed assay types
(Supplementary Table 1). These results were computed in GM12878, using panels of four assay types.

to predict genomics data sets, functional element prediction focuses on the small fraction of the genome
corresponding to transcription factor binding sites.

The third evaluation metric, annotation-based evaluation, measures how effectively a given panel can
be used to annotate the genome through a semi-automated genome annotation (SAGA) method. SAGA
methods, which include HMMSeg (Day et al., 2007), ChromHMM (Ernst and Kellis, 2010), Segway (Hoffman
et al., 2012) and others (Thurman et al., 2007; Lian et al., 2008; Filion et al., 2010), annotate the genome
on the basis of a panel of genomics assays. They simultaneously partition the genome and annotate each
segment with an integer label such that positions with the same label exhibit similar patterns of activity.
These methods are semi-automated because a person must interpret the biological meaning of each integer
label. SAGA methods have been shown to recapitulate known functional elements including genes, promoters
and enhancers. Given a particular panel of assays, we perform annotation-based evaluation by using this
panel as input to Segway and measuring how well the resulting genome annotation corresponds to patterns
observed in the assays outside of the panel. High performance on this metric indicates that the chosen panel
can be used to produce a comprehensive annotation of the genome.

Applying these metrics to evaluate a method for choosing panels is complicated by two factors. First,
no cell type has had all assay types performed in it, so we perform evaluation separately on each cell type
in order to evaluate against all available assay types. Second, these evaluation metrics must be used to
compare to assays outside of the panel, so we use a cross-validation strategy in which we hold out a target
set for evaluation and choose panels from the remaining source set, repeating this process for many choices
of target set. This evaluation strategy enables principled evaluation that compares all methods against the
same held-out standard while using only the available data sets (Methods, Figure 5).

Panels chosen by SSA outperform alternative methods according to three eval-
uation metrics.

We applied this panel evaluation framework to evaluate SSA. To determine the most effective objective
function, we compared the facility location function and four other potential objective functions based on
the pairwise similarity matrix (Figure 3). We found that the facility location function had a higher Spearman
correlation with the three evaluation metrics than the other objective functions we tried, and this trend was
consistent across multiple cell types. In addition, we found that the facility location function had the best
correlation with the three evaluation metrics when we defined the similarity between a pair of assay types as
the mean Pearson correlation between this pair, as opposed to the median, maximum or other aggregation
function. These observations led us to choose SSA’s facility location objective function because they show
that this function accurately measures the quality of a given panel while using only data available from
reference cell types.

To compare SSA to alternative panel selection approaches, we compared its performance on our three
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Figure 4: (a) Performance of panel selection strategies on cell type GM12878. Boxplots show the distribution
of evaluation metrics over 40 random panels. The panels of most-frequently performed assays are composed
of top k most frequent assay types available in our data set, where k is the size of the panel. Each evaluation
metric is normalized to lie within [0, 1] by subtracting the lowest value and dividing by the highest. (b)
Performance of SSA relative to an estimate of the performance on all possible panels. The vertical axis
shows the fraction of panels that perform worse than the SSA-chosen panel for a given setting, estimated by
comparing to 40 randomly-selected panels.
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evaluation metrics. We found that the panels reported by SSA perform within the top few percent of an
estimate of the performance on all possible panels, and this high performance is consistent across panel
sizes, evaluation cell types and performance metrics. We found that SSA also greatly outperforms the
panel of most-frequently performed assay types, which is a reasonable surrogate for the panel that might be
chosen by manual selection (Figure 4; Supplementary Table 1). This commonly-performed panel actually
performs worse than the average panel in many cases, which may be a consequence of the fact that the
most commonly-performed assay types measure broad marks of regulation such as histone modifications and
DNA accessibility which do not have the specificity to identify pathway-specific elements. These results
demonstrate quantitatively that panels chosen by SSA are effective when applied to their most common
downstream tasks.

