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ABSTRACT

Motif analysis has long been an important method
to characterize biological functionality and the
current growth of sequencing-based genomics
experiments further extends its potential. These
diverse experiments often generate sequence lists
ranked by some functional property. There is therefore
a growing need for motif analysis methods that can
exploit this coupled data structure and be tailored for
specific biological questions. Here, we present a motif
analysis tool, Regmex (REGular expression Motif
EXplorer), which offers several methods to identify
overrepresented motifs in a ranked list of sequences.
Regmex uses regular expressions to define motifs or
families of motifs and embedded Markov models to
calculate exact probabilities for motif observations in
sequences. Motif enrichment is optionally evaluated
using random walks, Brownian bridges, or modified
rank based statistics. These features make Regmex
well suited for a range of biological sequence analysis
problems related to motif discovery. We demonstrate
different usage scenarios including rank correlation of
microRNA binding sites co-occurring with a U-rich
motif. The method is available as an R package.

INTRODUCTION

Motif discovery is a classical problem in sequence
analysis and its scope broadens with modern sequencing
technologies. A large number of tools are designed to
find enriched motifs in sequences, with the majority
aimed at finding motifs that are enriched in a foreground
set of sequences relative to a background set. This
is optimal for sequences where a categorical variable
defines a foreground and a background. However, many
experimental settings are associated with continuous
variables where set-based methods are suboptimal.
Instead of using a hard threshold to divide a continuous
variable into foreground and background, it is more
powerful to take the magnitude of the continuous variable
directly into account.

More recently, motif enrichment methods have been
developed that can exploit the ranking in a list of
sequences, e.g. (1, 2, 3, 4, 5). These methods seek to find

the motifs that best correlate with the ranked sequence
list. Most commonly, this is achieved by exhaustively
searching through the space of all simple motifs of a given
length k (k-mers). K-mers, ranked by their correlation
measures, are then either output directly, clustered and
used to define position weight matrices (PWMs) or used
as seeds in a variety of downstream algorithms to refine
the top correlating motifs.

A general challenge of motif analysis, and specifically
of methods based on an exhaustive search, is the
rapid increase in search space with motif size and
complexity. This problem has been addressed in recent
work by using suffix trees, allowing exhaustive searches
of large spaces such as all variable gap motifs up to
a given length (4). However, functional motifs may
display a much higher degree of complexity than current
methods meet. Many snoRNAs, for example, are known
to bind their targets in a composite motif consisting
of two binding sites separated by a variable number
of nucleotides. In addition, regulation of biological
systems often rely on multiple factors acting in concert.
For instance, endogenous RNAs can severely perturb
regulatory networks of microRNAs (6). It is thus valuable
to be able to evaluate enrichments for subsets of binding
sites in combination.

A central aspect in motif analysis of ranked sequences is
the significance evaluation of the motif rank correlation.
A number of approaches have been used, including linear
regression models (7), Wilcoxon rank sum tests (8), a
Kolmogorow-Smirnov based approach (9), a Brownian
bridge based approach (2) and methods using variants
of hyper geometric tests (1, 4, 5). The various methods
also have different standards for motif scoring in the
sequences. Examples include simple presence/absence
scores for each sequence (5, 9), dependence of sequence
lengths and global base composition (1) and probabilistic
scoring that models base composition of every sequence
in the rank list (2).

Presence/absence scores in particular suffer a risk
of bias because sequence length and composition is
not included in the score model, which is a problem
if e.g. sequence lengths are biased in the rank. Also,
presence/absence score-based methods may be under-
powered in situations where the number of motif
occurrences in a single sequence matters.
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Based on these issues, we see a need for a tool that
allows hypotheses for flexible motifs to be evaluated,
and calculates accurate sequence dependent p-values
for motif observations. We present Regmex, a motif
enrichment tool, with a number of new features aimed at
accurate significance evaluation (see Figure 1). First, we
calculate sequence specific motif p-values that depend
on both sequence lengths and base compositions using
an embedded Markov model. Second, depending on the
problem and hypothesis, motif rank correlation or motif
clustering can be evaluated in one of three different ways;
(1) a Brownian bridge based approach, (2) a modified
sum of ranks method which takes sequence properties
into account, or (3) a random walk based method which
is sensitive to clustering of motif observations anywhere
in the sequence list. In addition, Regmex makes use of
regular expressions, thus allowing a motif to be far more
complex than k-mers. We illustrate some of the benefits
by using Regmex on simulated data as well as on real
data sets. The method is available as an R package
(https://github.com/muhligs/regmex).
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Figure 1. Flow diagram of the procedures for calculating sequence
specific p-values and rank correlation or clustering p-value in
Regmex.

