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Abstract 

Mergeomics is a computational pipeline (http://mergeomics.research.idre.ucla.edu/Download/Package/) that 

integrates multidimensional omics-disease associations, functional genomics, canonical pathways and gene-

gene interaction networks to generate mechanistic hypotheses. It first identifies biological pathways and 

tissue-specific gene subnetworks that are perturbed by disease-associated molecular entities. The disease-

associated subnetworks are then projected onto tissue-specific gene-gene interaction networks to identify 

local hubs as potential key drivers of pathological perturbations. The pipeline is modular and can be applied 

across species and platform boundaries, and uniquely conducts pathway/network level meta-analysis of 

multiple genomic studies of various data types. Application of Mergeomics to cholesterol datasets revealed 

novel regulators of cholesterol metabolism. 

Keywords: Integrative Genomics, Multidimensional Data Integration, Functional Genomics, Gene Networks, 

Key Drivers, Cholesterol 
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Most non-communicable diseases stem from a complex interplay between multiple genes and cumulative 

exposure to environmental risk factors 1. An emerging hypothesis regarding the underlying pathogenic 

processes is that exposure to genetic or environmental risk factors results in progressive and chronic 

regulatory perturbations to molecular and cellular processes that would otherwise maintain normal 

homeostasis. In recent years, the advance of omics technologies has greatly enhanced our ability to test this 

hypothesis with genome-scale molecular datasets that are also publicly available to the scientific community. 

Large-scale data repositories such as dbGaP for population-based genetic datasets 2 and Gene Expression 

Omnibus and ArrayExpress for gene expression and epigenomics datasets 3, 4 are continuously expanded with 

new experiments, data acquisition projects such as ENCODE and GTEx are generating multidimensional 

coherent datasets and the necessary basic framework to bridge the gaps between diverse genomics datasets 5, 

6, 7. 

An isolated omics study can provide only a partial view of the biological system. For example, a genome-

wide association study (GWAS) can reveal the statistical associations between genetic loci and disease status, 

and implies causal effects, but pinpointing the causal genes, their corresponding causal variants and 

mechanisms has proven challenging 8, 9. Additionally, evolutionary constraints restrict the ability of GWAS 

to detect central regulatory genes 10, and directly translating genetic associations of common variants with 

subtle effects may miss novel therapeutic targets. On the other hand, gene expression or epigenomic profiling 

can detect associations between disease and genes or epigenomic markers, but these associations are 

correlative in nature. By integrating different types of data, it becomes possible to circumvent the limitations 

of individual studies and better identify disease-causing DNA variants and their downstream molecular 

targets. For instance, when DNA and RNA are measured simultaneously, it is possible to determine if a 

particular genetic variant affects the downstream expression of a gene in a genetics of gene expression or 

eQTL analysis 11, 12. Furthermore, if a genetic variant resides in a functional site associated with transcription 

factor binding, epigenetic modification, or protein regulation, as revealed by the ENCODE project 13, 14, it 

becomes possible to narrow in on the potential targets. 

In parallel to large-scale genomic projects, new computational tools are required to convert massive 

genomics data into biological insights that can lead to novel mechanistic hypotheses. Pathway-based analysis 

tools such as MAGENTA 15 and iGSEA4GWAS 16 that integrate GWAS with curated pathways and methods 
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that additionally take into consideration of eQTL information 17 have been developed. Beyond knowledge-

based pathway analysis, data-driven approaches utilizing gene regulation and protein-protein interaction 

networks have been developed to identify the most likely pathological perturbations and target genes for 

disease-associated loci. Network biology aims to identify high-level regulatory patterns that characterize 

systemic functions with nodes representing genes or other molecular entities and edges representing the 

relations between nodes 18, 19, 20. Networks can be classified into curated knowledge (e.g. metabolic 

pathways), direct experimental evidence (e.g. protein binding from yeast two-hybrid systems), and statistical 

models of high-throughput omics data (e.g. gene co-expression). Tools for network modelling of genetic data 

such as dmGWAS and EW_dmGWAS 21, DAPPLE 22 and “guilt by association” frameworks 23 are powerful 

extensions to the basic genetics toolbox. Furthermore, extensive tissue-specific network resources, such as 

the GIANT database 24, enable biologists to query the regulatory network context for genes of interest. 

Applications of network methods to multiple complex traits such as obesity 25, type 2 diabetes 26, 27, 28, 

coronary artery disease 29, 30 and Alzheimer's disease 19, 31 have led to successful identification of gene 

subnetworks (i.e. specific parts of the full network) of highly interconnected genes that represent pathogenic 

processes, and their central hubs or key drivers as potential points for intervention.  

Despite the above methodological advances, several gaps remain to be addressed. The available methods are 

typically tailored for a particular combination of datasets (e.g. human genetics with gene expression, or 

human genetics with pathways or protein-protein interactions), thus lacking the flexibility to accommodate 

additional data types and multiple datasets from one or more species, tissues and platforms. Additionally, 

network approaches such as WGCNA 32 and postgwas 33 emphasize the detection of modules of co-operating 

genes, but validation experiments in the wet lab and therapeutic target selection require narrowing in on 

strong driver genes at the center of the module. Furthermore, the majority of the network tools start from a 

limited set of known top loci or genes and focus on ranking candidate genes based on network topology. One 

example is the GIANT database 24 and the NetWAS tool within, which provide convenient online query tools 

for such analyses. However, in most cases a full genomic analysis capable of extracting true subtle signals 

that are well below a significance cutoff from random noise is more powerful to achieve a comprehensive 

understanding of disease pathogenesis. Therefore, there remains a need for easily usable open source 

software that is designed for diverse types of genomic data to identify pathways, to model gene networks of 
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diseases, and to pinpoint the key driver genes for further experiments in a streamlined and high-throughput 

manner. 

To meet the challenge, we introduce Mergeomics, a flexible pipeline that integrates genomic associations, 

tissue-specific functional genomics resources, canonical pathways and weighted gene-gene interaction 

networks to identify pathogenic subnetworks and their key driver genes. The main components of 

Mergeomics are designed to 1) identify disease-associated subnetworks by aggregating genomic marker 

associations over functionally related or co-regulated genes; 2) perform pathway and network-level meta 

analysis across studies of different design, data type, platform, and species; 3) determine network key drivers 

by projecting disease subnetwork genes onto one or more system-scale gene or protein interaction networks. 

Here, we describe the methodology in detail and introduce new algorithms for pathway and network analyses. 