SSA can additionally be used to select a subset of performed assays as input to
an expensive analysis

So far we have considered panel selection in the “future” setting where a researcher is planning to experi-
mentally perform a panel of assay types. Panel selection is sometimes also important in the “past” setting
where a researcher wishes to apply a computationally expensive analysis that cannot be efficiently applied
to all assays together and therefore must be applied to a smaller panel. For example, training a statistical
model to perform semi-automated genome annotation jointly on dozens of assays across many cell types is
computationally expensive. A strategy in which each cell type is represented by a smaller panel of assays
might yield very similar annotations using fraction of the computational resources. In this setting, the assays
themselves are available to the selection algorithm, so we compute the similarity matrix based on these values
themselves (SSA-past) rather than estimating the similarities by aggregating across cell types (SSA-future).
Importantly, in the selection of past assays case, a different panel can be selected for each cell type, based
on the available data. To test SSA in the past setting, we used the same evaluation strategy as in the future
setting, but using the source assays themselves to compute the similarity matrix. SSA performs consistently
well according to these metrics, and it performs slightly better on some cell types in the past than the future
setting due to the availability of this additional information (Figure 4B).

Discussion

The availability of a large number of types of genomics assays means that choosing a panel of genomics
assays is a key step in any genomics project. Previously, these panels were chosen in an ad hoc fashion.
We have developed Submodular Selection of Assays (SSA), a method for choosing high-quality panels using
submodular optimization. This method is computationally efficient, results in high-quality panels according
to several quality measures, and is mathematically optimal under some assumptions. By applying SSA,
researchers can now easily choose a high-quality panel of assay types to perform on any cell type of interest.
These higher-quality panels will allow researchers to achieve the same utility from performing fewer assays,
saving thousands of dollars in labor and reagent costs per cell type.

This panel selection framework can also be used partway through the investigation of a cell type, when
several assays are already available. By modifying the facility location function to include the availability of
these assays, SSA can be used to determine the most-informative next experiments to perform. In doing so,
SSA will take into account the information in these existing assays and choose additional assay types that
measure distinct genomic features.

In this manuscript, we focused on optimizing the facility location function. However, the same submodular
optimization framework can be used to optimize other objective functions that may prove to be more relevant
for certain applications. Several other functions may be useful in practice. First, if some assays are more
expensive or time consuming than others, the objective function can be modified to incorporate this cost.
Second, if some assays are inherently preferable to others, for example because they have better-established
processing pipelines, the objective can incorporate this preference and trade off choosing both diverse and
established assay types. Third, entirely different types of panel attributes may be valuable for a particular
application, which can be formalized as a different objective function (such as the alternatives we discuss
in Supplementary Note 1). As long as the resulting objective function remains submodular, it will be
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efficiently optimizable using either the greedy algorithm for monotone non-decreasing functions or other
efficient methods (Buchbinder et al., 2012, 2014) for non-monotone functions. Moreover, such modifications
are intuitive to design and easy to implement.

The facility location function can also be used to guide manual assay panel selection. A researcher may
seek to optimize hard-to-quantify characteristics of a panel such as familiarity with the protocols involved or
the panel’s concordance with panels performed on other cell types. In this case, the researcher may choose
to perform a panel that has slightly poorer quality as measured by the facility location function in order to
optimize these other criteria.

The evaluation strategy we introduce here can be used to evaluate any proposed strategy for panel
selection, whether or not this method is based on submodular optimization. This framework is composed of
two parts. First, a cross-validation strategy allows for principled comparison of methods under the restriction
that not all assays are available in all cell types, and that a panel must not be evaluated on an assay type that
it contains. Second, three distinct metrics capture the three primary downstream applications of genomics
data sets.

The method we describe is similar in some ways to the imputation-based assay type prioritization strategy
proposed by Ernst and Kellis (Ernst and Kellis, 2015). This proposed strategy prioritizes assay types that
are hardest to impute from the existing assays. In that way, this imputation-based strategy is similar to
performing panel selection based just on our assay imputation evaluation metric. However, SSA has two
advantages over this imputation-based strategy. First, the imputation-based comparison can only be used
when all assay types under consideration have all been performed in the same cell type, a restriction that
does not apply to SSA because of its similarity matrix aggregation strategy. Second, selecting a panel of
assays using this imputation-based strategy requires performing a separate imputation procedure on all 2N

possible panels, which is hopelessly computationally expensive.
One limitation of any data-driven analysis like this one is that they are limited by any imperfections in the

data sets used. For example, if all available assays of a given type happen to be of particularly good or poor
quality, the correlations associated with this assay type will appear to the algorithm to be particularly strong
or weak respectively. Similarly, any mislabeled assays, batch effects, or other artifacts may also influence
whether certain assay types will be chosen in a panel. Future assays of that type may not be expected
to have the same artifactual patterns, so the resulting panels could be suboptimal. Therefore it is always
important to scrutinize the results of data driven approaches like this one to understand whether patterns
in the available data are predictive of future experiments. Modifications of this approach that, for example,
find and remove faulty assays before input into the algorithm might result in different panels. However, our
evaluation metrics are also entirely data-driven, so we cannot use them to explore these issues.