MATERIALS AND METHODS
The Regmex tool

In this study, we introduce Regmex, a motif analysis
tool available as an R package. Regmex is designed
with flexibility in mind to study rank correlation or
clustering of motifs in a list of sequences. Briefly, it takes
as input a list of sequences ranked by an experimental
setting, and one or more motifs, each defined as a
regular expression (RE) (see Figure 1). The output, in its
simplest form, contains the rank correlation or clustering
p-values (RCPs) for the input motifs. Alternatively, it is
possible to get the underlying sequence specific p-values
(SSPs) for motifs as well as count statistics etc.
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To illustrate the power of REs in a biological sequence
context, we consider the following examples:

1) A stem loop structure TTTCNNNGAAA found
in the 3'UTR of many key inflammatory and immune
genes (10). Although this is a simple RE, it captures 64
11-mers in one expression, and Regmex reports the rank
correlation p-value of the combined set.

2) A G-quadroplex structure,
GGGLGGGLGGGLGGG, L = (N|NN|NNN|NNNN).

This is found e.g. in telomeric regions (11).

3) Any size open reading frame,
ATG(NNN)*((TGA)|(TAA)|(TAG)). This RE is an
example of an enormous set, which would be difficult to
obtain without a RE.

We note that an advantage of REs in relation to
the motif enrichment problem is that a RE can be
obtained for any set of simple motifs. Thus for example
a set of experimentally verified binding sequences can be
expressed as a RE, and matching will include exactly this
set.

Sequence specific motif p-value calculation

A central point in the way Regmex calculates a motif
RCP is to calculate SSPs for observing the motif the
observed number of times (nys) or more. Briefly, from
a deterministic finite state automaton (DFA) associated
with the RE motif, we identify a sequence specific
transition probability matrix (TPM) which is used to
build an embedded TPM (eTPM) specific for ng,s (see
Figure 2). The SSP is subsequently read from the eTPM
raised to the power of the sequence length.

Deterministic Finite State Automaton

For any RE, the corresponding DFA can be built, which
is the initial step in the SSP calculation (Figure 2B).
The DFA starts in an initial state, accepts symbols
(i.e. nucleotides) on the edges and moves through the
states. The end state corresponds to having observed the
RE. The DFA used here recognizes an extended regular
expression, as described in (12). The routine used to build
the DFA for a given RE is implemented in Java, using
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Figure 2. (A) Motif in the form of a regular expression. Base
coloring applies throughout the figure. (B) Deterministic finite
state automaton corresponding to the regular expression in (A).
Initial state is indicated in gray, end state is indicated by a double
circle. (C) Transition state probability matrix (TPM) associated
with the model in (B). (D) Embedded Markov Model (eDFA) for
two observed occurrences of the motif. States are pre-indexed with
number of prior motif observations. (E) Embedded transition state
probability matrix (eTPM) associated with the eDFA. The yellow
matrix is an exact copy of the yellow matrix from (C). The gray
entries have zero probability. The end state transition probabilities
of the DFA model (red/orange in (C)) are shifted forward and
contain the initial state of the next motif occurrence, except for
any end to end transition probability (occurs for REs ending with
a *), which remains in the DFA template (red field). The final state
of the eDFA (2,4 in D) is an absorbing state and all transition
probability is in (2,4;2,4) indicated in black. (F') Heat diagrams of
the n-step eTPM reflecting the probability of moving between states
in the eDFA given a random sequence of length n with a specific
base composition. The row corresponding to the initial state (0,1)
holds the probability distribution of going from the start state to
any state in the eDFA in n steps. The last entry of this row (red
field) holds the probability of the observed number of motifs (n4ps)
or more in the sequence (the SSP).

(13), and supports standard regular expression operations
(concatenation, union and Kleene star).