We also report the results from extensive testing of technical aspects such as parameter selection and data 

preprocessing based on simulated and empirical datasets to demonstrate that Mergeomics is statistically 

robust and outperforms previous methods. Finally, we applied Mergeomics to circulating cholesterol datasets, 

a clinically relevant human trait that is a major risk factor for cardiovascular disease. The most distinct 

aspects of Mergeomics lie in its applicability to both human and animal model studies, and adaptability for 

various types of association studies from GWAS, mutation burden from exome sequencing studies, and 

transcriptome-wide association studies (TWAS) to epigenome-wide association studies (EWAS) and 

metabolite or proteome-wide association studies. The source code for Mergeomics is released as an R 

package (http://mergeomics.research.idre.ucla.edu/Download/Package/) . 

Results 

Overview of Mergeomics 

Figure 1 shows the information flow within the Mergeomics pipeline. The Marker set enrichment analysis 

(MSEA), depicted on the left, combines disease association data (e.g., GWAS, EWAS, TWAS), functional 

genomics data from projects such as GTEx and ENCODE, and functional gene sets such as metabolic and 

signalling pathways and co-regulated gene modules. MSEA is based on the notion that while it is difficult to 

say which marker is causal for a disease, if the markers associated with a biological process (via their 
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putative target genes selected based on functional evidence) are enriched for disease association signals, then 

it is plausible that at least some of those markers and their target genes are involved in causal disease 

mechanisms. The output from MSEA is a ranked list of gene sets that are significantly enriched for disease 

markers. We collectively denote these gene sets, which can be pathways, co-expression modules or gene 

signatures, as disease-associated gene sets. When multiple datasets of the same data type or different data 

types are available for a given disease or phenotype, the meta-MSEA component that is based on the same 

principles as MSEA but performs meta-analysis at the pathway or network level can be utilized. 

The weighted Key Driver Analysis (wKDA, right side in Fig. 1) component of Mergeomics identifies local 

hubs that are central to the disease-associated gene sets by taking into consideration the network topology 

and the edge weight information between network nodes. This is accomplished by projecting the disease-

associated gene sets from MSEA or meta-MSEA onto one or more types of gene or protein interaction 

networks containing detailed topology information, and then testing if the network neighbourhood of a 

particular hub shows over-representation of disease-associated genes. Hubs that demonstrate significant 

enrichment are defined as key drivers of the disease-associated gene sets.  

Although MSEA (or meta-MESA) and wKDA are introduced as sequential steps in Mergeomics, they can be 

performed independently. MSEA or meta-MSEA can be performed without continuing to wKDA, and 

wKDA can be performed on pre-defined disease-associated genes without running MSEA or meta-MSEA. 

Calibration of MSEA 

MSEA first converts a gene set from pre-defined functional pathways or co-regulated genes into a set of 

markers that are likely to perturb the function of the genes based on functional genomics data such as eQTLs 

and ENCODE information. The disease association P-values for this set of markers are then extracted from 

the summary statistics of a disease association study of interest. If there are a large number of small P-values 

in the marker set compared to what can be expected by chance, we conclude that the gene set we started from 

is enriched for disease associations. Key features of MSEA include: 1) it provides flexibility to accommodate 

association studies of different types or species, as long as the corresponding association statistics, marker-

gene mapping, and pathway or gene set files are available; 2) it allows flexibility in gene-marker mapping to 

incorporate appropriate functional genomics information specific to the marker type (e.g., eQTL information 
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between SNPs in GWAS and genes); 3) it allows marker filtering based on dependency measures between 

markers to select independent markers for statistical testing (e.g., linkage disequilibrium or LD information 

can be used to correct for linked SNPs in GWAS); 4) it utilizes a new test statistic with multiple quantile 

thresholds to automatically adapt to different association study datasets involving different sample sizes and 

statistical power; 5) it implements both marker-based and gene-based permutation strategies to estimate null 

distributions, with the latter adjusting for shared markers between genes and gene size. 

To test the performance of MSEA, we performed simulation tests based on three cholesterol GWAS of 

varying sample sizes (a Finnish study of 8,330 individuals 34, the Framingham Heart Study with 7,572 

participants 35, and Global Lipid Genetics Consortium or GLGC with 100,184 people 36) and a set of known 

causal lipid homeostasis genes from the Reactome pathway R-HSA-556833, “the metabolism of lipids and 

lipoproteins”. We resampled genes from this pathway into 100 sets of 25, 100 and 250 genes, respectively, to 

simulate 300 positive control signals of different magnitudes. Simultaneously, 300 corresponding sets of 

random gene sets were generated as negative controls. This procedure was repeated 100 times to produce 

stable statistics, and performance is evaluated as sensitivity, specificity and positive likelihood ratio (Details 

in methods). 

We identified several important parameters that affect the performance of MSEA based on the three 

cholesterol GWAS datasets, including the percentage of top markers used, linkage disequilibrium cutoff to 

filter SNPs, and permutation type for null distribution estimation (Supplementary Table 1). First, the signal 

to noise ratio typically improved when genetic loci with relatively stronger associations rather than the full 

GWAS associations were used (Supplementary Fig. 1). This confirms previous findings for complex traits 

that heritability is maximally explained by the top portion of the GWAS SNPs 37. Second, the effect of LD 

correction depended on the permutation type, percentage of markers included, and the power of the 

association study under testing (Supplementary Fig. 1). In the marker-permuted MSEA, the marker labels 

were permuted to estimate the null distribution of the enrichment score for random expectation; in the gene-

permuted MSEA, gene labels are permuted while the links between markers and genes are kept intact, thus 

more consistent with the hierarchical marker-gene-pathway cascade (Supplementary Fig. 2). In general, 

gene-based permutation is less sensitive to LD for more powered studies such as GLGC but performs better 

under higher LD cutoff for smaller studies such as Framingham; marker-based permutation is more sensitive 
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to the percentage of markers used in MSEA particularly for smaller studies (Supplementary Fig. 1). In 

addition, the assignment of markers to their putative targets genes can be defined in multiple ways: 

chromosomal distance-based assignment based on the locations of gene regions, or functional information-

based mapping determined by empirical data such as tissue-specific eQTLs or ENCODE information. 

Although empirical data is biologically more meaningful, to allow comparisons with other methods which 

mostly implement distance-based mapping, in our simulation analysis we used a window size of 20kb 

mapping between SNPs and genes by chromosomal location.  

Overall, MSEA algorithm that relied on gene-based permutations demonstrated consistently high sensitivity, 

specificity and positive likelihood ratio with less parameter-dependent fluctuations compared to the marker-

based version (Supplementary Table 1, Supplementary Fig. 1). Based on performance testing, we chose to 

use the top 50% of GWAS loci, an LD cutoff of r2 < 0.5, and gene permutation as the default setting. Of note, 

the differences due to datasets were typically larger than those due to parameters when using the gene-

permuted MSEA (Supplementary Fig. 3). 