Finally, we hope that this work can serve as a model for how submodular optimization can be applied
to other problems in biology. As with convex optimization, the same toolbox of submodular optimization
methods can be applied to a wide variety of problems, and any innovations to this toolbox improve all
solutions. For this reason, submodular optimization is widely used for discrete problems in other fields.
However, it is not yet widely used in biology. Therefore we expect that in the future, submodular optimization
will be used for other discrete problems in biology, such as for selecting panels of DNA mutations to test in
a functional screen or removing redundancy in protein sequence data sets.

Methods

Genomics data

We acquired all public genomics data from the ENCODE (http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/encodeDCC/) and Roadmap Epigenomics (https://sites.google.com/site/anshulkundaje/projects/
epigenomeroadmap) projects as of January 2015. These data sets were processed by the two consortia into
real-valued data tracks, as described previously (Hoffman et al., 2013; Kundaje et al., 2015). We omitted
all assays with more than 1% unspecified positions, which may indicate errors during processing or map-
ping. We manually curated these assays to unify assay type and cell type terminology and, when multiple
assays were available, we arbitrarily chose a representative assay for each (cell type, assay type) pair. This
procedure resulted in a total of 1,359 assays comprised of a total of 216 assay types and 228 cell types. The
assay types include ChIP-seq with a variety of targets (both histone modification and transcription factor),
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DNase-seq, FAIRE-seq, Repli-seq and RNA-seq. The full list of assays is given as supplementary data. We
applied the inverse hyperbolic sine transform asinh(x) = ln(x +

√
x2 + 1) to all signal data. This function

has the compressing effect of a function like log x for large values of x but it is defined at zero and has
much less of a compressing effect for small values. The asinh transform has been shown to be important for
reducing the effect of large values in analysis of genomics data sets (Johnson, 1949; Hoffman et al., 2012).
Transcription factor ChIP-seq peaks were called by each consortium for each factor using MACS using an
irreproducible discovery rate (IDR) threshold of 0.05 (Zhang et al., 2008; Landt et al., 2012).

Notation

We use the following notation below to facilitate the description of our method. We use the term “assay
type” to mean a particular genomics assay protocol that may be performed in any cell type (for example
“ChIP-seq targeting H3K27me3”) and “assay” to mean a particular assay type performed in a particular
cell type. The term “cell type” refers to any cellular state that may be queried with a genomics assay, which
may refer to any combination of cell line, tissue type, disease state (such as cancer), individual, or drug
perturbation. We refer to a cell type as c and the entire set of all cell types as C (|C| = 228). We use a to
refer to an assay type, A for a subset of assay types, and A for the set of all assay types (|A| = 216). We use
s to denote a single assay (that is, a given assay type performed in a given cell type), S for a set of assays,
and S as the set of all available performed assays. Given any cell type c ∈ C we define the set of assay types
performed in this cell type as Ac and the corresponding assays as Sc. We define I = {1, . . . , n} as the set of
all positions in a genome. An assay s is represented as a vector of length n; i.e., s ∈ Rn. We denote its ith
entry (i.e., the value of assay s at genomic position i) as s(i).

Submodular optimization

A submodular function (Fujishige, 2005) is defined as follows: given a finite size m set V = {1, 2, . . . ,m}, a
discrete set function f : 2V → R that offers a real value for any subset S ⊆ V is submodular if and only if:

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ),∀S, T ⊆ V. (1)

Defining f(s|S) , f(s ∪ S) − f(S), submodularity can equivalently be defined as f(s|S) ≥ f(s|T ), ∀S ⊆ T
and s /∈ T . That is, the incremental gain of adding item s to the set decreases when the set to which s is
added to grows from S to T . In this work, the whole set V represents a set of genomics assays and the set
function f(S) represents a measure of quality of a subset of assays S ⊆ V .

Two other properties of set functions are relevant to this setting. First, a set function f is defined as
monotone non-decreasing if

f(s|S) ≥ 0,∀s ∈ V \ S, S ⊆ V. (2)

Second, we say that f is normalized if f(∅) = 0.
In this work we are interested in the problem of maximizing a submodular function subject to a constraint

on the size of the reported set. That is, we are interested in solving the problem

maximize f(S), subject to |S| ≤ k (3)

for some integer k ≤ |V |. In this work, we require that f is submodular, monotone-nondecreasing and
normalized.