Markov Embedding
The DFA graph structure can also be thought of as
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a Markov model, where instead of accepting symbols,
it generates symbols on the edges with probabilities
corresponding to the base frequencies in a given sequence.
The Markov model can be represented by a transition
probability matrix (TPM), which holds the probabilities
of moving between states of the DFA given a randomly
picked base from the sequence (Figure 2C). TPM"™ will
hold the probability of moving between states given n
bases.

We are interested in the SSP and thus need to have a
probability model that takes n,;s into account. Regmex
does this by making a model expansion using the DFA as
a template. We refer to this as an embedded DFA (eDFA)
(Figure 2D). Specifically, the template DFA is copied 14
times and outgoing edges of the end state(s) of the DFA
template are moved to the corresponding states in the
next template copy. This effectively allows the embedded
model to count how many times the RE motif has been
observed. The final state of the eDFA is absorbing, so no
further motif observations are scored.

Again, the eDFA can be thought of both as an
automaton accepting symbols or as a Markov model
generating symbols on edges. As above, Regmex
constructs a transition probability matrix (eTPM) based
on the eDFA (Figure 2E). The e TPM™ holds probabilities
of moving between states of the eDFA given a random
sequence of length n with the observed base frequencies
(Figure 2F). We can now extract the probability
distribution of the RE motif in a given sequence by
reading the row corresponding to the initial state (0,1)
in the eTPM™. In particular the probability of observing
the motif n,,s number of times or more (SSP) can be
read in the final state column of the initial state row (red
field in Figure 2F).

Motif Rank Correlation p-value

In the downstream analysis, Regmex uses the
calculated SSPs when calculating the RCP. Because the
characteristics of rank correlation may vary depending
on the problem analyzed, the choice of method used to
evaluate the correlation may differ in detection power.
E.g. one test may have higher power for detecting long
motifs occurring rarely in the sequence list and another
may have superior sensitivity for frequent short motifs.
In Regmex, we have implemented three methods for
evaluating motif rank correlation or motif clustering,
which have different strengths. These methods are
based on Brownian bridge (BB), random walk (RW)
and modified sum of rank (MSR) statistics. Figure 3
illustrates the concept underlying each of these statistics
on a small list of 50 sequences with an enriched motif.

Brownian Bridge Method

This method is a re-implementation of the method
developed by Jacobsen et al. (14) and recently
implemented in ¢Words (2). Our implementation differs
in the calculation of the SSPs and in how we calculate the
RCP (see supplemental methods for details). Briefly, the
method calculates the max value D of a running sum of
mean adjusted log scores of the SSPs. The running sum
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Figure 3. (A) Sequences enriched with a 7-mer motif (ACGTGAT)
as indicated with red marks. Upper bars indicate sequence lengths,
lower bars indicate SSPs for the motif. (B) Brownian bridge for the
7-mer motif in (A) (red) and for 500 random 7-mer motifs (gray).
The RCP corresponding to the BB is indicated. (C) Random walk
for the motif in (A) (red) and 500 random 7-mer motifs (black). The
RCP corresponding to the RW is indicated. (D) Schematic of the
MSR method. Lines represent sequences with lengths proportional
to the probability of observing the motif one or more times. A motif
occurrence is marked by an asterix. The RCP corresponding to the
motif distribution is indicated.
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starts and ends in zero and hence is a Brownian bridge
under the null model (see Figure 3B). We identify the
p-value from the analytical distribution of max values of
a Brownian bridge.

Random Walk Statistic

The RW method is similar to the use of random walks
in the BLAST algorithm (15). This method is sensitive
to clustering of motifs anywhere in the sequence list. The
SSPs for a motif are transformed into steps in a walk
(see Figure 3C). Under the null model the motif is not
enriched and SSPs follow the uniform distribution. The
SSPs are transformed into steps according to a scoring
scheme where small p-values (SSPs) corresponds to a
positive step and large p-values corresponds to a negative
step. The exact scoring scheme is based on assumed motif
densities in the foreground relative to the background, so
that higher motif densities give rise to a higher walk in
local regions of the sequence list. The RW starts over from
zero every time it reaches the lower bound of -1. This
makes the RW method sensitive to local runs of enriched
motifs in the sequence list. For significance evaluation,
we find the probability of a walk with at least as high a
max value under the null distribution. We do this using
a recursion on an analytic expression for the max value
distribution of random walks (see supplemental methods
for details). Alternatively, we can use a geometric-like
distribution (Gumbel distribution) as an approximation
for the max value distribution (16).