Performance comparison between MSEA, MAGENTA and i-GSEA4GWAS 

MAGENTA 15 and i-GSEA4GWAS 16 are two widely used GWAS pathway analysis tools that are built upon 

an established gene set enrichment analysis 38. Both tools estimate the genetic associations for each gene, and 

then test if the aggregate gene score for a pathway is higher than expected. MAGENTA identifies the peak 

disease-associated SNP for each gene, and then adjusts the statistical significance of the peak SNP according 

to the size of the gene, LD and other potential confounders to produce the gene score. i-GSEA4GWAS uses 

a similar approach where a gene is considered significant if it contains any of the top 5% SNPs, and the 

pathway score is estimated by comparing the observed ratio of significant genes within the pathway against 

the expected ratio in the full set of genes that were covered by the GWAS. Compared to these methods, 

MSEA differs in test statistics, confounder adjustment, and flexibility in data accommodation.  

The same simulated positive and negative control pathways that were used for calibrating MSEA were also 

used to compare the three different methods. Since this approach may give an unfair advantage to MSEA due 

to optimized calibration towards the positive controls, we also performed additional tests with 1,346 

canonical pathways curated by Reactome 39, BioCarta (http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways) 
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and KEGG 40. All tests produced similar results: i-GSEA4GWAS lacked specificity and MAGENTA lacked 

sensitivity, whereas the gene-permuted MSEA provided the best balance and receiver operator characteristics. 

The results for the simulated positive and negative controls are depicted in Fig. 2, and the results from the 

additional tests with the canonical pathways are in Supplementary Table 2. Notably, the superior 

performance of MSEA over the other two established methods is more obvious when the GWAS involved 

smaller sample size and heterogeneous population. 

Meta-MSEA: pathway-level meta-analysis of multiple association studies 

Various factors determine the quality of an association study. For example, GWAS result depends on the 

sample size, study design, accuracy of the phenotype, ethnicity and the coverage of the genotyping platform. 

Among the cholesterol GWAS we chose, the cholesterol level in the Finnish study was measured with a 

high-sensitivity NMR instrument in an ethnically homogeneous population, whereas the Framingham study 

relied on standard assays in a more mixed population. These differences may explain the lack of signals at 

FDR < 25% from the Framingham study in Fig. 2. However, the lipoprotein pathway was at the top of the 

list for all three GWAS, so a pathway-level meta-analysis can potentially boost weak but consistent signals. 

Importantly, unlike the traditional approach where meta-analysis is done at the marker level, this pathway-

level analysis can bypass the need to match ethnicity or genotyping platforms, an advantage not present in 

the previous methods.  

Mergeomics was specifically designed to produce output that is suitable for pathway-level meta-analysis 

(meta-MSEA) because pathway enrichment P-values are estimated from null distributions by parametric 

models (detailed in Methods). This ensures that the reported P-values are always greater than zero, and can 

be converted back to Z-scores by using the inverse Gaussian density function. i-GSEA4GWAS is an 

example where this procedure is difficult since only frequency-based P-values are estimated and highly 

significant signals can be set at P = 0. Table 1 lists the top pathways from meta-MSEA, and the full results 

for pathway-level meta-analysis are available in Supplementary Data 1. The pathway-level meta-MSEA 

not only accurately identified major lipoprotein and lipid transport pathways and the receptors that mediate 

lipid transfer to and from lipoprotein particles, but yielded more significant P-values than those obtained 

from the pathway analysis of conventional meta-GWAS conducted at the SNP-level. Such superiority of 

meta-MSEA was consistently observed using simulated gene sets (Supplementary Fig. 4). These results 
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demonstrate the pathway-level meta-analysis is more powerful than the traditional SNP-centric approach to 

meta-analysis when investigating the genetic perturbations to biological processes, and we have accordingly 

incorporated the support for multiple association studies in the Mergeomics pipeline. Importantly, this 

pathway level meta-analysis feature allows integration of different types of omic association data sets. For 

example, association studies for a particular disease done at genetic, gene expression, epigenetic, and 

metabolite levels can be meta-analyzed after conducting MSEA on each association dataset, allowing the 

detection of functional pathways or networks that are perturbed by different types of molecular entities. 

Weighted key driver analysis (wKDA) to detect disease regulators  

The MSEA or meta-MSEA component of Mergeomics identifies pathways or co-regulated gene sets that are 

perturbed in a disease. However, the interactions between genes within these disease-associated gene sets are 

not evident. To this end, a key driver analysis (KDA) was previously developed to detect important hub 

genes, or key drivers, whose network neighbourhoods are over-represented with disease associated genes 29, 

41. The key driver concept is based on the projection of the disease-associated gene sets onto a separate 

graphical network model of gene regulation that represents molecular interactions in the full system (Fig. 3a). 

However, KDA ignores the edge weight information generated by most network inference algorithms. As 

edge weight typically represents association strength or reliability of the connection between genes, this data 

carries valuable topological information.  Here, we introduce a new algorithm wKDA that takes into account 

edge weights to increase accuracy, and a new co-hub concept that considers the local topology around hub 

genes to reduce multiple testing (Fig. 3). wKDA starts by searching a graphical network for candidate hub 

genes and ignores genes with few connections. It then collects the neighbouring genes for each candidate hub, 

and estimates the contribution of the disease-associated genes within the neighbourhood of the hub. If the 

contribution is stronger than what would be expected by chance, we conclude that the hub is a key driver of 

the disease-associated gene sets. Moreover, we developed a co-hub concept for wKDA (Fig. 3b), given the 

fact that networks with densely connected communities may complicate the interpretation of the key driver 

signals. Basically, if a subnetwork of genes has multiple highly interconnected genes at the center, it is 

critical to consider them collectively. For practical purposes, we select one of the central genes as the 

independent hub, and the rest as co-hubs. The rationale is two-fold: first, the statistical power is increased by 

only considering the independent hubs when adjusting P-values, as they also capture the signals from their 
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respective co-hubs. Second, the co-hub concept is a useful qualitative measure when selecting the most 

promising subnetworks and key drivers for experimental validation.  For instance, if a key driver has co-hubs 

with known functions, these can give clues as to the role of poorly understood genes. On the other hand, if a 

key driver is to be perturbed in an experiment, it may be important to incorporate the co-hubs as integral 

parts of the experimental design. 