While this problem is NP-hard, it can be approximately solved by a simple greedy algorithm with a worst-
case approximation factor (1− e−1) (Nemhauser et al., 1978b). This is also the best solution obtainable in
polynomial time unless P = NP (Feige, 1998). The algorithm starts with the empty set S0 = ∅ and at each
iteration i adds the element si that maximizes the conditional gain f(si|Si−1) with ties broken arbitrarily
(i.e., finding si ∈ argmaxe∈V \Si−1

f(e|Si−1)) and then updates Si ← Si−1 ∪ {si}. The algorithm stops when
the cardinality constraint is met with equality. The running time of this algorithm can be improved from
using a quadratic number of function evaluations to a near-linear number without any performance loss by
further exploiting the submodularity property (Minoux, 1978).
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Facility location function

In this work we use the facility location function to measure the quality of panel of assay types. The facility
location function (Cornunéjols et al., 1990) ffac : 2V → R is defined as follows:

ffac(S) =
∑
s′∈V

max
s∈S

rs′,s, (4)

where rs′,s measures the pairwise similarity between assays s′ and s (defined below). Intuitively, the facility-
location function takes a high value when every assay in V has at least one similar representative in S.

Assay type similarity

We use the following strategy to define the similarity between each pair of assay types in order to use
this similarity to define a facility location function. We define this similarity differently depending on the
application: In the selection of past assays setting, the particular assays performed in the cell type of interest
c are available, while in the selection of future assays setting we must estimate this similarity from reference
cell types.

In the selection of past assays setting, we directly use the signal vectors si and sj to derive the similarity.
We define this similarity as rsi,sj = |ρsi,sj | ∈ [0, 1], where ρsi,sj is the Pearson correlation between the signal
vector si and sj . Pearson correlation is frequently used to evaluate the similarity between genomics assays
(ENCODE Project Consortium, 2012). For efficiency, we compute the correlation measure ρsi,sj only across
a subset of genomic positions I ′ ⊆ I, where I ′ is randomly subsampled from I, and |I ′| ≈ 0.01|I|.

In the selection of future assays setting, the assays in the cell type c are not available, but the assays
performed in cell types other than c, S \ Sc, are available. Let ai, aj ∈ A be the assay types associated
with the assay si and sj , respectively. Let Sai be the set of assays in S with type ai. We approximate the
similarity between si and sj by aggregating the pairwise similarity between assays in Sai \ si and Saj \ sj .
We consider six different aggregation strategies by taking the average, 0th percentile (min), 25th percentile,
50th percentile (median), 75th percentile, and 100th percentile (max) of these similarity scores sorted in
non-decreasing order, which are defined below as r1, r2 , r3, r4, r5, and r6:

r1si,sj ,
1

|Sai \ si|
1

|Saj \ sj |
∑

s∈Sai\si

∑
s′∈Saj \sj

|ρs,s′ |, (5)

r2si,sj , percentile({|ρs,s′ | : s ∈ Sai , s′ ∈ Saj \ sj}, 0), (6)

r3si,sj , percentile({|ρs,s′ | : s ∈ Sai , s′ ∈ Saj \ sj}, 25), (7)

r4si,sj , percentile({|ρs,s′ | : s ∈ Sai , s′ ∈ Saj \ sj}, 50), (8)

r5si,sj , percentile({|ρs,s′ | : s ∈ Sai , s′ ∈ Saj \ sj}, 75), (9)

r6si,sj , percentile({|ρs,s′ | : s ∈ Sai , s′ ∈ Saj \ sj}, 100), (10)

(11)

where the function percentile(C, p) returns the pth percentile of the items in the list C sorted in non-
decreasing order. We chose to use the average correlation (r1) because the facility location function defined
using similarities aggregated in this way correlated best with our evaluation metrics (Supplementary Note
2).

Evaluation cross-validation strategy

We would prefer to apply our method once to select a single panel of assay types. However, doing so could
result in a panel of assay types that have not been performed in any cell type (or very few cell types), which
would prohibit evaluating the quality of this panel. Therefore, we apply a cross-validation strategy that
repeatedly holds out a subset of assay types for evaluation and selects a panel from the remaining assay
types, and we perform this cross-validation separately for each cell type in turn (Figure 5a). To evaluate the
quality of our method with respect to a cell type c, we restrict ourselves to selecting from the set of assays
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performed in c (Sc). We randomly partition Sc into 10 equally-sized, disjoint folds. Of the 10 folds, a single
fold is retained as the target set T c, and the remaining 9 blocks are used as the source set Vc. We select a
panel of assays S ⊆ Vc from the source set Vc and evaluate the panel on the assays relative to the target set
T c using the three evaluation metrics described below. The process is then repeated ten times, with each of
the ten folds used once as the target set. We average the ten results are averaged to produce a single number
representing the performance.