Modified Sum of Ranks Statistics

The MSR method is based on the idea of using a
sum of rank test to determine a rank bias in motif
containing sequences. Rather than summing ranks, MSR
uses a sum of scores specific for the sequences and motif.
The scores are based on sequence specific probabilities,
which eliminates bias from sequence composition and
length. All motif observations are associated with a score
(see supplemental methods for details) that reflect the
probability of the motif being found one or more times
in the sequence, as well as the rank of the sequence.
The score can be considered as a rank normalized for
the probability of observing motifs in the sequence. For
the MSR method, the null model is that all observed
motifs are randomly distributed in the sequences given
the sequence compositions and lengths. The test statistic
is the sum of the scores, which is approximately
normally distributed when the motifs fall randomly in
the sequences. The MSR method is faster than the others
because we need only the probability of observing one or
more motifs in the sequence, which can be read from the
TPM of the DFA (Figure 2C) modified so that the end
state is absorbing, and thus we do not need to construct
the larger embedded model.

RESULTS
Combined motifs increase power

Because of different characteristics of the three methods
for rank correlation evaluation, they perform differently
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in different scenarios. Figure 4A illustrates their behavior
when applied to a set of 1000 random sequences with
a simple 7-mer motif inserted up to 100 times in the
upper half of the sequence list. In this particular scenario,
the RW approach has the highest sensitivity, followed
by the BB method and the MSR method (Figure 4A).
The RW method generally has a high sensitivity when
the motif density is high, regardless of where in the
sequence list it occurs. This is in contrast to both the
MSR and BB methods, which are more sensitive to
enrichment in the beginning or end of the sequence list.
The rank sum derived nature of the MSR method yields
a higher sensitivity for enrichment in the ends of longer
sequence lists, while the BB method is highly superior
in short sequence lists with moderate enrichment. (see
Supplemental Figure S1).

When using SSPs rather than e.g. binary scores for
motif observations in sequences, the benefit of differential
scoring becomes clear. This means, e.g., that rank
correlation of common and individually insignificant
motifs can be better evaluated because their impact on
the rank correlation is moderated by the significance
of the observation. The same argument applies to rare,
highly significant motifs. This, combined with RE motif
definition, is useful in the case of evaluating rank
correlation of combinations of motifs.

We used Regmex to evaluate rank correlation of
combinations of inserted motifs in a set of random
sequences. First, we inserted four different simple 7-mers
up to 100 times at random positions in the upper half
of the ranked sequences. We looked at the behavior of
Regmex when defining motifs as REs capturing different
subsets of the 7-mers including from one up to all four (i.e.
REs defined to capture presence of any member of the
subset). We clearly see the effect of combining multiple
simple motifs in a set (Figure 4B). When searching
for motif 1 or 2 (RE = ml|m2), we see a marked
increase in detection sensitivity starting at around 20
inserted motifs. As expected, this increases with number
of inserted motifs. Rank correlation increases even more
dramatically for the motif subsets of three or four 7-
mers. We note that the SSPs become less significant
when including more 7-mers in the motif, but because
the number of inserted motif observations in the enriched
end of the sequence list increases (up to 400 for four 7-
mers vs. 100 for a single 7-mer), the RCP becomes more
significant.

We next looked at the behavior of Regmex when
calculating rank correlation of multiple motifs present in
the same sequences. Such calculations may be relevant
when two or more different factors acting on the same
sequences could explain the sequence ranking. To this
end, we inserted the four 7-mers together in the same
sequences. This was done up to 100 times in the upper
half of the sequence list. We used Regmex to calculate
RCPs for subsets of combined motifs, i.e. RE motifs
designed to capture the presence of one up to all four
7-mers in the same sequence. The SSPs, in contrast to
before, now decrease with the number of 7-mers in the
RE subset, whereas number of motif observations are