The main difference between KDA and wKDA involves the counting of the subnetwork members around the 

hub. In KDA, each node is treated equally without consideration of the edges, and the enrichment is based on 

the excess proportion of disease genes within the hub neighbourhood. The new wKDA assigns a larger 

weighting coefficient for a node with higher edge weights than for other nodes in a network neighbourhood 

(details in Methods). Therefore, if the disease genes have higher edge weights to a hub or its neighbors, the 

enrichment score will be higher. From a practical perspective, the previous KDA detects key drivers that are 

connected to a large proportion of the disease-associated subnetwork genes, whereas the wKDA tends to 

detect key drivers that have high-weight edges to disease genes. In addition to identifying key drivers and co-

hubs, wKDA also outputs Cytoscape input files for the key drivers and their local subnetworks with disease 

genes highlighted that could be visualized in the Cytoscape software 42. 

Performance of wKDA and comparison with KDA 

To evaluate the performance of wKDA in comparison to the unweighted KDA, we first set up three disease- 

associated gene sets to test against four gene regulatory networks. The three gene sets included two lipid 

subnetworks (denoted as Lipid I and Lipid II) derived from our previous study 29 and the R-HSA-556833 

(Metabolism of lipids and lipoproteins) pathway from Reactome. The gene-gene interaction network models 

were probabilistic Bayesian gene regulatory networks constructed from multiple adipose and liver datasets 

(Supplementary Table 3). We organized these networks into two independent weighted adipose networks 

and two independent weighted liver networks using non-overlapping datasets, where edge weight represents 

the estimated reliability of an edge between genes. 

We used the overlap ratio (defined in Methods) of the identified key driver genes between the two 

independent networks of the same tissue to assess the predication accuracy of wKDA and KDA. As shown in 

Fig. 4, the new wKDA outperformed the previous unweighted KDA for all three gene sets against 
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independent networks in both tissues. To test the sensitivity of the key driver approach, we also partially 

randomized the adipose and liver networks as a model of topological noise. As expected, when some of the 

edges were randomly rewired, the number of consistent key drivers between two independent networks of 

the same tissue declined, and when all edges were rewired, no consistent key drivers were detected (Fig. 4). 

Notably, wKDA was able to detect consistent signals even when half the network was rewired, thus 

demonstrating the inherent robustness of the wKDA concept compared to the unweighted version. 

Importantly, because wKDA was specifically designed for weighted networks whereas the unweighted KDA 

mainly focuses on the network topology without considering weight information, key drivers with high-

weight (i.e., high reliability) edges between subnetwork genes were preferred by wKDA. This difference 

likely explains the better reproducibility of wKDA compared to the unweighted KDA (Fig. 4, 

Supplementary Table 4). 

Case study: application of Mergeomics to circulating cholesterol datasets 

The cholesterol in low-density lipoprotein particles has been established as a causal biomarker for 

cardiovascular disease 43. Multiple large GWAS have revealed a complex genetic regulation of circulating 

cholesterol that is likely to involve multiple genes 36, making cholesterol genetics an interesting test case for 

our pipeline. Furthermore, the decades of research have catalogued the features of cholesterol biosynthesis 

and lipoprotein transport at the pathway level, which makes it easier to verify that our methodology produces 

meaningful biological results. 

Significant pathways related to total cholesterol are already identified in the aforementioned MSEA and 

meta-MSEA analyses (Supplementary Data 1). Table 1 lists the top 15 pathways that were genetically 

perturbed by cholesterol-associated loci based on the ranks in the meta-MSEA results. Aside from the 

expected hits for lipoprotein transport, several pathways related to cellular lipid trafficking (scavenging 

receptors and ATP-binding cassette transporters of class A) and lipid metabolism (such as fatty acid, 

triacylglycerol and ketone body metabolism) were identified. Interestingly, the top hits included ‘Cytosolic 

tRNA aminoacylation’ and 'PPAR-alpha activates gene expression', which suggest that these transcriptional 

regulatory processes are intrinsically intertwined with the traditional concepts of enzyme-driven metabolic 

pathways in cholesterol biosynthesis and transport. 
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Because of the presence of overlaps in gene memberships between certain curated pathways, we merged 82 

overlapping pathways with meta-MSEA p-value < 0.05 into 43 non-overlapping gene “subnetworks” at a 

maximum allowed overlap ratio of 0.20, and performed a second run of meta-MSEA using these merged 

subnetworks to retrieve the top six subnetworks (Supplementary Table 5). The strongest signal was 

observed for Subnetwork 1 (P < 10−16) that contained genes encoding key apolipoproteins and lipid transport 

proteins (such as LDLR, CETP and PLTP). Subnetwork 2 (P < 10−8) included genes related to lipid 

biosynthesis and catabolism (including the statin target HMGCR), oxidoreductive enzymes, metalloproteins 

and mitochondria. Subnetwork 3 represents a biologically intriguing connection between circulating 

cholesterol and the immune system: it contained proteins that are involved in the transport of fatty acids and 

lipids in blood (Albumin and apolipoproteins A1, B, A and L1), collagen genes, and the immunoglobulin 

family. Subnetwork 4 mainly contained the ATP-binding cassette family of transmembrane transporters 

responsible for lipid and cholesterol transfer across cell membranes. Subnetwork 5 included genes for 

metabolizing retinoid, an important mediator of cholesterol transport. Subnetwork 6 connected 

transcriptional regulation with fatty acid metabolism. 

Using wKDA, we identified candidate key drivers in the liver and adipose tissues for each of the top six 

cholesterol-associated subnetworks (top five along with co-hubs listed in Table 2 and full list in 

Supplementary Data 2). As exemplified in Fig. 5a, the top adipose key driver for Subnetwork 2 is the very 

long chain acyl-CoA dehydrogenase (ACADVL), which catalyzes the first step in mitochondrial beta-

oxidation. Notably, the two co-hubs for ACADVL (PPARA and CIDEA) are also highly relevant genes for 

maintaining lipid homeostasis: PPARA is one of the master regulators of lipid metabolism with clinically 

approved class of drugs (fibrates) already in use; CIDEA has been linked to apoptosis, and mouse knock-outs 

have demonstrated significant effects on the metabolic rate and lipolysis 44. In liver (Fig. 5b), the top key 

driver of Subnetwork 2 is fatty acid synthase (FASN), which is a key driver in adipose tissue as well. The 

second top key driver squalene epoxidase (SQLE) and its co-hubs (FDFT1, IDI1, MSMO1, NSDHL, 

HMGCS1, ALDOC) either catalyze or regulate cholesterol biosynthesis. HMGCR, although not listed as top 

five key drivers, is a highly significant key driver (P < 10-14) and a co-hub of MMT00007490. Subnetwork 2 

and Subnetwork 6 shared multiple common key drivers in the adipose network (Fig. 5a). These included 

aconitase 2 (ACO2), an enzyme that catalyzes citrate to isocitrate in mitochondrion, and ACADVL and its co-
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hubs. Perturbation of the majority of the top key drivers, including ACADVL, FASN, SCD, ACO2, COL1A2, 

POSTN, EHHADH, DHCR7, HSD17B7, GC, AQP8, INSIG1, has been shown to cause abnormal cholesterol 

and lipid homeostasis based on the Mouse Gene Informatics database and International Mouse Phenotyping 

Consortium 45, 46. In summary, biological plausibility, literature evidence and experimental data all support 

the fundamental role of the top key drivers in regulating cholesterol metabolism. 