Assay imputation

The assay imputation evaluation metric measures the ability of a panel of assay types to be used to impute
the results of other assay types outside the panel (Figure 5b). We formalize assay imputation metric as a
regression problem in which the assays in the panel S are used as features to predict the target set assays,
s′ ∈ T c. In this regression problem we have one labeled example for each position in the genome.

As our regression model, we use support vector regression with a Gaussian kernel. To construct the
training and test data, we randomly choose disjoint sets of genomic positions ITr, ITe ⊆ I, where ITr∩ITe =
∅. In our experiments, we set |ITr| = 5, 000 and |ITe| = 2, 000. Given the panel S = {s1, . . . , s|S|}, a target
assay s′ ∈ T c, and the training genomic positions ITr, we create the training data as DTr = {xi, yi}i∈ITr ,
where xi = [s1(i), s2(i), . . . , s|S|(i)]

T and yi = s′(i). Similarly, the test data set is constructed as DTe =
{xi, yi}i∈ITe . The hyperparameters of the regression model are tuned using 5-fold cross validation. We
measure the performance of the trained model on the test data DTe as the squared correlation coefficient
θs′ . We repeat this evaluation process for every target assay in T c and report the performance of the panel
S as the average squared correlation coefficient θ = 1

|T c|
∑

s′∈T c θs′ .

Functional element prediction

The functional element prediction evaluation metric evaluates how well a panel of assays can predict the
genomic locations of functional elements such as promoters, enhancers and insulators. Because there are
few validated examples of each type of element, we use experimentally-determined binding of transcription
factors, as determined by transcription factor ChIP-seq peaks, as a proxy for functional elements. Most
known types of functional elements can be characterized by the binding of particular transcription factors
(Visel et al., 2009; Burgess-Beusse et al., 2002). Note that functional element prediction is similar to assay
imputation in the sense that both evaluation metrics aim to predict the output of a genomics assay; however,
functional element prediction focuses on just transcription factor binding sites, whereas assay imputation
focuses on the whole genome. Similar to assay imputation, we consider this metric separately for each cell
type. For an evaluation cell type c, we denote the set of transcription factor ChIP-seq assays performed
in c as Ŝc ⊆ Sc. Given a bi-partition of Sc into the source set Vc and the target set T c, we choose from
the source set Vc a panel of assays, and we evaluate functional element prediction only on the target assays
in the set T̂ c = T c ∩ Ŝc, in contrast to the assay imputation metric where all assays in T c are used for
evaluation.

For a target transcription factor assay s ∈ T̂ c, let p be a binary vector {0, 1}n indicating the genomic
positions where s has a peak as called by the peak-calling algorithm. That is, p(i) = 1 if there is a peak at
position i, and p(i) = 0 otherwise. We use a support vector machine (SVM) with Gaussian kernel to predict
p given a panel of assays S ⊆ Vc. For a given testing factor p, we refer to the positions where p = 1 as I+ and
the set of positions where p = 0 as I− = I \ I+. We randomly choose ITr

+ ⊆ I+ and ITr
− ⊆ I− as the positive

and negative positions to generate training samples. Similarly, the testing samples are randomly chosen from
ITe
+ ⊆ I+ \ ITr

+ and ITe
− ⊆ I− \ ITr

− . Given the panel S = {s1, . . . , s|S|} of assays and the set of positive
training genomic positions ITr

+ , we construct the set of positive training samples as DTr
+ = {xi,+1}i∈ITr

+

where xi = [s1(i), . . . , s|S|(i)]
T . Similarly, we construct the negative training samples, positive test samples,

and negative test samples as DTr
− , DTe

+ , and DTe
− , respectively. The SVM is first trained on the training data

set DTr = {DTr
+ ,DTr

− }, and then evaluated on the testing data set DTe = {DTe
+ ,DTe

− }.
Because there are far more genomic positions that are not a functional element than there are positions

that are, measures of predictive accuracy such as the total fraction of correct predictions (“accuracy”) and
the area under the receiver operating characteristic curve do not offer a reasonable measure of performance.
Instead, we compute the area under the curve of a precision-recall plot (AUC-PR), which is particularly well
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(a)