[09:39 5/1/2016 RegmexFinal.tex]

bioRxiv, 2016, Vol. , No. 5

A
< 4 . . .
© single inserted motif
~ & 1
?3 m no insertion
X = BB
> = MSR
g o [uRW
o J
l T T T T 1
0 20 40 60 80 100
Number of inserted motifs
B multiple inserted motifs
° combined with logical or (])
S |
® no insertion
— am1
% =m1|m2
[ Em1|m2|m3
gg 4em1|m2|m3|m4
o J
l T T T T 1
0 20 40 60 80 100
Number of inserted motifs
C.
S 7 multiple inserted motifs
combined with logical and (&)
o |®mno insertion
& am1
o mm1 & m2
g mm1&m2 & m3
= m1 & m2 & m3 & m4
o
T 8 B
o J

1
0 20 40 60 80 100
Number of inserted motifs

Figure 4. Regmex behavior in different scenarios. (A) Comparison
of p-value output for the different rank correlation methods used in
Regmex. One 7-mer motif (ACGTGAT) is inserted as indicated
in the first half of 1000 sequences each with a length of 1000
bases. In replicates with no insertion the BB method was used,
but the other methods gave similar results. Error bars indicate
standard error of 100 replicates. (B) Up to four different 7-mer
motifs inserted randomly in the first half of the sequences in
(A). p-value output from Regmex using the BB method plotted
against the number of inserted motifs. RE motifs define sets
of one up to all four 7-mers as indicated, e.g. ml | m2 =
(ACGTGAT)|(GCATTGT). (C) p-value output from Regmex
using the BB method plotted against the number of inserted
motifs. Sets of four 7-mer motifs were inserted at fixed positions
randomly among the first half of the sequences in (A), so that
motifs occur together in the same sequences. RE motifs define sets
of combinations of one up to all four 7-mers as indicated, e.g. m1l
& m2 = (ACGTGATN*GCATTGT)|(GCATTGTN*ACGTGAT),
where N denotes any nucleotide.
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identical for all four motifs (by construction). As
expected, the detection power of the combined motifs is
much higher than that of a single simple motif (Figure
4C).

These experiments show how more complex motifs,
such as motif sets, can be captured by REs with great
increase in power.

U rich motifs and microRNA seed target sites as
combined motifs

As an example of a scenario where combinations of
motifs are relevant, we looked for rank correlation of
microRNA seed site targets in combination with a U-rich
motif (URM) in a number of microRNA over-expression
data sets. URMs are known to bind HuD/ELAVLA4
(17) and their presence in 3'UTRs has been shown to
correlate with down regulation in several microRNA over-
expression experiments (14). Based on this finding, a
model was proposed where URMs augment microRNA
induced destabilization of target mRNAs (14). We used
Regmex to calculate RCPs for microRNA seed site
targets and combinations of the target and URMI as
identified in (14) with sequence UUUUAAA. This was
done using 11 different microRNA over-expression data
sets (18, 19).

We first calculated RCPs for the microRNA seed
site targets. For all data sets, we saw low RCPs for
the relevant microRNA seed site target in 3’UTRs,
demonstrating correlation between the motif and down-
regulated genes (Table 1).

We next calculated RCPs for microRNA seed site
targets and URMI1 in combination. To this end, we
constructed REs of the form (UN*S)|(SN*U), where
U denotes the URM, S denotes the microRNA seed
site target and N denotes any nucleotide. This RE will
capture all combinations of the URM and the seed site in
either orientation. As expected, based on the previous
findings (14), we consistently saw an even lower RCP
for the RE motif capturing both the seed target and
the URMI motif (Table 1). The experiment thus verifies
earlier results showing URM1 3’UTR presence correlating
with down-regulation.

We next asked whether RCPs are of similar magnitude
when the URM is downstream or upstream of the
seed target. Here we used Regmex with two REs,
SN*U and UN*S for the downstream and upstream
question respectively. We observed low RCPs for both
the downstream and upstream case for all microRNAs,
indicating that URMI1 correlates with down-regulation
regardless of its relative position to the seed target (Table
1). Notably, we found that RCPs were lower for URM1
upstream the seed target than for URM1 downstream the
seed target. This could indicate a preference in relative
position between the URM site and the seed target.