Discussion 

The explosion of genomics data provides unprecedented opportunities to identify important mechanisms of 

disease across studies. Here we introduce a standardized pipeline to connect disease association studies with 

functional data and curated knowledge, and apply it to the genetics of cholesterol. We used multiple 

independent datasets to show how the Mergeomics components (MSEA and wKDA) outperformed previous 

methods in sensitivity and specificity. The generic nature of MSEA makes it straightforward to apply it to 

individual genomic association studies in different species and different omics data types. The unique 

pathway-level meta-analysis feature makes it highly powerful in overcoming population and study design 

differences to integrate diverse data sources to accurately identify shared biological processes across studies. 

The weighted network algorithm for wKDA is equally flexible: it can be applied to diverse biological 

networks and provides statistical and qualitative information on the key regulating genes in a tissue- and 

network type-specific fashion. Our case study suggested that there is an underlying gene regulation pattern 

that involves existing drug targets (such as PPARA and HMGCR) as well as less known genes (such as 

ACADVL and collagen genes), that can help explain the complex signals from cholesterol genetic studies, 

and guide the development of novel hypotheses and wet lab experiments. With the release of the R library, 

we provide the scientific community with easy-to-use tools to make sense of the exiting mass of genomics 

resources. 

Methods 

Market set enrichment analysis 

The default setting of MSEA takes as input 1) summary statistics from genomic association studies, 2) 

measurement of relatedness or dependency between genomic markers, 3) functional mapping between 
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markers and genes, and 4) functionally defined gene sets (e.g., biological pathways or co-regulated genes). 

For GWAS, SNPs are first filtered based on the LD structure to select for only SNPs that are relatively 

independent given an LD threshold 29. For other types of association studies, correlations between co-

localized markers may be used. For a given gene set, gene members are first mapped to markers based on the 

functional mapping file and then the disease association p values of the corresponding markers are extracted 

to test for enrichment of association signals. To test enrichment, both a gene-based analysis and marker-

based analysis are implemented in MSEA. 

The null hypothesis for the enrichment of association signals within a gene set can be defined as 

Gene-based H0 : Given the set of all distinct markers from a set of N genes, these markers contain an equal 

proportion of positive association study findings when compared to all the distinct markers from a set of N 

random genes 

or as 

Marker-based H0: Given a set of M distinct markers, these markers contain an equal proportion of positive 

association study findings when compared to a set of M random markers. 

We only focus on distinct markers to reduce the effect of shared markers among gene families that are both 

close in the genome and belong to the same pathway (and presumably have overlapping functionality). 

Furthermore, our software has a feature that merges genes with shared markers before analysis to further 

reduce artifacts from shared markers. The expected distribution of the test statistic under the null hypothesis 

can be estimated empirically by randomly shuffling the gene or marker labels (Supplementary Fig. 2). The 

gene-based approach is robust against LD and other artifacts. The marker-based approach is more sensitive, 

however it requires substantial correction for LD to be reliable and may suffer from artifacts due to the non-

random positional patterns of gene regions in the genome. 

To avoid assessing enrichment based on any pre-defined association study P-value threshold (e.g., p<0.05) 

which can mean different association strengthes in studies of varying sample size and power, we developed a 

new test statistic with multiple quantile thresholds to automatically adapt to any dataset: 

� �� �� ���
��� � 	
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In the formula, n denotes the number of quantile points, O and E denote the observed and expected counts of 

positive findings (i.e. signals above the quantile point), and κ = 1 is a stability parameter to reduce artefacts 

from low expected counts for small gene sets. The frequency of permuted signals that exceed the observation 

is determined as the enrichment P-value. For highly significant signals where the frequency-based value is 

zero (i.e. no permuted signal exceeds the observation), we fit a parametric model to the simulated null 

distribution to approximate the corresponding Z-score (see details under the section “adaptive Gaussian 

approximation for estimating P-values” below). For meta-MSEA of multiple association studies, pathway 

enrichment Z-scores from each dataset are first estimated with MSEA, followed by addition of these 

approximate Z-scores into a single combined enrichment score for P value estimation.   

MSEA performance evaluation 

The MSEA within Mergeomics can be reconfigured depending on the type of dataset and study design. We 

identified several parameters that could affect the performance of the pipeline such as marker filtering by 

including top associated markers based on a percentage cutoff, dependency or relatedness (such as LD) 

cutoff for pruning redundant markers, and the mapping between genes and markers. Here we focus on the 

marker filtering percentage and LD cutoff as they represent the two key technical challenges. Of note, the 

mapping between genes and markers can be defined empirically 11, 13, but we used a chromosomal distance-

based approach for testing to make Mergeomics consistent with most of the current pathway enrichment 

tools. In fact, for GWAS, the assignment of SNPs to their target genes based on their chromosomal location 

is the commonly adopted approach in other methods, whereas Mergeomics allows users to apply any 

available assignment method, including the data from tissue-specific eQTL studies and ENCODE. 