(b) (c)

(d)

Figure 5: Schematics of (a) the cross-validation evaluation strategy, and the three evaluation metrics: (b)
assay imputation, (c) functional element prediction, and (d) annotation-based evaluation.
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suited for settings with imbalanced class distributions (Craven and Bockhorst, 2005; Davis and Goadrich,
2006). In our experiments we set |ITr

+ | = 200, |ITr
− | = 20, 000, |ITe

+ | = 100 and |ITe
− | = 10, 000. We apply

5-fold cross validation for tuning the hyperparameters of the SVM. Let γs′ be the normalized area under
curve for the precision-recall plot (i.e., γs′ ∈ [0, 1]) for each target assay s′ ∈ T̂ c. We illustrate this procedure
schematically in Figure 5c. We report the performance as the average AUC-PR on all target assays, i.e.,
γ = 1

T̂ c

∑
s′∈T̂ c γs′ .

Annotation-based evaluation

The annotation-based evaluation metric measures the quality of a panel of genomics assays according to the
quality of the genome annotation that is obtained by inputting the panel into a semi-automated genome
annotation (SAGA) algorithm. SAGA algorithms are widely used to jointly model diverse genomics data
sets. These algorithms take as input a panel of genomics assays and simultaneously partition the genome and
label each segment with an integer such that positions with the same label have similar patterns of activity.
These algorithms are considered “semi-automated” because a human performs a functional interpretation of
the labels after the annotation process. Examples of SAGA methods include HMMSeg (Day et al., 2007),
ChromHMM (Ernst and Kellis, 2010), Segway (Hoffman et al., 2012) and others (Thurman et al., 2007; Lian
et al., 2008; Filion et al., 2010). These genome annotation algorithms have had great success in interpreting
genomics data and have been shown to recapitulate known functional elements including genes, promoters
and enhancers. We use the SAGA method Segway in this work.

In order to apply annotation-based evaluation to a panel of assays, we input this panel into a SAGA
algorithm and evaluate the resulting annotation (Figure 5d). Intuitively, a diverse panel of assays input to a
SAGA algorithm should more accurately capture important biological phenomena than a redundant panel.
To evaluate the quality of an annotation relative to a particular genomics data set, we use the variance
explained measure (Libbrecht et al., 2015). Given an evaluation cell type c we randomly partition Sc into a
source set Vc and a target set T c. For a given panel of assays S ⊆ Vc, we first train a Segway model based on
the panel and then obtain an annotation y. Segway outputs an annotation y ∈ Yn, where Y = {1, 2, . . . , k}
is a set of k labels that an annotation can take on at each genomic position. For each target assay s′ ∈ T c,
we measure the quality of the annotation y as how well it explains the variance of the assay s′. We first
compute the signal mean of s′ over the positions assigned a given label ` as

µ` ,

∑n
i=1 1(y(i) = `)s′(i)∑n

i=1 1(y(i) = `)
for ` ∈ {1 . . . k}. (12)

We then define a predicted signal vector ŝ′ with ŝ′(i) = µy(i) and compute the prediction error as di =
ŝ′(i)− s′(i). We compute the residual standard deviation of the signal vector as

σres , stdev(d1:n) =

√√√√ 1

n

n∑
i=1

(di −mean(d1:n))2 =

√√√√ 1

n

n∑
i=1

d2i . (13)

The last equality holds because mean(d1:n) = 0 by construction. σres measures the residual standard de-
viation of the target assay s′ accounting for the annotation y. Let σov = stdev(s′(1 : n)) be the overall
standard deviation of the assay s′. The normalized variance explained by the annotation y is then

αs′ =
σov − σres

σov
. (14)

Observe that σov always upper bounds σres. The measure αs′ ∈ [0, 1] represents the fraction of the variance
of the assay s′ explained by the annotation y, where larger values indicate better agreement.

In our experiments, we trained the Segway model with 10 EM random initializations (using GMTK (Bilmes
and Rogers, 2015)) and 15 labels at 100 base-pair resolution. We report the performance as the averaged
measure on all target assays as α = 1

|T c|
∑

s′∈T c αs′ .
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Source code

Source code for SSA and computed assay type similarity matrix are available as Supplemental Material and
online at http://github.com/melodi-lab/Submodular-Selection-of-Assays.
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