The example above illustrates how Regmex is useful in
testing well defined hypotheses involving combinations of
motifs defined as REs. We note that the outcome verifies
earlier findings and further suggests a positional bias in
the relative position between the URM motif and the
augmented microRNA seed site targets.
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Table 1. Rank correlation p-values for URM (U) and seed target (S)
motifs

microRNA  Seed (SN*U)| UN*S SN*U Ref.
Target(S)  (UN*S)
miR-7 2.6e—03 1.5e—13 2.4e—11 9.6e—05 (18)
miR-9 6.6e—09 1.5e—17 2.6e—19 1.2e—05 (18)
miR-16 1.8e—178 7.3e—147 5.Te—65 9.2e—76 (19)
miR-106b 2.5e—99 9.7e—158 4.5e—145 1.8e—58 (19)
miR-122a 3.2e—02 4.1e—05 7.6e—04 2.7e—02 (18)
miR-128a 6.6e—19 2.2e—48 4.7e—33 8.2e—21 (18)
miR-132  24e—08  3.7e—27  3.9e—33  12e—07 (18)
miR-133a 5.1le—04 9.4e—09 5.7e—06 4.3e—03 (18)
miR-142 2.4e—05 1.4e—13 1.0e—11 6.0e—05 (18)
miR-148b 6.3e—09 1.9e—11 3.2e—12 34e—04 (18)
miR-181a 7.9e—17 3.9e—53 2.4e—46 51le—18 (18)

p-values for RE motifs involving URM1 (U) and microRNA seed site
targets (S) in different combinations for microRNA over-expression data
sets. All p-values were calculated with the BB method. N denotes any
nucleotide.

DISCUSSION

We have introduced Regmex, an R package for evaluating
rank correlation or clustering of motifs in lists of
sequences. Regmex differs from current methods in
combining powerful RE motif definition with accurate
sequence specific motif significance evaluation and
a variety of correlation score statistics. This makes
Regmex a flexible tool that expands on the type
of motif correlation problems that current methods
can handle. Although Regmex handles e.g. traditional
exhaustive k-mer screens as other methods (1, 2),
it is designed for specific hypothesis testing that
involves potentially complex RE motif correlation testing.
In particular, Regmex can accurately evaluate rank
correlation significance for arbitrary combined sets
of simple motifs, such as sets of high scoring k-
mers in conventional k-mer screens or combinations of
microRNA seed sites. This is relevant for investigations
of competitive endogenous RNAs, snoRNA target sites,
etc.

The accuracy introduced by the embedded model
comes at the cost of computational speed. In particular,
motifs that occur frequently in the sequences and are
also represented by DFAs with many states require large
eTPMs, which may slow down the computation. This can
be countered by parallelization, which Regmex natively
supports. Furthermore, data structures are simple enough
to sub-divide and distribute calculations. Also, the
embedded model may be reduced by introducing counting
transitions, as suggested in (20).

Regmex offers three alternative ways of evaluating
motif rank correlation, which differ in their null models.
For the RW method, the null model is that motifs occur
at random given the sequence compositions and lengths.
The RW method is sensitive to stretches of low SSPs
anywhere in the sequence list, and thus may find use
in special cases where enrichment is expected off the
ends. This could be the case if a sequence list represents
consecutive functional sets of sequences, such as a gene
ontologies or expression clusters.
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Both the MSR and the BB methods are more sensitive
to motifs occurring in the ends of the list, but have subtle
differences in their null models. For the MSR method, the
number of observed motifs in the sequence list is fixed,
and only their distribution among the sequences vary
under the null. For the BB method, the null is a uniform
distribution of SSPs. Although this would suggest a bias
for motifs occurring more frequently than expected, the
transformation of SSPs into a Brownian bridge via a
running sum normalizes for this effect. Thus both of
these methods should be robust to motif occurrence bias.
As noted (Figure 3 and supplemental Figure S1) they
have different sensitivity in different scenarios. The MSR
method tends to be more sensitive than the BB method
for longer sequence lists and vice versa.

Regmex is implemented in R and offers a number of
costumization options including model options such as
di-nucleotide dependence and a motif overlap option.
Alternative outputs such as SSPs and nps combined with
simple data formats makes Regmex well suited for a range
of problems.

Conflict of interest statement. None declared.
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