High cholesterol is a major risk factor for cardiovascular disease, and cholesterol metabolism and transport is 

one of the most studied and understood areas of human biology, which makes cholesterol GWAS 36 an 

informative dataset for method assessment. GWAS summary data for circulating cholesterol were available 

from 7,572 individuals in the Framingham Study 35, 8,330 Finnish individuals 34, and 100,184 participants 

from the Global Lipid Genetics Consortium 36. The GLGC contains the two smaller studies, but as the total 

overlap was less than 10% between the datasets, we assume that the three GWAS are independent for the 

purposes of this study. All participants were predominantly Caucasian descent, and we used the 

corresponding LD data from HapMap 47 and 1000 genomes project 48 in our analyses.  
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We simulated true positives and true negatives to determine a suitable combination of parameters and to 

compare performance of different methods. We collected genes from the Reactome pathway R-HSA-556833, 

“the metabolism of lipids and lipoproteins”, treating these genes as true signals related to cholesterol and 

lipid metabolism. These genes were randomly grouped into 300 positive control pathways, including 100 

with size 25, 100 with size 100, 100 with size 250, respectively. Simultaneously, 300 negative control 

pathways with the same size distribution as the positive control pathways were generated by randomly 

selecting genes from the non-cholesterol gene pool consists of 8633 genes from the pathway database of 

Reactome 39, BioCarta (http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways) and KEGG 40. These manually 

generated pathways were combined with 1,346 original canonical pathways and analysed by MSEA, 

MAGENTA and i-GSEA4GWAS. The performance was evaluated as sensitivity (number of positive control 

pathways at FDR < 25% divided by total number of positive control pathways), specificity (number of 

negative control pathways at FDR < 25% divided by total number of negative control pathways) and the 

likelihood to pick up true positive pathways (Positive Likelihood Ratio), calculated as sensitivity / (1 - 

specificity). 

wKDA 

Supplementary Fig. 5 depicts the main components of wKDA which utilizes both the network topology 

information and the edge weight information when available. In wKDA, the network topology is first 

screened for suitable hub genes whose degree (number of genes connected to the hub) is in the top 25% of all 

networks nodes (Supplementary Fig. 5, middle box on the left). We further classify these genes as either 

independent hubs or co-hubs, where co-hub is defined as a gene that shares a large proportion of its 

neighbours with an independent hub. First, the candidate independent hubs are sorted according to the node 

degree, from low to high. This is to ensure that we capture local structures rather than one master hub that 

covers the majority of the network (e.g. housekeeping genes would make poor drug targets due to global 

side-effects). Next, the sorted hubs are tested one by one for neighbourhood overlaps with the already 

accepted hubs. If sufficient overlap (as defined under section “definition of overlap between two gene sets” 

below, default value is 33%) is detected, the current hub is assigned as a co-hub for the previously accepted 

overlapping hub.  
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wKDA statistics 

Once the hubs and co-hubs have been defined, the disease-associated gene sets that were discovered by the 

MSEA are overlaid onto the network topology to see if a particular part of the network is enriched for the 

potential disease genes. First, the edges that connect a hub to its neighbours are simplified into node 

strengths (strength = sum of adjacent edge weights) within the neighbourhood (Supplementary Fig. 5, Plots 

B-D), except for the hub itself. For example, the top-most node in Plot C has three edges that connect it with 

the other neighbors with weights that add up to 7 in Plot D. By definition, the hub at the center will have a 

high strength which will skew the results, so we use the average strength over the neighbourhood for the hub 

itself. The reduction of the hub neighbourhood into locally defined node strengths improves the speed of the 

algorithm and makes it easier to define an enrichment statistic that takes into account the local 

interconnectivity. In particular, the weighting of the statistic with the node strengths emphasizes signals that 

involve locally important genes over isolated peripheral nodes. In Plot D of Supplementary Fig. 5, the 

overlap between the hub neighbourhood and a hypothetical disease-associated gene set is indicated by the 

circles around the top three nodes. The sum of the respective strengths is 15, which represents 57% of the 

total sum of 26.4 in the neighbourhood (pie chart in Plot D). The final enrichment score is estimated with the 

formula below. 

The null hypothesis for the enrichment of disease genes within a subnetwork can be expressed as 

Weighted key driver H0 : Given the set of nodes adjacent to a key driver, and with each node having a local 

strength as estimated by their mutual connectivity, the ratio of disease gene-member sum of  strengths to the 

total sum of strengths is equal to the ratio for a randomly selected gene set that matches the number of 

disease genes. 

The test statisitic for the wKDA is analogous to the one used for MSEA 

� � � � �
√� � 	 

except that the values O and E represent the observed and expected ratios of pathway memberships. In 

particular, 
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�  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 7, 2016. ; https://doi.org/10.1101/036012doi: bioRxiv preprint 

https://doi.org/10.1101/036012
http://creativecommons.org/licenses/by-nc/4.0/


20 

is estimated based on the hub degree Nk, pathway size Np and the order of the full network N, with the 

implicit assumption that the weight distribution is isotropic across the network. 

Statistical significance of the disease-enriched hubs, henceforth key drivers, is estimated by repeatedly 

permuting the gene labels and estimating the P-value based on the simulated null distribution. To control for 

multiple testing, we perform adjustments in two tiers. First, the P-values for a single subnetwork are 

multiplied by the number of independent hubs (Bonferroni adjustment). All hubs with adjusted P > 1 are 

discarded. For random data, the truncated results will be uniformly distributed between 0 and 1, and hence 

they can be treated as regular P-values. In the second stage, all the P-values for the subnetworks are pooled 

and the final false discovery rates are estimated by the Benjamini-Hochberg method 49. 

Performance assessment of wKDA 

In this study, we use the Bayesian networks 50, 51 constructed from published genomic studies where both 

DNA and RNA are collected from adipose and liver tissue samples (Supplementary Table 3). Given that 

SNPs affect gene expression but not vice versa, it is possible to infer the causality of regulation between two 

correlated genes by looking at the statistical associations between SNPs and gene transcripts. For instance, if 

only one of two co-expressed genes are regulated by a SNP, it is possible that the SNP regulates gene A 

expression that in turn regulates gene B expression, thus showing a causal link between gene A and B. 

However, if the genes are each regulated by the same SNP, it may be the sign of an incidental co-expression 

without a direct causal relationship. In a Bayesian model, the uncertainty over the causality is estimated by 

conditional probabilities between co-expressed genes, and the structure of the resulting network is further 

constrained to an acyclic topology to ensure computational feasibility 50, 51.  

We organized the individual Bayesian networks into two independent weighted adipose networks and two 

independent weighted liver networks from non-overlapping datasets (Supplementary Table 3), where edge 

weight represents the estimated reliability of a connection or edge between genes based on the consistency of 

the edge between datasets. Using these networks and three test gene sets related to lipid metabolism as inputs, 

we ran wKDA and the previously developed unweighted KDA to identify liver and adipose key drivers of 

the lipid gene sets. To assess the prediction accuracy of wKDA and KDA, we used the overlap ratio of the 
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identified key driver genes (as defined under section “definition of overlap between two gene sets” below) 

between the two independent networks of the same tissue. 

Adaptive Gaussian approximation for estimating P-values in MSEA and wKDA 

The exact shape of the null distribution is dependent on the size of the gene set and on the mapping between 

the genes and the markers (MSEA) or on the size and topology of the gene network (wKDA). To estimate 

the P-value from these various permutation approaches, we created a generic algorithm for a parametric 

approximation using the Gaussian function. In the range where a direct frequency-based P-value is accurate 

(i.e. with 10,000 permutations it is possible to accurately estimate P-values above ~0.001), we found that the 

Gaussian approximation was highly concordant. For P < 0.001, we found that the Gaussian model produced 

biologically plausible rankings of statistical significance. We tested other models, but found that the potential 

benefit from using more long-tailed distributions was outweighed by the difficulties in applying them in 

practice. For instance, the t-distribution was more conservative than the Gaussian estimate, but assigning an 

appropriate degree of freedom was problematic given the diverse nature of the null hypotheses. 

Let X denote the series of simulated test statistics (as defined in the previous section) from the permutation 

analysis. Then the transformation algorithm can be expressed as 

1) α = min(X0), X1 = X0 - α 

2) β = median(X1), X2 = X1 / β 

3) X3 = log(γX2 + 1) 

4) μ = mean(X3), σ = sd(X3) 

5) Evaluate how well X3 approximates N(μ, σ) 

6) If necessary, try a different γ and go back to Step 3. 

The parameters from Steps 1-4 can be saved and reapplied to new data, which makes it possible to determine 

the transformation exclusively based on simulated statistics, and then apply it to the observed test statistic to 

yield the parametric enrichment score 

Ζ� � log���� � ����� � 1� � �
�  
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The rationale for Gaussian approximation is based on the attractive analytical properties of Gaussian 

distributions. Nevertheless, if the approximation is inaccurate, the results can be biased and lead to erroneous 

conclusion. In particular, any dependencies between markers tend to elongate the tails of the “true” 

distribution when using marker permutations for the MSEA. For this reason, we also report the raw 

frequency of false positive findings from the permutation analysis for each gene set. 

Definition of overlap between two sets 

We define the overlap between two sets A and B as 

 

where N denotes the number of items. The ratio is zero when there are no shared genes and one when A = B. 

Importantly, the ratio is symmetric for two sets of different sizes i.e. the labels A and B can be swapped 

without affecting the value of r. This definition is used for the calculation of overlap ratio when merging 

overlapping significant gene sets from MSEA, determining hub-cohub relationship, as well as evaluating the 

consistency of key drivers identified in independent Bayesian networks. 

Availability 

Mergeomics is available as a freely downloadable R package 

(http://mergeomics.research.idre.ucla.edu/Download/Package/). The package supports full Mergeomics 

functionality, plus the option to generate Cytoscape input files for quick network visualization. At the 

download site, sample omics datasets, network models, and a standalone C++ program for performing 

marker dependency filtering are also provided. 
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Figure Legends 

Figure 1. Input data formats and key analysis components of the Mergeomics pipeline. 

Figure 2. Comparison of three pathway enrichment methods across three GWAS.  Only results for the gene-

permuted version of marker set enrichment analysis (MSEA) are depicted (results for the marker-permuted 

version are in Supplementary Table 1). Performance is evaluated by sensitivity (a), specificity (b), positive 

likelihood ratio (sensitivity/(1-specificity)) (c) and receiver operating characteristic curve (d-f). Sensitivity 

was defined as the proportion of positive control pathways detected at FDR < 25%. Specificity was defined 

as the proportion of negative controls rejected at FDR ≥ 25%. 

Figure 3. Schematic illustration of the concept of a key driver gene (a) and local hubs with overlapping 

neighborhoods (b). 

Figure 4. Performance comparison between the original unweighted key driver analysis, and the new 

algorithm designed for weighted networks (wKDA). Two empirical subnetworks (Lipid I & II) were 

obtained from a previous publication 29, and a canonical metabolism of lipids and lipoproteins pathway was 

obtained from the Reactome database (R-HSA-556833). The methods were tested by projecting the three 

functional subnetworks onto two independent adipose networks (a-c) and two independent liver regulatory 

networks (d-f). The adipose and liver networks were constructed from a collection of Bayesian tissue-

specific network models (Supplementary Table 3). Overlap between the tissue-specific key driver signals 

across two independent regulatory networks was defined according to the formula in Methods. Overlap ratio 

was calculated for both original networks and networks rewired at 25%, 50%, 75%, 100%. 

Figure 5. Visualization of adipose (a) and liver (b) networks around top key drivers identified for 

cholesterol-associated subnetworks. Top key drivers (Nodes with the largest size) are selected as the top five 
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independent key regulatory genes (genes whose neighbourhood has less than 25% overlap with the 

neighbourhood of other independent hubs) for subnetwork 2 and subnetwork 6. Subnetwork member genes 

are denoted as medium size nodes and non-member genes as small size nodes. Top co-hubs (co-hubs with 

FDR<1e-10 in wKDA) are also highlighted by yellow circle. Only edges that were supported by at least two 

studies were included. 

Tables 

Table 1. Top 15 pathways associated with cholesterol levels in three GWAS datasets among 1,346 canonical 

pathways tested. Values in the cells represent -log10-transformed enrichment P-values from MSEA of 

individual cohorts and meta-MSEA. MSEA was run with gene permutation, top 50% of markers and LD 

cutoff r2 < 50%. Only pathways with meta-MSEA −log10P > 4.0 were included here; the full results are 

available in Supplementary Data 1. The column 'Meta-GWAS' was produced by first conducting SNP-level 

meta-analysis using the SNP associations from all three GWAS by inverse-variance meta-analysis and then 

estimating the pathway enrichment. The column 'Meta-MSEA' was produced by pathway-level meta-analysis 

in which pathway enrichment Z-scores from each GWAS were first estimated with MSEA, followed by 

addition of these approximate Z-scores into a single combined enrichment signal before calculating the 

statistical significance. The adjusted 5% Bonferroni significance level for 1,346 independent tests is at 

−log10P > 4.43. 

Pathway FIMM Framingham GLGC Meta-GWAS Meta-MSEA 

Lipid digestion, mobilization, and 
transport 

4.2 5.5 6.1 5.0 13.8 

Lipoprotein metabolism 4.7 4.8 5.9 5.4 13.5 

Chylomicron-mediated lipid transport 4.9 4.9 4.7 5.0 12.6 

Metabolism of lipids and lipoproteins 3.2 1.7 6.2 3.6 8.5 

Cytosolic tRNA aminoacylation 3.6 2.1 1.9 2.7 5.9 

Binding and Uptake of Ligands by 
Scavenger Receptors 

1.9 2.3 3.4 2.9 5.9 

Scavenging by Class A Receptors 1.8 2.2 3.2 3.5 5.6 

Metabolism 1.8 1.5 3.9 3.0 5.4 

PPARA Activates Gene Expression 1.7 2.2 2.8 1.3 5.1 

Retinoid metabolism and transport 1.0 2.8 3.0 1.4 4.9 

Regulation of Lipid Metabolism by 1.3 2.0 2.8 1.6 4.5 
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Peroxisome proliferator-activated 
receptor alpha (PPARalpha) 

Fatty acid, triacylglycerol, and ketone 
body metabolism 

1.5 1.7 2.5 1.6 4.1 

Clathrin derived vesicle budding 1.9 1.3 2.4 1.3 4.0 

Diseases associated with visual 
transduction 

1.4 1.9 2.2 2.3 4.0 

ABC transporters 1.8 0.9 3.2 2.8 4.0 
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Table 2. Cholesterol subnetworks after merging cholesterol-associated canonical pathways and their respective top five key drivers (FDR<1%). To confirm that the 

merged subnetworks were genetically associated with cholesterol, a second round of MSEA was performed. Functional annotations were determined with the 

DAVID Bioinformatics Tool 52. Statistical significance was estimated as described in Table 1. The adjusted 5% Bonferroni significance level for 43 independent 

merged supersets is at −log10P > 2.93. For key drivers, the P-value indicates the enrichment of cholesterol-associated genes around a local hub in a tissue-specific 

network. Before analyses, Bayesian networks from multiple studies were combined to create weighted adipose and liver consensus networks. Gene symbols have 

been translated to human when available. Co-hubs were defined based on the overlap of neighboring genes in the network: if the overlap ratio of two local hubs was 

above 33% (50% of the combined neighborhood was shared between the hubs), the hub with the lower P-value for the subnetwork enrichment was chosen as the key 

driver, and the other hub was designated as a co-hub. 

 

Subnetworks −log10 P Functional annotation 
Top adipose KDs Top liver KDs 

Key 
driver −log10 P Co-hubs 

Key 
driver 

−log10 P Co-hubs 

Subnetwork 1 
Lipoprotein 

16.0 
Lipid transport; cholesterol 

metabolism; lipoprotein; blood 
plasma 

- - - 
SPRY4 9.5 ABCG8 

S100A10 4.5 - 

Subnetwork 2 
Lipid metabolism 

8.1 
Lipid metabolism; 

metalloprotein; oxidoreductase; 
endoplasmic reticulum 

ACADVL 33.7 PPARA, CIDEA FASN 49.0 GPAM, ACLY 

FASN 26.8 
ME1, ACSS2, ACLY, 

ELOVL6 
SQLE 37.4 

FDFT1, IDI1, MSMO1, 
NSDHL, HMGCS1, ALDOC 

SCD 24.0 DNMT3L DHCR7 26.9 
PMVK, MUM1, FDPS, LSS, 

RDH11, MVD 

CCBL2 23.3 - HSD17B7 23.9 - 

ACO2 23.0 
AV075202, GPD2, 

NDUFV1 
MMT000

07490 
18.8 

HMGCR, LSS, FDFT1, 
MVD, ACSL3 

   COL1A1 12.4 - COL6A3 21.4 - 
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Subnetwork 3 
Immunoglobulin 

6.1 Immunoglobulin V-set COL1A2 9.4 COL3A1,COL2A1,MFAP2 VIM 11.0 - 

OLFML3 8.8 - CCDC3 10.4 OLFML3 

POSTN 8.3 COL2A1 CXCR7 9.9 - 

FN1 7.2 - FBLN2 9.0 - 

Subnetwork 4 
ABC transport 

5.0 ATP-binding cassette genes - - - 

SPRY4 12.0 ABCG8 

MMT000
62095 

4.3 - 

S100A10 3.2 - 

Subnetwork 5 
Retinoid 

metabolism 
4.5 

Retinoid metabolism; Visual 
transduction 

- - - 

GC 11.2 RBP4,APOH 

TFPI2 3.2 - 

AQP8 2.9 - 

Subnetwork 6 
Transcription 

3.8 
Transcription regulation; fatty 

acid metabolism; acyltransferase 

SLC2A5 18.2 - PKLR 23.6 MMT00060232, ELOVL6 

ACADVL 17.7 PPARA, CIDEA PNPLA5 19.0 ACLY, ACACA, PNPLA3 

CPT2 15.9 - PGD 12.2 - 

EHHADH 15.1 - FASN 11.6 GPAM,ACLY 

ACO2 13.7 
AV075202, GPD2, 

NDUFV1 
INSIG1 10.7 - 

 

 

.
C

C
-B

Y
-N

C
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted January 7, 2016. 
; 

https://doi.org/10.1101/036012
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/036012
http://creativecommons.org/licenses/by-nc/4.0/


Gene
assignment

 SNP         P-value
 rs2892621   4.78e-05
 rs10795066  5.96e-02
 rs10795067  5.96e-03
 rs73266162  8.17e-12
 rs73266160  8.29e-07

 SNP_a       SNP_b       R2
 rs2892621   rs60739020  0.1
 rs10795066  rs10763140  0.7
 rs10795067  rs7893385   1.0
 rs73266162  rs2892621   0.9

GENE   SNP
HMGCR  rs10070119
HMGCR  rs10434644
HMGCR  rs10462517
SQLE   rs10086228
SQLE   rs10087191
TP53   rs12936842

GENE_a GENE_b  WEIGHT
SQLE   HMGCR   0.3
FDFT1  SQLE    0.5
PTPRO  SQLE    0.8
FDFT1  DHCR7   1.0
LSS    ACSS2   0.5

 GENESET      GENE
 Lipoprotein  APOA1
 Lipoprotein  HMGCR
 Lipoprotein  CETP Visualization

 GENESET     GENE 
 Lipoprotein  APOA1
 Lipoprotein  HMGCR
 Lipoprotein  CETP
 Cancer      TP53
 Cancer      BRCA1

Disease-associated
gene sets

- Curated pathways
- Co-expression modules
- Gene expression signatures

Marker dependency

Disease associations
-
-
-

GWAS
EWAS
TWAS

  - 
  -
  -

Gene region
ENCODE
Genetics of
gene expression

Marker
Dependency

Filtering

Weighted
key driver
analysis
(wKDA)

Marker set
enrichment

analysis
(MSEA)

Meta-MSEA

Single dataset Multiple datasets

MARKER         P-Value

GENE     MARKER

MARKER_a     MARKER_b     r2

GENESET          GENE
GENESET          GENE

GENE_a  GENE_b    WEIGHT

Molecular network models
-
-

Graphical Bayesian networks
Protein-protein interactions

Independent
resources
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